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Abstract: Hyaluronic acid (HA) promotes wound healing, and, accordingly, formulations based on
HA have been widely used in regenerative medicine. In addition, naturally derived compounds,
e.g., plant-based extracts and vitamin E, have exhibited antioxidant activity. In this study, a formulation
containing hyaluronic acid, vitamin E, raspberry extract, and green tea was developed for potential
topical applications, targeting wound healing. Rheological analysis was performed along with
antioxidant and biological studies. The rheological characterization showed that the HA-based
formulation is a thixotropic platform and possesses higher mechanical properties than the control
formulation. To evaluate the wound healing potential of the formulation, an in vitro “wound healing”
assay was carried out using human derived fibroblasts (HDF) with a cell-free gap on the tissue culture
dish. The formulation showed better wound healing ability than the control formulation.
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1. Introduction

Wound dressings can promote the healing process and reduce the healing time [1,2]. Hyaluronic
acid (HA) is naturally occurring polysaccharide widely employed in regenerative medicine and in
particular for topical and intradermal applications. HA is a biodegradable, biocompatible, non-toxic,
non-immunogenic glycosaminoglycan, and it is present in mammalian connective tissues such as the
dermis, synovial fluids, vitreous body, and nucleus pulposus where it fulfills important biophysical
and biological functions. Hyaluronic acid promotes wound healing, and, accordingly, formulations
containing HA have been applied in regenerative medicine. Natural polysaccharides such as HA have
also been employed as drug carriers for biomedical applications along with many pharmaceutical
formulations to enhance the biocompatibility of the final bioproduct [3–5]. It was shown that inhibiting
oxidative stress in wounds can enhance the wound healing process. Therefore, antioxidant agents
exhibit encouraging results in the wound healing process [6]. Radicals such as reactive oxygen species
(ROS) play an important role in healing processes and in carcinogenesis. When the concentration of
ROS goes beyond a certain threshold, cells and their compartments are damaged and, finally, they will
die [7,8]. To overcome or, at least, diminish ROS production, which occurs during skin aging and
cancer, attaining antioxidants from several sources, e.g., food supplements and skincare products,
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is taken into account increasingly [9,10]. Naturally derived antioxidants and vitamin E are commonly
utilized in skincare products [11]. Among them, green tea and raspberry have shown strong antioxidant
activity toward free radicals with possible implications in alleviating oxidative stress [12]. Additionally,
vitamin E, because of its antioxidant activity, is frequently employed in drug delivery and wound
healing applications [13].

HA can be employed to enhance skin regeneration for wound healing applications along with a
carrier to locally deliver active biomolecules, such as antioxidants. Altogether, topical formulations
possessing antioxidant properties and wound healing capability are great of interest to assist the
healing of wounds such as abrasions [14–17]. The objective of this study was to create an enriched
HA-based formulation with antioxidant activity containing vitamin E and natural compounds,
such as raspberry and green tea, as a formulation to promote the healing process in topical applications.
Since mechanical behavior in terms of rheological characterization can assist the tailoring and validation
of the formulation for its biomedical and pharmaceutical functions, the platform rheological behavior—
e.g., the thixotropy, viscosity, and strain-and-stress relationship—was evaluated. To further evaluate
the formulation efficacy, anti-radical scavenging activity was assessed. Finally, biological properties,
i.e., in vitro cytotoxicity and wound healing potential activity, were assessed.

2. Material and Methods

2.1. Materials

Hyaluronic acid (HA) with an average molecular weight (Mw) of 112 kg/mol was kindly provided
by Altergon Italia. Vitamin E acetate (tocopherol acetate) was purchased from Sigma-Aldrich. The base
formulation (control, named as Base) was purchased from Farmacia Vernile (Frosinone, Italy), with a
composition of white Vaseline (25.5%), liquid semi-synthetic triglycerides (7.5%), cetylstearyl alcohol
(6%), glycerylmonostearate (4%), polyethylene glycolstearate (7%), propylene glycol (10%), and purified
water (40%); it is a base ingredient for making dermatological medication. High-quality green tea
and raspberries were obtained from a local market. To obtain the raspberry juice, raspberries were
processed with a blender (Philips HR2161/40, Amsterdam, The Netherlands) and the obtained juice
was used.

2.2. Formulation Preparation

The HA-based natural formulation (HBN) was prepared by mixing green tea (2%) and vitamin E
(0.75%) with the base formulation and mixing using a laboratory agitator (ATM, Falc instrument s.r.l.,
Treviglio, Italy) with a continuous regulation of speed (3000 rpm) for 30 min. HA (1% w/w) was first
mixed with raspberry extract (1% w/w) and then added to green tea, vitamin E, and the base cream.

2.3. Physical Assessments and pH Determination

For the stability test, the formulation was left for up to 30 days at different temperatures, including
in a refrigerator (4 ◦C), at room temperature, and in an oven (40 ◦C). During the storage, aspects of
physical appearance such as phase separation, color, and fragrance were checked. The pH of each
preparation was determined in diluted samples in bi-distilled water (1:10 w/v%), using Tornasol papers
and a previously calibrated pH meter.

2.4. Rheological Analysis

2.4.1. Oscillatory Rheometry

Small amplitude oscillatory shear tests were performed to evaluate the time-dependent response
of the formulations and their linear viscoelastic properties, i.e., elastic (G′) and viscus (G′′) moduli.
The frequency was in the range of 0.01 to 10 Hz. The measurements were carried out through a controlled
stress rotational rheometer (Mars III, HAAKE Rheometer, Waltham, MA, USA), using a parallel plate
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geometry. In order to identify the linear viscoelastic response range of the materials, preliminary strain
sweep tests were performed on the samples, at an oscillation frequency of 1 Hz. The tests were repeated
at least three times on each sample. The viscoelastic properties of the formulations were assessed by
small-amplitude oscillatory shear experiments using a plate–plate geometry with a 35 cm diameter.

2.4.2. Continuous Shear Rheometry

Flow analysis of the preparations was carried out at 25 ◦C using a rheometer with parallel steel
plate geometry. Samples were carefully applied to the lower plate, making sure that the shear of the
formulations was minimized, and at least 1 min of rest was allowed for equilibration before the analysis.
In flow mode, the downward and upward curves were evaluated over shear rates. To calculate the
thixotropic area, a flow curve was generated to evaluate the dependence of the viscosity upon the
shear rate. The shear rate was first increased from 0 to 100 s−1 and then kept constant at a maximal
speed of 100 s−1 before being eventually reduced from 100 to 0 s−1, each time within 180 s.

The correlations between the viscometric functions (steady shear flow properties) and linear
viscoelastic functions (dynamic viscoelastic properties) were examined by introducing a modified
form of the Cox–Merz rule through a comparison of the steady shear viscosity with the complex
viscosity [18].

2.4.3. Creep Recovery Analysis

In the creep recovery test, the sample was exposed to the stress at 10 Pa for 180 s, and in the
recovery phase, the applied stress was suddenly removed and the sample was analyzed for recoverable
shear during 180 s. Each measurement was replicated three times.

2.5. Free Radical Scavenging Assay

To evaluate the radical scavenging ability of the formulations, 2,2-diphenyl-1-picrylhydrazyl
(DPPH) was used as it has been widely employed to investigate the antioxidant activity of different
systems, e.g., dermatological formulations and biomedical scaffolds [19,20]. In the radical form,
the DPPH molecule has an absorbance at 517 nm, which disappears after the acceptance of an electron
or hydrogen radical from an antioxidant agent to become a stable diamagnetic molecule [21]. For this
purpose, 3 mL of the formulation solution in EtOH with different concentrations was added to 1 mL of
an ethanolic solution of DPPH (25.0 µg/mL) in a vial. The resultant mixture was shaken thoroughly
and allowed to stand at room temperature in a dark place for 1 h. Subsequently, the absorbance of the
samples was measured using a UV-visible spectrophotometer (Cary 100 scan, Varian, Palo Alto, CA,
USA) to measure the optical density (OD) at 517 nm. Ethanol and DPPH solution were used as the
blank and negative control, respectively. The following equation was used to calculate the percentage
of scavenging:

Scavenging ability(%) =
Acontrol −Asample

Acontrol
× 100 (1)

where Asample is the absorbance in the presence of samples and standard and Acontrol is the absorbance
of the control.

2.6. Cell Culture

In order to test the biological response to our formulations, primary human dermal fibroblasts
(HDF, provided by Lonza) were used. The HDF cells were cultured at passage 5–6 with a complete
medium, composed of Eagle’s minimal essential medium (EMEM) supplemented with 20% FBS,
100 U/mL penicillin, 100 U/mL streptomycin and 2X non-essential amino-acids. The HDF cells were
maintained in 100 mm-diameter cell culture dishes in a humidified and controlled atmosphere at 37 ◦C
and 5% CO2. The medium was changed every 3–4 days.
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2.7. Cell Viability and Morphology

The viability of the formulation samples (350 µL/Transwell insert) was also evaluated using
Transwell inserts (MW6 8 µm polycarbonate). A HDF cell monolayer were seeded confluently in
three different 100 mm-diameter culture dishes, one for the control cells, one for testing the HA-based
formulations and one for testing the control formulations. Each of the formulations (0.35 mg/4.67 cm2)
was positioned onto different Transwell inserts. Each insert, including the empty one for the control
cells, was then placed on one side of the respective culture dishes containing confluent monolayer cell
cultures. Then, cell culture medium (10 mL) was added to the monolayer of confluent cells, seeded into
the 100 mm-diameter dishes, containing the inserts inside the respective formulations.

After 24 h of incubation with the test formulations, the cells were washed with 1X Dulbecco’s
phosphate buffer solution (PBS) to remove the non-adherent dead cells. The adherent live cells were
stained with crystal violet dye, which binds to proteins and DNA. Cells that undergo cell death lose
their adherence and are subsequently lost from the population of cells, reducing the amount of crystal
violet staining in a culture. The staining is directly proportional to the cell viability. The HDF cells
were fixed with 10% buffered formalin for 30 min and washed with ddH2O. Crystal violet was added
at 0.5% in ethanol, for 15 min. After three washes in ddH2O, the dye was eluted with 0.1% SDS (2 mL)
and the OD at 545 nm was measured. The percentage (%) crystal violet OD, directly proportional to
the cell viability, was determined by comparing the average OD545 values of the stimulated cells with
the OD545 values of the control cells [22,23].

Cell morphology was investigated with a confocal laser scanning fluorescence microscope (CLSM).
For CLSM analysis, the HDF cells were seeded at a 5000 cells/cm2 density. After 24 h, the HDF cells
were fixed with 4% paraformaldehyde for 20 min at RT, rinsed twice with PBS buffer, and incubated
with Triton 0.1% for permeabilization and afterward with PBS-BSA 0.5% to block non-specific binding.
Actin microfilaments were stained with phalloidin–AttoRho6G (Sigma-Aldrich) diluted in PBS-BSA
0.5% by incubating the cells for 30 min at RT. Nuclei were stained with DAPI (blue). The cells were
then rinsed three times with PBS and observed with a CLSM (Leica) using a 20X objective.

2.8. In Vitro Scratch Assay

The wound healing potential of the formulations was assessed by the wound healing assay [24].
The wound healing assay was performed by scraping the HDF cell monolayer in a straight line to
create a “scratch” with a p200 pipet tip. The debris was removed by washing the cells once with 1 mL
of the growth medium, and then it was replaced with 2 mL of culture medium that is specific for this
in vitro assay. This assay medium was composed of a lower percentage of FBS (2%) than that used in
the growth medium, to minimize cell proliferation but be sufficient to prevent apoptosis and/or cell
detachment. After the scraping, 0.35 mg of each formulation was positioned into the Transwell inserts
(MW6 8 µm polycarbonate) and incubated in each well at 37 ◦C for 24 and 48 h, and at each time point,
a scratched cell monolayer without formulation was used as a control. To study the HDF cell migration,
crucial to obtain the wound closure, images were acquired at time zero, immediately after the scratch,
and after 24 and 48 h for each sample in triplicate, using bright-field microscopy. At different times,
the wound area was calculated using the ImageJ public domain software. The percentage of wound
area reduction or wound closure, an expression of the cell migration rate, can be expressed as:

Wound Closure % =
(At=0 −At)

At=0
× 100 (2)

where At=0 is the area of the wound measured immediately after scratching and At is the area of the
wound measured after the scratch is performed. The closure percentage increases as cells migrate into
the scratch over time.
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2.9. Statistical Analysis

Statistical measurements were performed using the Prism (version 6.01) software. The results are
presented as means ± standard error, and one-way ANOVA was performed, with significance reported
when p < ±0.05.

3. Results and Discussion

3.1. Physical Assessments and pH Determination

The color of the formulation was pastel green, Pantone 358 C (R: 173, G: 220, B: 145; C: 34,
M: 0, Y: 42, K: 0); however, the smell slightly changed due to the green tea. Thus, it was preferred
to add two drops of vanilla essence to mask the bitter smell of the green tea, and it did not alter the
properties of the formulation and gave an intense and delicate note. Green tea contains numerous
polyphenols such as catechins, which possess antioxidant properties [25]. A number of studies have
demonstrated that the catechins prevent the collagenase and tyrosinase activity, resulting in the
improvement of skin health [26,27]. In addition, it has been shown that green tea is effective for
skin hydration in the elderly [28]. Here, green tea has dual functions including antioxidant and
hydrating effects [29]. With an increase in age, skin dryness enhances several skin diseases, e.g., atopic
dermatitis, irritation, and allergic contact dermatitis as well as ichthyosis and psoriasis [30]. Hence,
moisturizing formulations may be helpful to hinder or overcome this issue. In a study conducted by
Tjandra et al. [28], it was reported that green tea-embedded moisturizing topical formulations have
considerably more effect on skin hydration than those creams containing vitamin E.

The stability test consists of monitoring the changes of the sealed formulations subjected to three
different temperatures for up to 30 days to evaluate the physical appearance, which is controlled by phase
separation, chromatic change, and fragrance. All formulations remained unchanged and maintained
stable conditions in the different temperatures except the HBN formulations, which underwent
oxidation that was exhibited from the physical point of view by a change in the color and viscosity
(Figure 1A). In addition, the pH of both solutions was approximately 7 to 8 as shown in Figure 1B.
Therefore, no pH change occurred after mixing the new materials into the base formulation.
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3.2. Rheological Properties

Oscillatory rheological features are capable of simulating the materials’ performance in response
to physiological oscillatory movements, which can affect their efficacy [31]. Figure 2A shows the
mechanical spectra of the formulations. The elastic (G′) and viscous (G′′) moduli at 1 Hz are presented
in Table 1. As can be seen, the HBN formulation possesses higher G′ (1592 versus 62 Pa) and G′′

(856 versus 32 Pa) than the control one. The flow curve, which represents viscosity as a function of shear
rate, is shown in Figure 2B. Both formulations behave like gel materials as G′ > G′′. The experimental
formulation has slightly more viscosity than the control formulation. The enhanced mechanical
properties and viscosity of the HBN formulation compared to the base one is due to the presence of
HA; it has been reported that [32,33] HA improves the viscoelastic properties of systems, e.g., injectable
hydrogels [24,34].
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Figure 2. (A) Mechanical spectra of the control system (base) and the formulation at 25 ◦C. (B) Shear
rate-dependent viscosity changes in the control and the formulation at 25 ◦C. Error bars were always
lower than 10%. The error bars are omitted for clarity purposes.

Table 1. Rheological properties of the control and the experimental formulation.

Sample Maximum
Compliance (jmax)

Viscosity a

(Pa.s) G′ b (Pa) G′′ b (Pa)
Thixotropic Curve

Area (Pa/s)

Base formulation 0.0058 1.4 70 32 2557
HBN formulation 0.0058 2.5 1616 819 936

a viscosity at maximum share rate. b G′ and G′′ at 1 Hz.

For both formulations, the viscosity underwent a reduction upon the shearing over the whole
range of shear rates tested (Figure 2B). Upon increasing the shear rate, hydrodynamic forces cause
aggregates to become deformed and eventually disrupted and molecule alignment, which results in a
decrease in the viscosity [35]. These results indicate that both formulations are non-Newtonian fluids
and show shear-thinning behavior, as the viscosity depends on the rate of shear. The observed viscosity
decrease may be interpreted by the changes in the microstructure and alignment of polymer chain
segments. The reduction of viscosity at a high shear rate is a preferred property of HBN formulations
when applied to the human skin so that they can be easily, smoothly spread onto the skin [33].

The Cox–Merz rule (Equation (1)) is a relationship predicting that the complex viscosity |η*(ω)|
and steady shear viscosity η(γ) are equivalent when the angular frequencyω is equal to the steady
shear rate.

|η∗| (ω) = ηγ|ω=γ (3)

Figure 3 shows the comparison between the complex viscosity (against angular frequency) and
apparent viscosity (against shear rate). As can be seen, both complex viscosity and shear steady
viscosity show the same trend, that is, a reduction with an increase in the angular frequency and
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shear rate. In addition, the η* is greater than the η over a whole range of shear rates and angular
frequencies. The difference between η* and η is more significant for the HBN formulation than the base
one. This indicates that the Cox–Merz rule is not appropriate for defining the relationship between
the steady shear flow and dynamics. This is attributed to a structural decay owing to the extent of
the strain magnitudes applied to the materials, since both formulations undergo severe structural
breakdown beyond a certain critical strain magnitude in steady shear rheometry [18].
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(B) the formulation.

A range of performance factors, e.g., easy administration and the time-dependent recovery of
the formulation after topical application, can be evaluated by continuous shear (flow) rheometry [36].
Flow curves (with ascending and descending curves) facilitate the definition and analysis of the
thixotropy and hysteresis area of the formulations. The thixotropy can be assessed by calculating the
surface area of hysteresis on the rheogram (shear stress versus shear rate) as presented in Figure 4.
The rheological parameters and the calculated thixotropy are shown in Table 1. A greater hysteresis
(surface) area indicates a more time-dependent behavior of the control formulation as it has a higher
area (2557 Pa/s) than the HBN formulation (936 Pa/s). The lower area of the thixotropy hysteresis loop
indicates better rheological stability [35]. Consequently, the less thixotropic behavior of the HA-based
formulation corresponds to its ability to rebuild the damaged structure faster after the removal of shear
forces. The viscosity of thixotropic compounds does not follow the same path of structure breakdown
and recovery [37,38]. Thixotropy manifests in the ability of the platform to return to its initial structure
after the elimination of applied tension. Both platforms display thixotropic behavior in which they lose
structure during shear and rebuild it while standing. A topical formulation possessing a thixotropic
property is highly desired, since it would become more fluid during applications—so that it can be
easily applied to the face and body skin through structure breakdown in spreading, hence resulting in
easier spreading—but recover to its initial viscosity after rubbing to prevent formulation leakage [39,40].

To analyze the time dependency of the viscosity, the flow curve was evaluated at a constant
imposed shear rate (Figure 5A,B). Both formulations exhibited a time dependency of viscosity, as typical
behavior of thixotropic fluids. The viscosity of thixotropic fluids declines over time under an imposed
constant shear rate. If allowed to rest, a thixotropic formulation reaches its initial higher viscosity
value. Regarding the dermatological applications and, in particular, topical use, a formulation should
provide ease of application to consumers and patients by fast flowability and deformation [32,38].
Therefore, this feature is desirable for dermatological formulations as they can easily be distributed
with the low stress applied by consumers upon rubbing on the skin [37].
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The creep-recovery test provides information about the deformation and recovery of the
formulations when subjected to a predetermined tension for 180 s. After the removal of the imposed
stress, recovery measurements were carried out for up to 180 s. The change in compliance and viscosity
with time is demonstrated in Figure 6. Upon the cessation of the shear that caused the breakdown,
the HBN formulation reforms its internal network (structure build-up), and the viscosity recovers. As it
can be seen, there is no difference between the recovery and jmax of both systems (Table 1). It stands
to reason that the recovery state depends on the stabilization of internal network structures that can
be broken down by shearing and require time to rebuild [41]. In addition, the thixotropy area and
recovery test demonstrated that the apparent viscosity decreases under shear stress, followed by a
gradual recovery when the stress is eliminated.
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3.3. Antioxidant Activity

The antioxidant ability of the formulations to scavenge reactive radicals was investigated using
the DPPH assay (Figure 7). DPPH is a stable nitrogen-based free radical, which has a violet color that
changes to yellow after reduction by the process of hydrogen- or electron-transfer [42,43].
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Figure 7A shows the optical images of the solution without and with the HBN formulations,
and the qualitative UV-visible spectra of the control and samples containing 100 and 200 µg/mL
are shown in Figure 7B. As can be seen, the solutions containing the HBN formulations (100 and
200 µg/mL) have lower absorbance than the control. In addition, upon increasing the concentration of
the formulation (from 100 to 200 µg/mL), the absorbance is reduced. Increasing the concentration of the
formulation leads to an enhancement of the antioxidant properties whereas the control did not show
significant antioxidant activity (Figure 7C). The results indicate that the HBN formulation possesses
antioxidant activity while the control formulation does not have this capability. In addition, the time
has effects on the antioxidant ability of the formulation, in which the antioxidant activity is increased
over time (Figure 7D).

The production of reactive radicals is significantly increased during cell metabolism and dermal
tissue regeneration mechanisms [7]. High concentrations of these reactive species are present in wound
sites, inducing harmful effects on cells and tissues and even promoting oxidative stress, which generates
lipid peroxidation, damage to deoxyribonucleic acid (DNA), and enzyme inactivation, including that
of free radical scavenger enzymes. In this frame, the antioxidants may represent potential therapeutic
tools to enhance and accelerate the wound healing process. Antioxidants are postulated to help control
wound oxidative stress and thereby accelerate wound healing. They are important mediators in
regulating the damage that is potentially incurred by biological molecules such as DNA, protein, lipids,
and body tissue in the presence of reactive species [44,45].

The antioxidant activity of the formulation comes from the raspberry juice and vitamin E.
Raspberry juice has also been reported as being an effective antioxidant, which is due to the presence
of phenolic and flavonoid compounds [46]. Flavonoids, which are polyphenolic substances, protect the
organism from oxidative damage produced from UV rays, chemical reagents, and environmental
contamination [47]. Vitamin E, the most abundant antioxidant in the skin, is located in the cellular
membranes and acts within cells to provide antioxidant protection. The antioxidant potential shows
that the formulation has a higher percentage free radical scavenging potential, which positions it as an
excellent candidate for the wound healing process [48].

3.4. Biocompatibility and Wound Healing Potential

In order to investigate the biocompatibility and the safety of the topical formulation based on HA
and natural compounds, the crystal violet assay was performed on HDF cells. The assay was conducted
by using a Transwell insert (Figure 8A). Figure 8B shows the % crystal violet OD (absorbance at 545 nm).
As can be seen, the results revealed good biocompatibility of the both the base formulation and HBN
formulation, with values of around 100% after 24 h of exposure compared with the untreated control
cells. The formulations, indeed, were not harmful to cells and, moreover, were able to positively affect
their viability. The biocompatibility of the topical formulation was also confirmed from a morphological
point of view. Indeed, as shown in Figure 8C, the HDF cells in contact with the HA-based formulation
show a shape typical of healthy in vitro fibroblast cells. The cytoplasmatic morphology (Ph Red)
of the cells appears to be similar after 24 h of contact for both of the formulations (base and HA
natural-based formulation), compared with the control cells. The receptor for hyaluronan-mediated
motility is extensively expressed in fibroblasts, and it has been proven that the activation of this receptor
stimulates fibroblast viability in vitro [46], so the HA-based formulation can naturally keep cells safe
and improve their viability.

The wound-healing ability of the skin is an imperative physiological process for maintaining
integrity after trauma, either by accident or by an intentional procedure, and the process induces cell
migration, proliferation, and inflammatory responses. Aberrations of wound healing, such as excessive
wound healing (hypertrophic scars sand keloids) or chronic wounds (ulcers), impair normal physical
function [49,50]. After wound injury, a large number of cytokines are released, which promote the
migration, proliferation, and survival of various cell types, such as fibroblasts and keratinocytes, at the
wound site. Indeed, the re-epithelialization process after the injury to the epidermis in a skin wound is
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initiated by keratinocyte and fibroblast migration, followed by the proliferation of these cells and their
subsequent redifferentiation [49]. To evaluate the potential wound healing activity of the HA-based
natural formulations, an in vitro scratch assay on HDF cells was performed. The presence of HDF
cells in the “wounded” or scratched area due the migration of cells and also the proliferation of the
migrated cells was verified after 24 and 48 h of treatment with the formulations [50].Polymers 2019, 11, x FOR PEER REVIEW 11 of 16 
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Figure 8. Transwell inserts (A) and the % crystal violet OD, directly proportional to cell viability
of control cells and cells exposed to HBN formulation in comparison with those exposed to the
base formulation (B). (C) Human derived fibroblast (HDF) cell morphology for the control cells,
base formulation and hyaluronic acid (HA)-based formulation after 24 h. In red are Actin filaments
stained by AttoRho6G–phalloidin, and in blue are DAPI-stained nuclei cells. Bars represent 10 µm.

Figure 9A shows the representative bright-field images of HDF cells, immediately after reproducing
the scratch area (time 0) and after 24 and 48 h of incubation with the base and HA-based formulations,
compared with the control without formulation [51]. The wound surface area (Figure 9B) decreases
from 24 to 48 h for both the formulation and control without formulation. The cells with the control base
formulation and control cells without formulation exhibited a similar trend during the time, showing a
decrease in wound surface area from about 30 to 10 mm2 after 24 h and to around 7 mm2 after 48 h.
The HA-based formulation induced a bigger decrease in the wound surface area, which decreased
to below 8 mm2 after 24 h and to around 2 mm2 after 48 h of contact with the cells. Accordingly,
the wound closure percentage (Figure 9C) was much higher for the HA-based formulation than the
control formulation and HDF control at both 24 and 48 h of time. In particular, after 24 h, the wound
closure percentage for both the HDF control and the control formulation was about 60%, whereas for
the prepared HA-based formulation, it was about 70%; at 48 h, the wound closure percentage was about
70% for the HDF control and 75% for the control base formulation, while for the HA-based formulation,
it was around 92%. These results suggest that the specific components of the HA-based formulation
are effective. HA and natural compounds are able to positively improve the migration capability of the
HDF cells, thus making the process of closing the wound scratch faster than that observed with the
control formulation and HDF control cells. Here, HA is an essential component of the formulation,
and thanks to its viscoelastic properties, it is suitable for topical use, so it can be applied either as a
cream or as a dressing, facilitating the healing of acute and chronic wounds. Indeed, HA was used for its
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wound healing potential, HA facilitated re-epithelialization, and it is able to accelerate the physiological
process. It was shown that HA with low molecular weight, approximately between 20 and 300 kDa,
can penetrate the stratum corneum whereas high molecular weight HA (1000–1400 kDa) exhibited
impermeability [52]. Moreover, HA led to an enhancement of cell migration, allowing the formation of
soft tissue with good elasticity, and increased microvascular density. In particular, the healing process
may be explained by the HA action during the re-epithelialization phase. HA activates the proliferation
and migration of keratinocytes and promotes dermal collagen remodeling during morphogenesis [53].

Polymers 2019, 11, x FOR PEER REVIEW 12 of 16 

 

of the HA-based formulation are effective. HA and natural compounds are able to positively improve 

the migration capability of the HDF cells, thus making the process of closing the wound scratch faster 

than that observed with the control formulation and HDF control cells. Here, HA is an essential 

component of the formulation, and thanks to its viscoelastic properties, it is suitable for topical use, 

so it can be applied either as a cream or as a dressing, facilitating the healing of acute and chronic 

wounds. Indeed, HA was used for its wound healing potential, HA facilitated re-epithelialization, 

and it is able to accelerate the physiological process. It was shown that HA with low molecular 

weight, approximately between 20 and 300 kDa, can penetrate the stratum corneum whereas high 

molecular weight HA (1000–1400 kDa) exhibited impermeability [52]. Moreover, HA led to an 

enhancement of cell migration, allowing the formation of soft tissue with good elasticity, and 

increased microvascular density. In particular, the healing process may be explained by the HA 

action during the re-epithelialization phase. HA activates the proliferation and migration of 

keratinocytes and promotes dermal collagen remodeling during morphogenesis [53]. 

 

Figure 9. (A) Representative bright-field images show HDF cell migration after the scratch at time 0 

and after 24 and 48 h of incubation with the HDF control cells and formulations. (B) The wound area 

expressed as the remaining area uncovered by the cells. The scratch area at time point 0 hours, and 

after 24 and 48 h of incubation with the formulations. (C) Wound closure expressed as the percentage 

of the closure of the scratched gap after 24 and 48 h of incubation with the formulations. All 

experiments were repeated 3 times in triplicate. The results are the means of three measurements. *, ** 

p-Value < 0.05 compared to the control. 

C 

Figure 9. (A) Representative bright-field images show HDF cell migration after the scratch at time 0
and after 24 and 48 h of incubation with the HDF control cells and formulations. (B) The wound area
expressed as the remaining area uncovered by the cells. The scratch area at time point 0 hours, and after
24 and 48 h of incubation with the formulations. (C) Wound closure expressed as the percentage of the
closure of the scratched gap after 24 and 48 h of incubation with the formulations. All experiments were
repeated 3 times in triplicate. The results are the means of three measurements. *, ** p-Value < 0.05
compared to the control. Clinical skin test was used to evaluate the contact allergy of the patches
containing the herbal and base creams (Figure S1).

4. Conclusions

In this study, HA-based formulations were enriched with ingredients exhibiting antioxidant
activity including vitamin E and natural compounds, such as raspberry and green tea, to create a
formulation to promote the healing process in topical applications. The HA-based formulation has a
higher viscosity and elastic modulus than the control formulation. The HA-based formulation also
showed good antioxidant activity in a concentration- and time-dependent manner, being able to hinder
reactive radicals produced during cell metabolism and dermal tissue aging mechanisms. The results
of cell viability and morphological analysis demonstrated the biocompatibility of the formulations.
Moreover, to evaluate the potential wound healing activity of the HA-based natural formulations,
an in vitro scratch assay on HDF cells was carried out. The presence of HDF cells in the scratched area
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due to the migration of cells and also the proliferation of the migrated cells showed the potential ability
of the HA-based formulation, in comparison with base formulation and observations with control cells,
to further promote the wound healing process. In this work, the presence of HA had dual functions
including enhancing the viscoelastic properties so as to allow the topical use of the formulation and
improving the wound healing ability with the antioxidant action of vitamin E and natural compounds.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/8/1847/s1,
Figure S1: Safety and allergic tests for the base and herbal creams.
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