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Abstract

Ecologists have increasingly come to understand that evolutionary change on short time-scales can alter ecological
dynamics (and vice-versa), and this idea is being incorporated into community ecology research programs. Previous
research has suggested that the size and topology of the gene network underlying a quantitative trait should constrain or
facilitate adaptation and thereby alter population dynamics. Here, I consider a scenario in which two species with different
genetic architectures compete and evolve in fluctuating environments. An important trade-off emerges between adaptive
accuracy and adaptive speed, driven by the size of the gene network underlying the ecologically-critical trait and the rate of
environmental change. Smaller, scale-free networks confer a competitive advantage in rapidly-changing environments, but
larger networks permit increased adaptive accuracy when environmental change is sufficiently slow to allow a species time
to adapt. As the differences in network characteristics increase, the time-to-resolution of competition decreases. These
results augment and refine previous conclusions about the ecological implications of the genetic architecture of
quantitative traits, emphasizing a role of adaptive accuracy. Along with previous work, in particular that considering the role
of gene network connectivity, these results provide a set of expectations for what we may observe as the field of ecological
genomics develops.
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Introduction

Biologists are broadly interested in the drivers of diversity,

ranging in scale from nucleotide sequences to the entire biome. One

goal is to span across levels of organization: we would like to

understand how genes interact with one-another and with

environmental inputs to produce phenotypes (the genotype-

phenotype map, GPM), and how phenotypes ‘fit’ to the environ-

ment (the phenotype-environment map, PEM). Ultimately, we

would like to understand the links across all three levels of

organization, the genotype-environment map (GEM). Such a goal

requires incorporating dynamics from each of the sub-mappings

into an over-arching set of expectations. We might ask, for example,

how does variation in genetic architecture affect trait evolution, how

does trait evolution affect competitive dynamics, and how might

competition feed back to alter genetic architecture?

The example of competition is raised because it has a long

history in investigations of the maintenance of diversity at the level

of the PEM, as exemplified in Hutchinson’s ‘‘Homage to Santa

Rosalia’’ [1]. Classical ecological analyses, from Lotka-Volterra to

Tilman’s R* to contemporary models [2–5], typically (implicitly)

assume that competing species are fixed for the attributes that

regulate competitive dynamics, i.e., that ecological dynamics are

much faster than evolutionary change. However, as Antonovics

noted four decades ago [6], we should expect most ecological

changes to be associated with evolutionary change.

Researchers have recently begun to explore and formalize the

joint effects of ecological and evolutionary dynamics on species’

populations and their communities [7–12]. Hairston and col-

leagues [7] developed several analytical models that incorporate

both phenotypic change (evolution) and population change

(ecology). They demonstrated that evolutionary change can play

a major role in altering population dynamics (as in the case of

Geospiza fortis populations and evolving bill size), or evolutionary

change may play a smaller role (as in the case of Onychodiaptomus

sanguineus and egg diapause). Fukami and colleagues [13]

demonstrated that evolution in Pseudomonas communities system-

atically alters the community structure: a single colonist strain will

evolve to occupy several niches, excluding future colonizing strains

and changing community structure when compared to a

community into which several strains are introduced simulta-

neously. All of this is to say that the traits that mediate competitive

interactions should evolve sufficiently quickly to alter community

dynamics.

The rate at which a trait can evolve—which may describe how

population dynamics might be affected at different rates of

change—is described by the quantitative genetic parameter

heritability [14]. One of the advances of the Modern Synthesis

was the realization that we did not need to know details of the

genetic basis of a trait in order to be able to predict the rate at

which the trait will change [15]. All that is needed are estimates of

the additive genetic and phenotypic variances of the trait. The

heritability of a trait underlying competitive ability should then

describe the rate of change of competitive ability. Gomulkiewicz

and Holt [16] linked trait heritability to the probability and the

rate at which populations recover from sudden environmental
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change, showing that higher heritability increases the chance of

recovery and the rate at which recovery occurs. The predicted U-

shaped population decline and recovery pattern expected from

their theory has recently been recovered empirically [17]. Now

consider extending their result to two initially competitively

equivalent species that begin competing for a resource that evolves

over time (e.g., a food resource such as phytoplankton that evolves

defenses to zooplankton grazing [18–20]). We expect that the

competitor with the higher heritability for the trait (e.g., tolerance

of phytoplankton defenses) to be able to adapt faster and ultimately

out-compete the species with lower heritability [21].

Although knowledge of the genetic basis of heritability is not

required to make predictions about trait evolution, with the advent

of modern genomic and bioinformatic techniques we are

beginning to be able to determine the genetic details underlying

quantitative traits [22–24]. By extension, if a link from genetic

sequence to trait heritability exists, there should be a link from

genetic sequence to communities by way of traits and their role in

mediating competition (i.e., a model that incorporates the GEM).

In a previous paper [25], I examined the plausibility of a link

between genetic architecture and heritability of a quantitative trait.

The results kept with analytical models of biological epistasis and

the effects on variance components [26–28], such that network

structures hide and reveal additive genetic variation so that, even

without any environmental variance inputs, heritability is altered.

Specifically, I found that smaller networks should tend to have

higher heritability than larger networks because hidden additive

variance is released and selected on more quickly. In addition,

because the quantitative trait is divided among fewer genes, the

average effect of a mutation is larger in small gene networks than

in large networks. As a result of these two factors, populations with

smaller gene networks adapt and recover faster from sudden

environmental changes than do populations in which the

ecologically-critical trait is underlain by larger networks. By

extension, small-network populations persist longer than large-

network populations when the environment fluctuates rapidly

through time [29]. These results are consistent with previous

network-centric research that focused on network connectivity

rather than size [30,31]. Together, they suggest that the

competitor with the smaller gene network underlying an

ecologically-critical trait should out-evolve and out-compete a

species with a larger gene network for the same trait.

Here, I test the hypothesis of maximal fitness arising from

minimized network size under the scenario of interspecific

competition in a single patch. Two competing species are limited

by a resource with two characteristics. First, the resource occurs at

a given quantity that limits the total number of individuals in a

patch, and the two species are effectively neutral with respect to

capitalizing on quantity (i.e., their requirement and impact vectors

are identical [32]). Second, the resource has a quantitative value

for quality, such as palatability, to which the competing species

must adapt in order to maximize their fitness. The quantitative

trait, whose value is determined by the gene network, maps to this

resource quality. Specifying competition in this way stabilizes the

population dynamics relative to a system in which the primary

resource is depleted. The ‘focal species’ in the competition

possesses a fixed genetic architecture for an ecologically-critical

trait (n = 16 genes, scale-free network topology, recombination

rate = 0.5, mutation rate = 0.001) while the ‘competitor’s’ genetic

architecture for the trait varies from 16 to 256 genes, random or

scale-free topology, and different recombination and mutation

rates. The results highlight a speed-versus-accuracy tradeoff for

different networks. Smaller networks confer the advantage of

higher adaptive speed in fast-changing environments, whereas

larger networks confer greater adaptive accuracy when the

environment changes sufficiently slowly. These results provide a

set of hypotheses to be empirically tested as we attempt to refine

the genotype-phenotype-environment map.

Results

A strong interaction between the rate of environmental change

and size of the gene network underlying the ecologically-critical

trait was apparent when two species compete. The first metric of

this effect is the impact of the competitor on the focal species’

population growth rate (dN/dt) in the first 20 generations of

competition. The importance of the interaction between network

size and dE/dt is readily apparent in Figure 1. The size of the

competitor’s gene network and the rate of recombination,

conditional on interactions with the rate of environmental change

(dE/dt), accounted for 79% of the variance in the focal species’

dN/dt during the first 20 generations of competition (Table 1).

This model possessed an Akaike’s Information Criterion (AIC)

score <120 points lower than the next-best model considered (see

Methods). When the rate of environmental change is slow

(,4e23), a large-network competitor drives down the focal species’

rate of population growth. However, when dE/dt is fast (.4e23),

the focal species’ rate of population growth is positive and

increases with the competitor’s network size. Given the specifica-

tions of these simulations, all network sizes are approximately

equivalent at dE/dt = 4e23.

The basis of the different effects on the focal species’ population

growth rate can be inferred from the relative amounts of

phenotypic and additive genetic variances (VP and VA, respec-

tively) of the two species conditional on dE/dt. The AIC-best

model (DAIC < 40) for explaining the focal species’ dN/dt using

variance components as predictor variables required knowing both

the competitor’s VP and VA and the interaction with dE/dt. The

model explained 76% of variance in the focal species’ dN/dt

(Table 2). Although the competitor’s VA is not statistically

significant on its own or at any given dE/dt, the interaction of

VA and dE/dt is significant over all levels. Both variance

components tend to be lower for all networks larger than the

focal species’ network (Figure S1).

The effects of differential adaptive ability on population growth

rates during the initial competition phase are not completely

transitive to predicting which species, the focal or competitor,

ultimately wins. Because very few competitor wins were recorded

at the rates of change examined in the first simulations (i.e., during

the first 20 generations of competition), I extended the dE/dt

landscape an order of magnitude slower (see Methods). The

resultant descriptive pattern remains: smaller networks perform

better than larger networks when dE/dt is high (and conversely

when dE/dt is low), but dE/dt = 4e23 is no longer the cutoff.

Instead, smaller networks continue to perform well down to dE/

dt = 1e23, and only below that dE/dt do larger network

competitors systematically win the competition (Figure 2). Al-

though the focal species’ population declines during the initial

stages of competition, it appears that the larger-network

competitor cannot sustain their higher level of adaptive accuracy

and the focal species’ population bounces back (Figures S2–S4).

That is, although more accurate, the mean phenotype of the large-

network species begins to lag too far behind the optimum (i.e., it is

biased) and the lower-accuracy focal species gains an advantage.

Two additional results stand out in Figure 2. First, the slightly

lower than 50% probability of the focal species winning when the

competitor’s network is the same size as the focal species’ derives

from differences in recombination (see Methods). Second, a 64-
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gene network competitor never has an advantage over the 16-gene

focal species network. Given the landscape of Figure 2, it appears

that an even slower dE/dt could afford a 64-gene network an

advantage over the focal species’ 16-gene network, but I do not

test that idea here. Over the landscape of dE/dt values examined,

network size, the rate of environmental change, and the

Figure 1. Effect of competitors (± 95% CI) with different genetic architectures and rates of environmental change (dE/dt) on the
population growth rate of the focal species. The focal species possesses a fixed network size of 16 genes while competitors possess networks of
size 16, 32, 64, 128, or 256 genes. Although the effect is not shown in this figure, the focal species has a fixed recombination rate (r = 0.05) and the
competitor one of two rates (0.05 or 0.5). A strong interaction between dE/dt and network size is readily visible: larger competitor networks have a
smaller and smaller impact on the focal species’ dN/dt when the dE/dt is high. However, competitors with large networks have a progressively larger
impact on the focal species’ dN/dt when dE/dt is low. High dE/dt requires faster adaptation, and thus smaller networks have a competitive advantage,
whereas the increased accuracy of larger networks is beneficial to the evolution of competitive ability at lower dE/dt. All networks are approximately
equivalent at dE/dt = 4e23.
doi:10.1371/journal.pone.0014799.g001

Table 1. Gene network and environmental factors
influencing the impact of a competitor on the focal species’
population growth rate.

df % Variance Expl. F-value p-value

dE/dt 4 52 369.5606 ,2.2e216

Comp. Net. Size 4 0 2.6843 0.031

Comp. Recomb. Rate 1 1 36.6006 2.69e209

dE/dt x Net. 16 23 40.7988 ,2.2e216

dE/dt x Recomb. 4 0 2.4316 0.047

Net. X Recomb. 4 2 14.7113 2.01e211

dE/dt x Net. X Recomb. 16 1 1.4646 0.108

dE/dt is the rate of environmental change; Comp. Net. Size and Net. are the
number of genes in the competitor’s gene network; and Comp. Recomb. Rate
and Recomb. are the competitor’s recombination rate.
doi:10.1371/journal.pone.0014799.t001

Table 2. Quantitative genetics variance components and
environmental factors that influence the impact of a
competitor on the focal species’ population growth rate.

df % Variance Expl. F-value p-value

Comp. VA 1 0 0.7783 0.378

Comp. VP 1 2 41.9286 2.03e210

dE/dt 4 55 340.7152 ,2.2e216

VA x VP 1 0 2.4281 0.120

VA x dE/dt 4 8 53.0199 ,2.2e216

VP x dE/dt 4 11 71.5964 ,2.2e216

VA x VP x dE/dt 4 1 3.4333 0.009

Comp. VA (or VA) and Comp. VP (or VP) are the competitor’s additive genetic and
phenotypic variance, respectively; dE/dt is the rate of environmental change.
doi:10.1371/journal.pone.0014799.t002
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interaction of the terms explains a significant part of total model

deviance in competitive outcomes (Table 3). The best model, on

which Table 2 is based, possessed the lowest AIC by < 40 points.

The size of the competitor’s gene network, the rate of

environmental change, the competitor’s recombination rate, and

interactions were the major predictors of co-persistence times of

the competing species (DAIC = 116.7), explaining ,60% of the

variance (Table 4). Larger differences between species’ networks

and higher rates of environmental change consistently decrease

persistence times (Figure 3). In addition, differences in recombi-

nation rate tended to increase population persistence times, i.e.,

higher recombination affords an adaptive advantage at some

network sizes. Note that this result speaks only to the fact that

competition has ended, and not which species won; the adaptation

speed/accuracy tradeoff is not apparent in time-to-resolution of

competition.

Discussion

The interplay between genetic architecture, phenotypes, and

evolutionary and ecological dynamics are complex, yet despite the

rapid acceleration of biological research, a fundamental under-

standing of the interplay among these factors remains elusive.

Progress is being made in refining the both the GPM and the PEM.

Given this progress, we need sets of theoretical expectations to unite

the constituent pieces. Here I have attempted a step in that direction

with a set of simulations that span from the gene network underlying

a quantitative trait to a simple two-species community in which

Figure 2. Probability that the focal species wins competition as a function of competitor network size and log(dE/dt). At slower rates
of environmental change, the probability that the focal species will win declines with an increase in the size of the competitor’s network. With the
exception of a competitor with a 64-gene network, when the rate of environmental change is high, the probability of the focal species winning
increases as the competitor’s network size increases. 64-gene networks are never superior to the 16-gene network at the rates examined here. Note
that this figure, produced using the akima package for R [54], interpolates data to produce the surface, whereas the predictor variables (network size,
recombination rate, and dE/dt) are categorical in the simulations and statistical analyses.
doi:10.1371/journal.pone.0014799.g002

Table 3. Analysis of Deviance table for predicting the
probability that the focal species wins competition.

df Deviance Resid. df Resid. Dev p-value

NULL 3995 5148.4

Comp. Net. Size 4 399.5 3991 4749.0 ,2.2e216

dE/dt 8 298.1 3983 4450.9 ,2.2e216

Comp. Recomb. Rate 1 0.1 3982 4450.8 0.737

Net. X dE/dt 32 766.1 3950 3684.6 ,2.2e216

Net. X Recomb. 4 16.7 3946 3668.0 0.002

dE/dt x Recomb. 8 23.3 3938 3644.7 0.003

Net. X dE/dt x Recomb. 32 87.1 3906 3557.6 5.5e27

Comp. Net. Size and Net. are the number of genes in the competitor’s gene
network; dE/dt is the rate of environmental change; and Comp. Recomb. Rate
and Recomb. are the competitor’s recombination rate.
doi:10.1371/journal.pone.0014799.t003
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interspecific competition occurs. Previous work that did not include

competition suggested that specific characteristics of the genetic

architecture of a trait could affect population dynamics when the

environment suddenly shifts states or when it changes steadily

through time [25,31,33]. One conclusion drawn from that work is

that network size should be minimized, scale-free topology

maintained, and intermediate network connectivity evolved in

order to maximize adaptability. By including competition in the

current model, I have increased the degree of realism and refined

expectations of what we should observe when linking genotypes to

ecological and evolutionary dynamics.

The major refinement of expectations is the trade-off between

adaptive speed and adaptive accuracy, as revealed by the presence

of a competitor and contrary to the expectation from single-species

models. In rapidly changing environments the advantage of

greater adaptive speed conferred by smaller networks is readily

apparent. As the rate of environmental change slows, the

probability of competitive superiority goes up with increasing

network size. This is in contrast to single-species results, in which

as rate of environmental change slows, populations of all network

Table 4. Factors influencing the time-to-resolution of
competition when species differ in their genetic architecture.

df
% Var.
Explained F-value p-value

Comp. Net. Size 4 36 897.2191 ,2.2e216

dE/dt 8 19 238.5135 ,2.2e216

Comp. Recomb. Rate 1 0 1.6412 0.200

dE/dt x Comp. Net. 32 5 14.264 ,2.2e216

Net. x Recomb. 4 1 23.7332 ,2.2e216

dE/dt x Recomb. 8 0 1.6959 0.094

Net. X dE/dt x Recomb. 32 1 3.0367 2.89e206

Comp. Net. Size and Net. are the number of genes in the competitor’s gene
network; dE/dt is the rate of environmental change; and Comp. Recomb. Rate
and Recomb. are the competitor’s recombination rate.
doi:10.1371/journal.pone.0014799.t004

Figure 3. Effect (± 95% CI) of competitor’s genetic architecture and the rate of environmental change (dE/dt) on the duration of
competition. The time required for one of the two competing species to go to dominance (i.e., drive the other species extinct) in a single patch is
largely a function of the relative difference in network sizes and the rate of environmental change (dE/dt). The focal species’ genetic architecture is
held constant (as in Figure 1) while the competitor species’ genetic architecture varies. Time-to-resolution is the number of generations between the
start of competition and the generation in which one species has gone extinct. Resolution occurs quickly when dE/dt is high—we quickly find that
one species is not suited to the environment—whereas resolution takes considerably longer when dE/dt is low. Likewise, as the disparity between
each species underlying network increases, the time-to-resolution declines. The lower persistence time for 16-gene network competitors is a result of
the recombination rate treatment (see Methods).
doi:10.1371/journal.pone.0014799.g003

Gene Networks and Competition

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e14799



sizes converge on indefinite persistence time (see Figure 2 in [29]).

In general, the lower VA of larger networks is sufficient in slow-

changing environments, while the lower VP ensures that a large-

network species is better adapted. In contrast, the higher VA

conferred by smaller networks is required in fast-changing

environments; the small-network species does not adapt as well

(higher VP), but it does not need to because the large-network

species cannot adapt quickly enough. This is analogous to the

importance of developmental accuracy as described by Hansen

et al. [34].

The trade-off between adaptive speed and adaptive accuracy, in

the context of the implications for the evolution of competition,

has however not been previously recovered to my knowledge.

Repsilber and colleagues [33] allowed their networks to evolve in

size and discovered higher mean population fitness for single-

species populations at different landscape heterogeneities, but did

not consider .1 species in the landscape. The primary reason that

the trade-off has not been previously recovered is that earlier work

with competitors and an explicit GPM has focused on a single

number of loci underlying a limiting trait. For example, Urban

and de Meester used a model in which an ecologically-critical trait

was underlain by 20 binary loci in each species [35]. If we consider

an optimal phenotype of 0.53 (on the scale used by Urban and de

Meester), the closest possible phenotype is 0.55 (11/20). Alterna-

tively, if one species’ GPM is defined by a 100-locus model, a

phenotype of 0.53 is possible and would result in higher fitness.

Given the joint processes of gene duplication and deletion [36–38],

we can anticipate that certain traits may be underlain by fewer or

additional genes, which should alter the speed and resolution of

adaptation. These changes should then propagate up levels or

organization to affect competitive dynamics as traits evolve, as

shown here.

Convergence of genetic architecture—characteristics such as

network size—becomes an equalizing mechanism [39] permitting

long-term, essentially neutral, coexistence. In these simulations, as

the difference in genetic architecture between two competing

species increases, the persistence time of a two-species local

community declines. Neither species can gain a distinct evolu-

tionary-ecological advantage when genetic architectures are

identical, and if an advantage is gained, it takes considerable time

to evolve. An important caveat to the equalizing nature of genetic

architecture change (by gene duplication and loss) is that

differences in demographic parameters, such as generation time,

could compensate for differences arising from gene regulatory

network differences. For example, terHorst and colleagues showed

that generation time differences between mosquito larvae and

their protozoan prey altered eco-evolutionary dynamics [40].

However, if species are comparable in the variety of life history

traits in addition to being limited by an analogous trait, then

genetic architecture poses a tradeoff between speed and accuracy.

We may be able to link the network GPM concepts considered

here to the models developed by Hairston and colleagues [7].

Their generalized model (their Eq. 3) incorporates rates of

ecological and evolutionary change as the sum of two partial

differential equations, the first describing the focal species’ change

relative to trait evolution and the second describing the focal

species’ change relative to non-evolutionary demographic factors.

We should expect that large network differences between

competing species increases the relative role of evolution in total

ecological change. This is conditional on the relative differences in

demographic parameters of the competing species, however: if

those differences are greater than even a large network difference,

then demographic differences would still play a larger role than

evolutionary differences. With this condition in mind, we can

hypothesize that we should find larger differences in the networks

underlying competition-critical traits in systems where evolution-

ary change is dominant, but more similar gene networks where

demographic changes drive the system.

The results of these simulations suggest a further hypothesis:

that communities composed of species with similar genetic

architectures (for limiting traits) give rise to neutral community

dynamics, whereas differences in genetic architecture give rise to

species sorting dynamics. The identical evolutionary potential of

species is, in fact, an assumption of Hubbell’s neutral theory [41].

Conversely, we can hypothesize that the prevalence of niche-

driven species sorting in many ecological communities [32] could

be a result of differences in adaptive potential resulting from

differences in the genetic architecture of ecologically-critical traits.

That is, when considering the genetic architecture of ecologically-

critical traits as evolving networks, a novel axis of species sorting

[42,43] seems to emerge. Classical species sorting considers traits

as fixed, but these simulations show that traits can evolve and

species assort in a single patch according to the network best-suited

to particular rates of environmental change and the competitive

challenge posed by another species. The degree to which this axis

of species sorting occurs will depend on the relative rates of

dispersal among a set of patches, and the heterogeneity of the

patches, in a metacommunity.

How do these results compare to the real world? The short

answer is, we don’t know. This is driven in large-part by the fact

that the tools necessary for elucidating the GPM are recent

developments, and, at this time, still relatively expensive. I have

proposed that a given trait in different species may be underlain by

different size networks and that these differences can drive

evolutionary ecological patterns such as competitive dynamics.

An alternate hypothesis—and perfectly reasonable in the absence

of empirical data—is that any particular challenge requires

approximately the same size network regardless of the species in

question and its evolutionary history. For example, perhaps

osmoregulation requires, say, 250 genes (or, more correctly, the

products of 250 genes and their associated regulatory loci), and

any differences in adaptive capacity are due solely to specific

sequences and gene regulation. We might even expect such a

pattern to emerge: as discussed above, given sufficient time for

gene duplication and loss [36,37], trait genetic architecture should

converge as an equalizing mechanism [39]. Ultimately, either

result—very similar network sizes or different network sizes—from

empirical data would be interesting and informative, even if the

latter makes the results herein irrelevant.

In addition to our lack of data to confirm this work, we have to

consider that these simulations, like all models, are simplifications

of reality. The basic caveats to the research here largely follow the

caveats of Malcom [25]: Boolean regulatory networks gloss over

real differences of gene functions, the details of which are

interesting and may have important ramifications. The networks

I use here are simplified in that each gene is regulated by a single

upstream factor, whereas real genes are often multiply regulated.

We have ample evidence of widespread pleiotropy between

networks [44–46], and the traits that these linked networks

underlie may be under different selection regimes, which alters the

efficiency of natural selection. Lastly, the competition scenario

considered here is greatly simplified, and other (non-network)

research has shown the multi-species and multi-trophic scenarios

can alter eco-evolutionary trajectories in unpredictable ways [47].

There are numerous directions that future research could take.

First and foremost, empirical support (or rejection) of the basic

assumptions in this purely theoretical paper needs to be gathered;

for example, do different species possess different size networks for

Gene Networks and Competition
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the same trait? Second, because we know both phenomena are

widespread, incorporating pleiotropy and plasticity in similar,

network-based models would increase realism and may further

refine our theoretical expectations. Including .2 species, and/or

two or more trophic levels, with the GPM defined as complex

networks could further refine our expectations of the links across

the GEM.

There are two main conclusions from this research. First, there

is an adaptation speed-accuracy tradeoff conferred by network size

(and to a lesser extent, recombination). This tradeoff allows species

with slow-evolving traits (i.e., large underlying networks) to out-

compete species with fast-evolving traits (i.e., smaller networks) by

virtue of increased adaptive accuracy. Second, the trade-off is

contingent on the rate of change of the environmental variable to

which the trait maps. Together, these results suggest that

ecological interactions such as competition should contribute to

the shaping of gene networks underlying quantitative traits.

Therefore, not only should knowledge of the ecological interac-

tions of a study species contribute substantially to our expectations

of what should be observed when the GPM is investigated, but

knowledge of the GPM may provide important information about

why certain ecological patterns or processes are observed.

Materials and Methods

Gene Network Model
I focus on individuals of two species competing in a single patch

with an environmental variable that fluctuates through time at a

variety of rates. Individuals of either species possess a single

quantitative trait that maps to the quality of the limiting resource

(discussed in detail below). The trait is encoded by a directed

Boolean network of 16, 32, 64, 128, or 256 genes, the state of each

determined dynamically (see below). The topology of the network

is initiated as either random (no preferential attachment) or scale-

free (with preferential attachment) in its out-degree distribution

[48]. Randomly-connected networks show an approximately

Poisson degree distribution, whereas scale-free networks exhibit

an power law degree distribution [49]. I use a lottery model

algorithm to form the scale-free networks, i.e., the probability of an

existing gene acquiring a connection to a new gene is proportional

to the number of existing connections [49].

At the start of a run, every individual’s network is randomly

determined (as guided by the constraints of topological specifica-

tion). With these relatively small populations, it is very unlikely that

any two individuals possess the same exact network at simulation

initiation. The binary state [0, 1] of each gene in the network

except the upstream-most is determined by comparing the state of

the gene immediately upstream to the functional relationship of

the gene pair (Figure 4a, encoded by chromosome of 4c). The state

of the upstream-most gene is determined randomly for each

individual at simulation initiation, and is then inherited for

subsequent generations. Some genes may act as repressors and

others as activators, and the state of the downstream gene is

determined by the match or mismatch between the state of the

upstream gene and the function (Figure 4b). For example, if the

upstream gene is ‘‘on’’ (state = 1) and is a repressor (function = 0),

then the downstream gene takes the ‘‘off’’ state (state = 0).

Alternatively, if the upstream gene state is 0 and it is a repressor,

then the downstream gene takes the ‘‘on’’ state. Each gene except

the basal-most has a single input to ease computational

requirements (the number of calculations increases according to

22k

with k inputs [29]), but may have one or more outputs (i.e.,

may be pleiotropic). All network information is stored on a single

chromosome consisting of two parts (Figure 4c). First, the topology

is defined by a ‘‘tails list’’ of the downstream genes; the ‘‘heads list’’

(the controlling, upstream genes) is inferred from the index

position of each tail list element. The relationship between heads

and tails genes is randomly determined at the start of a simulation

run, but, as noted above, the out-degree distribution is constrained

by the scale-free versus random topological assignment. Figure 4a

is an example 13-gene network whose states have been calculated

given the information from the chromosome in Figure 4c.

Each individual’s phenotype is determined by summing the

states of all terminal genes in the network, i.e., genes with out-

degree = 0, and scaling the value to the range of the environment

( = 140). So, for example, the network in Figure 4a possesses eight

terminal genes, four of which are ‘‘on’’, thus the individual

possesses a phenotype of 70 ( = (140/8) * 4). I am thereby

assuming that there are no biochemical limits given a particular

network size; individuals with a 16-gene network can approximate

a phenotype of 140, as can individuals with a 256-gene network.

The consequence for this re-scaling is that smaller networks have

lower resolution than larger networks, which is a reasonable

assumption given that dividing any particular task among fewer

Figure 4. An example network, functional map, and chromo-
some. Panel A shows an example 13-gene Boolean network. Black
nodes are up-regulated (‘‘on’’; state = 1) genes and white nodes are
down-regulated (‘‘off’’; state = 0). If an edge connecting two nodes is
black, the ‘‘head’’ gene (upstream) activates the ‘‘tail’’ gene (down-
stream), and if an edge is gray, the head represses the tail gene. Panel B
provides the functional map; for example, if the head gene is ‘‘off’’ and
the edge connecting the head and tail genes is an activator, then the
tail gene is off (upper-right quadrant). Panel C shows the chromosome
corresponding to the network in Panel A. Each block represents a gene
(numbers along the left-hand side); within each block, the top number
defines the ‘‘head’’ (i.e., immediately-upstream) gene while the bottom
number defines the functional relationship (e.g., if 0, then the head
gene is a repressor).
doi:10.1371/journal.pone.0014799.g004
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actors will result in lower overall accuracy. I stored the phenotypes

of each individual’s parents and used mid-parent regression to

estimate the trait’s heritability in the population. Additive genetic

variance was derived by multiplying the phenotypic variance by

the heritability.

Each individual’s phenotype is translated to a fitness relative to

the environment using a Gaussian function of the form,

RF~e{0:001|Dv
;

where D is the absolute value of the difference between the

environment and the individual’s phenotype, and v is a value that

changes the breadth of the selection function. I varied v from 1.5

(high tolerance for a phenotype-environment mismatch) to 2.5

(low tolerance for a phenotype-environment mismatch) in the

simulations. In this way I assume that the environmental effect is

absolute and the phenotypic variance of the population plays no

role in how an individual is selected. Each individual’s RF does not

affect the number of offspring produced, but does affect the

probability that an individual will survive to reproduce.

Individuals are sexually-reproducing hermaphrodites who mate

at random. The number of offspring from a mating is determined

by drawing a random value from a Poisson distribution with

l= 1.5. Gametes undergo recombination during a diploid meiotic

stage to create an offspring chromosome that is a mixture of

parental alleles, which in this model are the tails list and the

functional relationships. The first element of the offspring

chromosome is chosen from the first element of one parent, then

subsequent elements are taken from the same parent until a

random uniform number less than the recombination rate (r = 0.05

or 0.5) is drawn, at which point the element is drawn from the

opposite parent. This continues the length of the chromosome.

Mutation, as determined by testing a uniform random number

against the mutation rate (1e23 or 1e25) for each chromosomal

element, occurs after the new chromosome is created. Although

these mutation rates appear high, as noted by Frank [30], because

the trait is directly related to fitness, the effective mutation rate is

about one order of magnitude lower. All mutations are non-

synonymous and may affect either the controlling function of a

gene (an activator mutates to suppressor) or the relationship to

another gene (i.e., alter network topology).

Death occurs after reproduction in three stages. First, all parents

are killed to prevent over-lapping generations. Next, the new

generation is culled according to each individual’s relative fitness:

if the RF is less than a uniform random number, then the

individual dies. Last, a carrying-capacity is enforced by randomly

killing individuals to bring the population below K = 500.

Competition Simulations
As discussed in the Introduction, the two competing species are

co-limited in this model. First, the resource occurs at a given

quantity that limits the total number of individuals in a patch, and

the two species are effectively neutral with respect to capitalizing on

quantity (i.e., their requirement and impact vectors are identical

[32]). Second, the resource has a quantitative value for quality, such

as palatability, to which the competing species must adapt in order

to maximize their fitness. The quantitative trait, whose value is

determined by the gene network, maps to this resource quality.

Specifying competition in this way stabilizes the population

dynamics relative to a system in which the primary resource is

depleted. Note, however, that this does not permit exploring the

effects of over-exploitation, which could alter competitive dynamics.

An initial canalization period is important for reducing excess

initial phenotypic and genotypic variance. Simulations are

initiated with each species in its own patch, and competition

occurs in a third patch. The environmental variable is initialized at

the same value ( = 70) and changes at the same rate (8e23 to 2e24

units per generation; details below) in all three patches. A single

dispersal event occurs after the 20-generation canalization period

and 200 randomly-chosen individuals of each species—which are

as well-adapted to the same environment, insofar as their genetic

architecture allows—are moved to the third patch. Any individuals

not selected to disperse are killed.

I ran two sets of simulations. In the first, I examined the effect of

the competitor on the focal species’ dN/dt over the first 20

generations of competition, i.e., up through generation 40. These

simulations were full-factorial for genetic architecture of the

competitor (five network sizes, two network topologies, two

recombination rates, and two mutation rates) and six rates of

environmental change (dE/dt = 8e23, 6e23, 4e23, 2e23, or 1e23),

replicated 40 times for each combination.

After the first set of simulations had been completed and

analyzed, and no effects of network topology or mutation rate were

observed, I ran a new set of simulations. These were full-factorial

for five network sizes, two recombination rates, and five rates of

environmental change, as above. Analysis of this initial set of full

runs showed that even though the dN/dt values were depressed at

low dE/dt, the focal species still typically won competition. I then

ran another set of simulations with slower dE/dt ( = 8e24, 6e24,

4e24, or 2e24) and all competitor genetic architecture treatments.

Both of these sets of runs were represented by 40 replicates of each

treatment combination.

Analysis
For all analyses, except when noted otherwise, the predictor

variables are factors rather than continuous values. Thus, even

though some figures suggest non-linear models may be appropri-

ate, they are not necessary given the structure of the simulations

and analysis. A summary of the models considered, and for which

AIC was calculated, is provided in Table 5. Standard AIC, as

opposed to AICC, was used because of the large sample sizes for

the simulations. All simulations were run in NetLogo 4.1 [50]. I

used R 2.10 [51] for statistical analysis, and Akaike’s Information

Criterion (AIC) for model selection [52].

To analyze the first set of simulations, I estimated the focal

species’ dN/dt during the 20 generations following the start of

competition of each run using a basic linear model of population

on time. The slope of each regression was stored and used as the

response variable in the models described under Initial Competition

in Table 5. I used two sets of predictor variables to examine the

determinants of focal species’ dN/dt, the first focused on network

characteristics and the second focused on quantitative genetics

variance components (VP and VA). This latter analysis was

designed to link the simulations to the classical understanding of

evolutionary dynamics, but it is important that the variance

components are emergent properties of the networks and

populations, rather than being specified a priori.

I considered two response variables for the second set of

simulations. First, I extracted the winner of each simulation run; if

the run lasted 1,000 generations, then the species with the larger

population at the last time step was called as the winner. Second, I

extracted the time (i.e., generation) of the end of each simulation

run; a slight skew to the time-to-resolution data required a log

transformation to ensure normally-distributed residuals. I used a

generalized linear model with a binomial distribution and logit link

function [53] to relate the network and dE/dt predictor variables
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to the probability that the focal species won the competitive bout

(Table 5, Competition Winner). Figure 2 was generated using the

akima package for R [54] and treats the predictor variables as

continuous values for interpolation purposes. However, predictors

were factors in the analysis presented in Table 3. I used an OLS

linear regression to relate network characteristic and dE/dt

predictor variables to log-transformed time-to-resolution (Table 5,

Time-to-Resolution).

Supporting Information

Figure S1 Comparison of focal species’ and competitors

variance components at the start of competition. There is no

discernible pattern to VA and VP in the focal species (left panels),

but the competitor’s VA and VP decline with increasing size of the

competitor’s network (right panels). Larger-network competitors

cannot persist in fast-changing environments, suggesting that VA

$20 is required to keep up with the changing environment at the

higher dE/dt. The lower VP affords a competitive advantage (i.e.,

more individuals are closer to the optimal trait value) when

networks are large and dE/dt is slow.

Found at: doi:10.1371/journal.pone.0014799.s001 (0.45 MB TIF)

Figure S2 Mean VA of the focal species (solid line) and competitor

(dashed line) over the course of competition. These five panels are

from runs at dE/dt = 4e-3, 2e-3, and 1e-3, where the initial impact of

the competitor is to suppress the focal species, but eventually the focal

species tends to recover and win competition. Note these plots are

averaged over all three rates of environmental change (dE/dt). The

solid, vertical bars in each plot indicate the average end-of-

competition time for each network size treatment. The end of

competition occurs most-quickly when the difference in VA between

species is most evident, and persistence is highest throughout when

VA is similar. Importantly, although VA quickly becomes similar (ca.

100 generations), the 16-gene competitor typically wins (see Figure 2).

See Figure S4 for a partial further explanation.

Found at: doi:10.1371/journal.pone.0014799.s002 (0.55 MB TIF)

Figure S3 Mean VP of the focal species (solid line) and competitor

(dashed line) over the course of competition. These five panels are

from runs at dE/dt = 4e-3, 2e-3, and 1e-3, where the initial impact

of the competitor is to suppress the focal species, but eventually the

focal species tends to recover and win competition. The solid,

vertical bars in each plot indicate the average end-of-competition

time for each network size treatment. Note these plots are averaged

over all rates of environmental change (dE/dt). Longer persistence

time is associated with minimized difference in ṼP, but even when

VP is similar, the competitor loses (see Figure 2). See Figure S4 for a

partial further explanation.

Found at: doi:10.1371/journal.pone.0014799.s003 (0.33 MB TIF)

Figure S4 Mean difference of the average phenotype minus the

environmental value of the focal species (solid line) and competitor

(dashed line) over the course of competition. At the dE/dt considered

here, the focal species should lose competition-at least against a larger-

network competitor-because the focal species’ dN/dt is much lower

than when competing against a 16-gene species (see Figure 1). In these

plots, however, we see that the difference between the optimal trait

value (i.e., the environmental value) and the population mean tends to

be much larger for the competitor (at least for 64- to 256-gene

competitors). That is, although the competitor is more accurate, it is

more biased, and therefore eventually loses the competition.

Found at: doi:10.1371/journal.pone.0014799.s004 (0.31 MB TIF)
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