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Abstract
Our goal was to investigate how root exudate flavonoids influence the soil bacterial commu-

nity structure and to identify members of the community that change their relative abun-

dance in response to flavonoid exudation. Using a model system that approximates

flavonoid exudation ofMedicago sativa roots, we treated a soil with 7,40-dihydroxyflavone
and naringenin in two separate experiments using three different rates: medium (equivalent

to the exudation rate of 7,40-dihydroxyflavone fromM. sativa seedlings), high (10× the

medium rate), and low (0.1× the medium rate). Controls received no flavonoid. Soil samples

were subjected to ATP assays and 16S rRNA gene amplicon sequencing. The flavonoid

treatments caused no significant change in the soil ATP content. With the high 7,40-dihy-
droxyflavone treatment rate, operational taxonomic units (OTUs) classified as Acidobac-
teria subdivision 4 increased in relative abundance compared with the control samples,

whereas OTUs classified as Gaiellales, Nocardioidaceae, and Thermomonosporaceae
were more prevalent in the control. The naringenin treatments did not cause significant

changes in the soil bacterial community structure. Our results suggest that the root exudate

flavonoid 7,40-dihydroxyflavone can interact with a diverse range of soil bacteria and may

have other functions in the rhizosphere in addition to nod gene induction in legume—rhizo-

bia symbiosis.

Introduction
Flavonoids are plant secondary metabolites synthesized via the phenylpropanoid pathway.
They are present in all tissues of higher plants and some are exuded from the roots into the rhi-
zosphere [1]. Their most studied functions in the soil are those associated with legume—rhizo-
bia symbiosis, whereby they activate or repress bacterial nod gene expression [2] and trigger
chemotaxis in nitrogen-fixing rhizobia [3]. Aside from their association with rhizobia, flavo-
noids are present in root exudates of non-legume plants [1], and a growing body of data sug-
gests that they influence the growth and activity of various soil bacteria. For example, some
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flavonoids, particularly isoflavonoids, are considered phytoalexins or phytoanticipins due to
their antimicrobial effect [4]. Furthermore, the experiments of Hartwig et al. [5] imply that
root exudate flavonoids may control the proliferation of some rhizosphere bacteria. They
found that the doubling time of Ensifer meliloti and Pseudomonas putida decreased when
exposed to luteolin or quercetin in micromolar concentrations in laboratory cultures. Flavo-
noids can also be utilized as a source of carbon and have other direct and indirect effects on
soil nutrient cycles [6]. Root extracts with a high flavonoid content from Lupinus albus have
been shown to decrease soil respiration without a significant change in microbial biomass
based on soil ATP content, and to decrease phosphatase and increase urease activity [7]. Flavo-
noids may also affect bacterial activity in the rhizosphere by influencing quorum sensing. Van-
deputte et al. [8,9] found that catechin, apigenin, eridictyol, kaempferol, luteolin, myricetin,
naringenin, naringin, quercetin, taxifolin, and chalcone had some effect on the production of
quorum-sensing-dependent factors in Pseudomonas aeruginosa. Further, Pérez-Montaño et al.
[10] showed that acyl-homoserine-lactone production by Ensifer fredii, Rhizobium etli, and R.
sullae strains was enhanced in the presence of flavonoids that are known to induce expression
of their cognate nod genes.

These findings indicate that root exudate flavonoids influence a diverse range of soil bacte-
ria. To improve our understanding of how root exudate flavonoids influence the soil microbial
community structure, we designed a model system that approximates flavonoid exudation of
Medicago sativa roots. Our goal was to identify members of the soil bacterial community that
change their relative abundance in response to flavonoid exudation. To achieve this, we
explored the impact of simulated exudation of 7,40-dihydroxyflavone, the most abundant nod
gene inducing flavonoid among the root exudates ofM. sativa seedlings [11], and naringenin,
which is also a nod gene inducing flavonoid present in the root exudates of various legumes
[1].

Materials and Methods

Soil properties
The soil chosen for the rhizosphere model system studies was from a pasture at the University
of Kentucky Spindletop Farm (38°06'51.7"N, 84°29'41.7"W) that had not been fertilized or
planted for the last 5 years; but prior to this,M. sativa had been grown for the study by Probst
and Smith [12]. The Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) was col-
lected from the surface 10–15 cm, sieved (4 mm), dried at room temperature with regular mix-
ing, and then stored at room temperature in a closed plastic container for over 3 months. This
storage period was to decrease the effect of root exudate flavonoids in the soil from the vegeta-
tion at the collection site. Samples were sent to the University of Kentucky Regulatory Services
Soil Testing Laboratory to determine basic soil properties (http://soils.rs.uky.edu/tests/
methods.php).

The soil texture was 18.5% sand, 64.1% silt, and 17.4% clay. The pH was 5.95 (1:1 solution:
soil using 1 M KCl) and the buffered pH was 7.03 (with Sikora buffer [13]). The soil contained
4.49% organic matter and 0.25% total nitrogen. The cation exchange capacity was 25.95 meq/
100 g, the base saturation 87.77% and the exchangeable K, Ca, Mg, and Na were 0.36, 17.85,
4.55, and 0.02 meq/100 g. Mehlich III extractable P, K, Ca, Mg, and Zn were 243.5, 110.0,
2925.5, 486.5, and 1.2 mg/kg.

Before using the soil it was mixed with 30% m/m sand (previously bleached, washed, and
oven dried) to facilitate drainage.
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The rhizosphere model system
The soil—sand mixture was moistened with distilled water (60.0 g water to 400.0 g soil—sand
mixture) and thoroughly mixed in plastic bags before filling 60.0 g into 50-ml polypropylene
conical centrifuge tubes (Fisher Scientific, USA). The conical bottom portions of the tubes were
previously cut off and replaced with plastic mesh to allow drainage. Each tube was wrapped in
aluminum foil to protect the soil from light. We used rhizon soil moisture samplers (Rhizon
MOM, Rhizosphere Research Products, Netherlands) to model the root exudation process. The
rhizons had 5-cm long porous parts, 2.5 mm diameter, pore size 0.12–0.18 μm, a glass fiber
strengthener, and polyethylene/polyvinylchloride tubing. To the soil in each tube, 6.00 ml dis-
tilled water was added before inserting three rhizons vertically and equidistant to each other
and the wall of the tube. The rhizons were previously bleached and then washed in sterile dis-
tilled water.

Initial experiments studying the effect of root exudates on the soil microbial community
delivered exudates to the soil via artificial roots such as membrane filters [14,15] or cylindrical
tubes or wicks prepared from such filters [16,17]. In later experiments, rhizon soil moisture
samplers were employed as root exudation models [18–20] by using them in the reverse direc-
tion: to pump a solution into the soil instead of sampling the soil solution. An alternative
approach developed by Ziegler et al. [21] used glass slides coated with agarose containing the
exudate compounds that were inserted into the soil. Our goal was to study the microbial com-
munity in a volume of soil homogenously exposed to the exudates; therefore, we adopted the
use of rhizon soil moisture samplers in our rhizosphere model systems.

Treatment solutions and applications
The rhizosphere model systems received 7,40-dihydroxyflavone or naringenin at high (24.00
nmol/day), medium (2.40 nmol/day), low (0.24 nmol/day), or no flavonoid (control) rates. The
medium treatment rate was determined from the calculations of Cesco et al. [1] which were
based on the results of Maxwell and Phillips [11] to match the exudation rate of 7,40-dihydrox-
yflavone fromM. sativa seedlings assuming that 0.4 g (fresh weight) root biomass occupies the
soil in a rhizosphere model system. We determined the root biomass value experimentally by
growingM. truncatula using the same soil and tube setup as the present experiment (unpub-
lished). The treatment solutions were applied in 1.2 ml aqueous volume slowly pumped
through the rhizons (400 μl per rhizon) into the soil using 1-ml syringes, once every 24 hours.
After each application, approximately 0.2 ml of air was injected into the rhizon to ensure that
the entire volume of the treatment solution had reached the soil and that no liquid remained in
the tubing.

Stock solutions of 7,40-dihydroxyflavone (Indofine, USA) and naringenin (MP Biomedicals,
USA) were prepared in dimethyl sulfoxide and stored at −20°C until the start of the treatments.
The final treatment solutions each contained 0.0625% v/v dimethyl sulfoxide. The treatment
solutions for each flavonoid treatment rate and the control were supplemented with the major
carbohydrates, amino acids, and other organic acids present in the root exudates ofM. sativa
[22–24] assuming 0.4 g (fresh weight) root biomass in the rhizosphere model system: 1396 μM
glucose, 223 μM arabinose, 115 μMmaltose, 108 μMmannose, 690 μM serine, 250 μM glycine,
26 μMmalate, 24 μM citrate, and 4 μM succinate. Stock solutions were prepared in water, filter
sterilized (0.22 μm), and stored at 4°C. The control treatments received the carbohydrates,
amino acids, and other organic acids, and dimethyl sulfoxide, but no flavonoid. The treatment
solutions were adjusted to pH 7 with KOH.

Six rhizosphere model systems were set up for each of the high, medium, low, and control
treatment rates, and then placed on plastic trays and incubated in a dark cabinet at room
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temperature (21–23°C). A 400-μl aliquot of distilled water was pumped through each rhizon
once a day for 5 days before the treatments started. In the first days of incubation a few seed-
lings germinated in the soil. This affected 3 rhizosphere model systems receiving the high 7,40-
dihydroxyflavone rate, 1 receiving the medium rate, 3 receiving the low rate and 2 receiving the
control treatment. From the naringenin treatments 2 rhizosphere model systems receiving the
high rate, 1 receiving the medium rate, 1 receiving the low rate, and 2 receiving the control
treatment were affected. Seedlings were removed as soon as they emerged from the soil. The
last seedling appeared 6 days before sampling. The treatments were applied for 10 days. Every
2 days the rhizosphere model systems were weighed before administering the treatments and
then sufficient distilled water was applied to the soil to maintain a constant water content, and
they were randomly rearranged on the trays.

The experiment was first conducted with 7,40-dihydroxyflavone and then repeated with nar-
ingenin using the same procedures.

Sampling
Soil samples were harvested approximately 3 hours after the last treatment application. The
rhizons were removed and the soil column was pushed out of the tube. The top 1 cm of soil
was discarded and the next 4 cm was collected in a sterile plastic bag using a sterile spatula,
mixed, and then frozen in liquid nitrogen. Samples were stored at −80°C prior to analysing all
samples for microbial biomass and microbial community structure.

Some rhizosphere model systems contained germinating seeds that did not reach the sur-
face, and thus were only detected during sampling. These systems were removed from the
study leaving the number of replicates to 5 high, 4 medium, 5 low, and 4 control in the 7,40-
dihydroxyflavone experiment, and 5 high, 5 medium, 4 low, and 5 control in the naringenin
experiment.

ATP assays
To assess total microbial biomass ATP was extracted from 1.0 g of the soil samples with
dimethyl sulfoxide and trisodium phosphate as described by Bai et al. [25], but with 1:10
instead of 1:100 dilution in glycine-EDTA buffer. Diluted extracts were treated with benzalko-
nium chloride following the protocol of Martens [26] by mixing a 100-μl aliquot with 100 μl
0.05% m/m benzalkonium chloride in Tris-Mg2+ buffer (50 mM Tris, 10 mMMgSO4, pH 7.8)
in a 12 mm × 50 mm autoclaved glass tube. The tube was sonicated for 5 s and 190 μl Tris-
Mg2+ buffer was added, followed by 10 μl StayBrite Highly Stable Luciferase/Luciferin Reagent
(BioVision, USA). The sample was quickly mixed with a pipet and the luminescence was mea-
sured five consecutive times using a Turner Design 20/20 luminometer with 10-s integration
periods and 54.8% sensitivity. Out of the five measurements, generally the first two were higher
than the last three, which showed less variation. Therefore, the average of the third, fourth, and
fifth readings was used in the calculation. Blanks were used to measure the background lumi-
nescence using glycine-EDTA buffer instead of a soil extract. A standard curve using log10
(ATP concentration in nM) vs. log10 (luminescence) was obtained by measuring ATP stan-
dards comprising blank samples supplemented with 0.1, 0.5, 1, 5, and 10 nM ATP. The ATP
stock solution was prepared from ATP-Na2 salt (SERVA Electrophoresis GmbH, Germany) in
Tris-Mg2+ buffer and then filter sterilized (0.22 μm) and stored at −80°C. To estimate the
extraction efficiency, soil samples from the 7,40-dihydroxyflavone (n = 3) and the naringenin
(n = 3) experiments were randomly chosen, and ATP extracts were prepared from them by
adding 20 μl 0.1 mM ATP solution when adding the dimethyl sulfoxide.
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Samples from the 7,40-dihydroxyflavone and naringenin experiments were processed sepa-
rately. Three blanks and a set of ATP standards were measured for both experiments. The aver-
age of the blanks was subtracted from the readings and the ATP content per gram of soil (dry
weight) was calculated according to the standard curves in Microsoft Excel. The results were
analyzed in JMP 10.0.0 (SAS Institute, USA) using ANOVA and Tukey’s HSD.

16S rRNA gene amplicon sequencing and data processing
DNA was extracted from 250 mg of soil from each sample with Power Soil DNA Isolation Kit
(MO BIO Laboratories, USA). The V4 region of the 16S gene was amplified with PCR using
the primers of Kozich et al. [27]. The reactions contained 22.5 μl AccuPrime Pfx SuperMix
(Invitrogen, USA), 7.5 ng DNA, and 7.5 pmol forward and reverse primers (Integrated DNA
Technologies, USA) in 25 μl final volume. Amplification was carried out in a Bio-Rad My
Cycler version 1.065 thermocycler (Bio-Rad, USA) with 4 min initial denaturation at 95°C fol-
lowed by 30 cycles of 20 s at 95°C, 15 s at 55°C, and 2 min at 68°C, and a final extension for 10
min at 68°C. The size and quality of the PCR products were checked using agarose gel electro-
phoresis. The PCR products were cleaned, quantified, pooled, and sequenced on an Illumina
MiSeq instrument with a 500 cycle v2 kit (Illumina, USA) at the University of Kentucky
Advanced Genetics Technologies Center according to the protocol of Kozich et al. [27]. Sam-
ples from the 7,40-dihydroxyflavone and the naringenin experiments were sequenced sepa-
rately. The sequence data is accessible at the National Center for Biotechnology Information
Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) under the accession number
PRJNA295777.

Forward and reverse sequence reads were joined, and then sequences that were low quality,
chimeric, mitochondrial, chloroplast, archaeal, eukaryotic, and unclassifiable were removed in
mothur v1.34 [28] as described in the MiSeq SOP (http://www.mothur.org/wiki/MiSeq_SOP,
accessed December 2014) using the SILVA alignment [29] release 119, and the Ribosomal
Database Project [30] release 10. Sequences were binned to operational taxonomic units
(OTUs) using minimum entropy decomposition (MED) [31] with the following settings:
m = 0.0965, c = 4, M = (number of sequences in the dataset/10 000), and V = 3. A representa-
tive sequence from each OTU was classified according to the Ribosomal Database Project
release 10 using mothur with 70% bootstrap cutoff.

Instead of rarefying [32], centered log-ratio (CLR) transformation [33,34] was applied to
the data matrices using the compositions package [35] in R version 3.2.1 (www.R-project.org).
The data matrices from the 7,40-dihydroxyflavone and naringenin experiments contained 13
and 43 zeroes, respectively. These were replaced with ones to allow this transformation. Ordi-
nation plots were made with non-metric multidimensional scaling (NMS) in PC-ORD 6.0
(MJM Software Design, USA) with Euclidean distances: 250 runs were performed with random
starting configurations in one to six dimensions with a 10−7 instability criterion and 500 maxi-
mum iterations with 0.2 initial step length to find the best starting configurations in each
dimensionality. Statistics for the final stress for each dimensionality were obtained from 250
runs with randomized data. Dimensions were only accepted if they decreased the stress to a
lower value than that from 95% of the randomized runs. Based on the results, two-dimensional
solutions were selected. The final run was conducted using the determined best starting config-
uration. Multi-response permutation procedure (MRPP) [36] was used on the CLR trans-
formed datasets with Euclidean distances to test the significance of the differences between the
high, medium, low, and control treatments. To find differentially abundant OTUs in the treat-
ments, we used DESeq2 (without CLR transformation) [37] as recommended by McMurdie
et al. [32] with the DESeq2 package version 1.8.1 [37] in R. To account for the high number of
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simultaneous tests, q-values were calculated according to the positive false discovery rate
method [38] with the smoother option in QVALUE (http://genomine.org/qvalue). The q-value
of a test estimates the proportion of false positive findings in the dataset if tests with equal or
lower p-values are accepted as significant.

Results

ATP assays
There was no significant difference in the soil ATP content between the treatments in either
the 7,40-dihydroxyflavone or the naringenin experiment (Table 1). The standard curves are
shown in S1 Fig.

16S sequencing results from the 7,40-dihydroxyflavone experiment
The dataset contained 117,276–359,427 sequences per sample with 253 bp average read length,
which were binned to 1580 OTUs. On the NMS plot (Fig 1A) the high, medium, and low treat-
ment samples overlapped each other, but were separate from the control samples, indicating a
difference in bacterial community structure between the control and 7,40-dihydroxyflavone
treatments. This difference however, was not significant in the MRPP after correcting for mul-
tiple comparisons (Table 2).

We used DESeq2 to find differentially abundant OTUs in the control compared with the
medium and high treatments. These comparisons gave the highest A-values in the MRPP
(Table 2). The DESeq2 results including the normalized mean abundance, abundance fold
change, p- and q-values, and the taxonomic classification for all OTUs are listed in S1 Table
(comparing the control and high treatments) and S2 Table (comparing the control and
medium treatments). There were 37 differentially abundant OTUs between the control and
high treatments with q-values below 0.1. This q-value indicates the proportion of false positives
if the abundances of all these OTUs are accepted as significantly different. The normalized
mean abundance, abundance fold change, p-values, and the taxonomic classification of these
37 OTUs are shown in Table 3.

From the 37 OTUs, 14 had a higher relative abundance in the high treatment than in the
control. Half of these OTUs were classified as Acidobacteria subdivision 4 (Table 3). These
seven OTUs cover 18.9–22.8% of the Acidobacteria subdivision 4 sequences in the high treat-
ment and 14.1–17.2% in the controls. Most of the OTUs in Table 3 that had a lower relative
abundance in the high treatment compared with the control were classified as Actinobacteria.
Six of these Actinobacteria OTUs belong to genus Gaiella, together covering 13.0–14.5% and
15.0–18.7% of the sequences from this genus in the high and control treatments, respectively.

Table 1. Soil ATP concentrations, and estimated ATP extraction efficiency.

7,40-dihydroxyflavone (μg/g soil dry weight) Naringenin (μg/g soil dry weight)

High 1.557±0.116 1.212±0.195

Medium 1.698±0.306 1.211±0.164

Low 1.780±0.101 0.983±0.062

Control 1.621±0.187 1.121±0.164

Extraction efficiency (%) 86.3±1.47 87.3±6.85

Numbers represent average ± SD. ATP concentrations are not corrected for extraction efficiency.

doi:10.1371/journal.pone.0146555.t001
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Three OTUs were classified as Nocardioidaceae, encompassing 37.8–47.9% and 46.3–59.5% of
the sequences from OTUs classified into this family in the high and control treatments, respec-
tively. Thermomonosporaceae was also represented by three OTUs, which contain 69.3–77.6%
and 72.4–75.9% of the sequences from this family in the high and control treatments,
respectively.

In a comparison of the control with the medium treatment, only six differentially abundant
OTUs had q-values below 0.1 (S2 Table). Three of these OTUs (OTU# 886, 10591, and 12806)
were also differentially abundant between the control and the high treatment (Table 3). Two of
the other three OTUs were classified asMicromonosporaceae and Acidobacteria subdivision
16, and one could not be classified at phylum level with higher than 70% bootstrap support.
Several OTUs listed in Table 3 that had significantly different abundances between the control
and high treatment showed a similar response in the medium treatment compared with the
control. From the Acidobacteria subdivision 4 OTUs listed in Table 3 that were significantly
more abundant in the high treatment than in the control, OTU# 10591, 13198, and 11314 were
also more abundant in the medium treatment compared with the control and had low q-values
(0.049, 0.115, and 0.115, respectively) (S2 Table). OTU# 11842 and 14169 were classified as
Gaiella, OTU# 4243 and 9952 were classified as Nocardioidaceae, and OTUs 11413 and 9555
were classified as Thermomonosporaceae (Table 3). Similar to the control versus high treatment
comparison, these OTUs had higher relative abundance in the control than in the medium
treatment and had q-values of 0.176, 0.209, 0.115, 0.163, 0.171, and 0.202, respectively (S2
Table).

Fig 1. Non-metric multidimensional scaling (NMS) ordination plots. (A) 7,40-Dihydroxyflavone experiment, (B) naringenin experiment. Points represent
samples, crosses are group centroids. Samples of the same treatment are enclosed in convex hulls. Stress is calculated on a scale of 0 to 100. (Treatments:
● high, ♦medium,& low, and ▲ control).

doi:10.1371/journal.pone.0146555.g001
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16S sequencing results from the naringenin experiment
The dataset contained 149,471–339,727 sequences per sample with 253 bp average read length.
The MED resulted in 1589 OTUs. Interestingly, the control samples showed no separation
from the high or medium treatments in the NMS plot, but the low treatment appeared to sepa-
rate (Fig 1B). This difference however, was not significant in the MRPP (Table 2). The compar-
isons between the low and high treatments and between the control and low treatments
resulted in the largest effect sizes in the MRPP (Table 2); thus they were investigated with
DESeq2 to find differentially abundant OTUs. The normalized mean abundance, abundance
fold change, p- and q-values, and the taxonomic classification for all OTUs are listed in S3
Table (comparing the control and low treatments) and S4 Table (comparing the low and high
treatments). Only three OTUs had significantly different abundances between the control and
the low treatment and had q-values below 0.1 (S3 Table). One OTU was classified as Bacillus,
one as Gaiella, and one was not possible to classify at the phylum level with higher than 70%
bootstrap support. Comparison of the low and the high treatments resulted in four OTUs with
significantly different abundances and with q-values below 0.1 (S4 Table). These were classified
into Oxalobacteraceae, Intrasporangiaceae, Acidobacteria subdivision 6, and Chitinophagaceae.

Discussion
Soil ATP content is a measure of the total living microbial biomass including active and dor-
mant organisms [39]. The 7,40-dihydroxyflavone and naringenin treatments had no significant
effect on the ATP content of the soil. This suggests that the change in relative abundance of
OTUs found in DESeq2 is due to a growth response of those particular bacterial groups and is
not due to a general antimicrobial or growth promoting effect on the other members of the
bacterial community. However we note that soil ATP content reflects the biomass of all soil
organisms, including fungi, other eukaryotic microbes, and Archaea, which are not represented
in our 16S sequencing results.

Naringenin has been shown to inhibit the growth of a variety of Gram positive and negative
bacteria as well as Saccharomyces cerevisiae with minimum inhibitory concentrations ranging

Table 2. Multi-response permutation procedure (MRPP) results.

Comparison A p Corrected p

7,40-dihydroxyflavone control—low -0.00039 0.4435 2.6608

control—medium 0.02922 0.0446 0.2674

control—high 0.02306 0.0333 0.1997

low—medium 0.00497 0.3274 1.9642

low—high -0.00054 0.4464 2.6781

medium—high -0.01322 0.9229 5.5374

Naringenin control—low 0.00323 0.3482 2.0890

control—medium -0.01677 0.7711 4.6265

control—high -0.02264 0.9584 5.7502

low—medium 0.00028 0.4185 2.5113

low—high 0.00403 0.3345 2.0068

medium—high -0.01294 0.7590 4.5542

The A-values are the chance-corrected within-group agreements and describe the effect size. Corrected p-values were calculated using the Bonferroni

method.

doi:10.1371/journal.pone.0146555.t002
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from 250 to 1000 μg/ml [40–42]. A broad-spectrum inhibition of growth would likely cause a
decrease in soil ATP content, but this did not occur. The high flavonoid treatment solution in
our experiment had a concentration of 5.45 μg/ml, which is about two magnitudes lower than
the reported minimum inhibitory concentrations for naringenin. It seems likely that some root
exudate flavonoids that have been considered antimicrobial based on laboratory culture studies
do not function as inhibitors of bacterial growth in the soil. This is simply because the deter-
mined minimum inhibitory concentrations are higher than those expected in the rhizosphere,
or they only have an antimicrobial effect adjacent to the site of exudation, such as in the rhizo-
plane where their local concentrations may be high.

For soils with a similar texture and pH to the Maury silt loam used in the present study, Bai
et al. [25] reported a soil ATP content of 0.76–2.20 μg/g. Our results using the same extraction
method also occurred within this range (Table 1). However, Bai et al. did not incubate their
soils with carbon sources before extraction, whereas our samples were treated daily for 10 days
with a mixture of carbohydrates and organic acids, which should promote the growth of het-
erotrophic microorganisms, and thus increase the microbial biomass and ATP content. In
their review, Blagodatskaya and Kuzyakov [39] concluded that an ATP content below 1–2 μg/g
soil is common when the soil microbial community is not activated, and that the addition of
readily available substrates, such as glucose, causes several-fold increases, which implies that
our results are lower than expected. A likely explanation for the relatively low ATP content of
our samples is that the treatment solution added only 0.0040 mg carbon per g soil daily as glu-
cose and other substrates, which is about three magnitudes less than the amount used in other
studies to activate the soil [43,44]. The concentrations of carbon sources and the C:N ratios in
our treatment solutions were closer to those used by Drake et al. [18] in their C + N treatment
(carbon at 500 mg/l versus 172.3 mg/l in the present study, C:N of 10 versus 13.1 in the present
study), which did increase soil microbial biomass significantly, but not several-fold as reported
by Blagodatskaya and Kuzyakov [39].

7,40-Dihydroxyflavone is known for its ability to induce the expression of nod genes in spe-
cies like Rhizobium leguminosarum bv. trifolii [45], Ensifer meliloti [46], and Bradyrhizobium
japonicum [47]. There are numerous OTUs in our dataset classified as Rhizobium and Bradyr-
hizobium (S1 Table), and the soil originated from a site whereM. sativa had been grown for
years. Therefore, it is likely that rhizobial species able to react to 7,40-dihydroxyflavone as a nod
gene inducer were present in the soil microbial community. However, we only found a single
OTU classified as Rhizobiales that significantly changed (q-value< 0.1) its relative abundance
in the high 7,40-dihydroxyflavone treatment compared with the control (Table 3), and the
abundance of this OTU decreased in the flavonoid treatment. This implies that nod gene
induction in bacteria by 7,40-dihydroxyflavone is not necessarily coupled with significant
growth promotion. Our results concur with Hartwig et al. [5], who found that 10 μM 7,40-dihy-
droxyflavone did not affect the doubling time in the cultures of R. leguminosarum bv. trifolii
and E.meliloti.

Our results show that a large portion of the Acidobacteria subdivision 4 community in the
soil increased its relative abundance in the high 7,40-dihydroxyflavone flavonoid treatment.
Based on culture-independent studies, Acidobacteria is one of the most abundant bacterial
phyla in the rhizosphere [48], and subdivision 4 is among the most dominant of the 26 subdivi-
sions in a wide diversity of soils, especially in soils with low acidity [49]. However, there are
only three validly described species in this taxon [50–52], which impedes our understanding of
their metabolism and activity. In clone libraries constructed from the rhizosphere of Noccaea
caerulescens and from unplanted bulk soil that was contaminated with heavy metals, fewer
clones from subdivision 4 were found in the rhizosphere compared with the bulk soil [53]. The
abundance of various acidobacterial subdivisions in unplanted soil and in the rhizospheres of
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potato (Solanum tuberosum ‘Agria’), leek (Allium porrum ‘Kenton’), and mixed grass species
dominated by Lolium perenne were studied in a field experiment using real-time quantitative
PCR by da Rocha et al. [54]. During their four-month study, the abundances of subdivision 4
declined, but relative to the bulk soil, their abundances increased in the rhizospheres of leek
and grass. The flavonoid composition of the root exudates of these plants have not been
reported yet, and studies investigating the flavonoid composition of N. caerulescens shoots,
potato tubers, leek bulbs, and L. perenne shoots did not find 7,40-dihydroxyflavone [55–60].
These culture-independent studies on the abundance of Acidobacteria subdivision 4 point out
that its growth can be influenced by plants, implying plant—microbe interactions. Our results
indicate that root exudate flavonoids like 7,40-dihydroxyflavone may be involved in mediating
these interactions.

It is noteworthy that our experimental setup was not capable of distinguishing direct and
indirect effects of the flavonoid treatment. Root exudate flavonoids can be modified and
degraded by soil microorganisms or abiotic processes [61–63], thus some of the OTUs with sig-
nificantly different abundances may have reacted to a degradation product instead of 7,40-dihy-
droxyflavone itself, or to factors produced by other organisms in response to the flavonoid.

In the high 7,40-dihydroxyflavone treatment, six OTUs classified as Gaiella had significantly
(q-value< 0.1) lower relative abundances compared with the control (Table 3). This genus and
the order Gaiellales currently have only a single described species, which was isolated from
water from a deep aquifer [64]. Gaiella 16S rRNA sequences have been found in sediments
from a thermal spring [65], in high abundance in soil [66], and in rhizosphere and root samples
of rice [67]. Their presence in the rhizosphere soil and root tissues shows that some members
of this genus interact with plants. According to our results, 7,40-dihydroxyflavone from root
exudates may have a role in these interactions.

In the 7,40-dihydroxyflavone experiment, several OTUs that decreased their relative abun-
dance in the flavonoid treatment were classified as Nocardioidaceae and Thermomonospora-
ceae (Table 3). These OTUs comprise a large portion of the sequences classified into these
families in the dataset. Many members of these families have been isolated from soil where
they can play a significant role in degradation processes and nutrient cycling [68,69]. They
were found in the rhizospheres of L. perenne [70], Solanum melongena [71], cucumber [72],
and various medicinal plants [73]. Endophytic members of Nocardioidaceae were isolated from
the roots of wheat [74] and rice [75], whereas Thermomonosporaceae strains were isolated
from Aquilaria crassna [76] and mandarin [77]. Furthermore, some of these isolates were
shown to produce siderophores, which may help plant nutrient uptake, and to produce indole-
3-acetic acid [73, 76, 77], and therefore potentially promote plant growth. Isolates related to
Thermomonosporaceae were also obtained from the outer cells of the nitrogen-fixing nodules
of Casuarina equisetifolia and were demonstrated to be able to fix atmospheric nitrogen [78],
whereas other Thermomonosporaceae strains were shown to increase nodule biomass, nitrogen
fixation rate, and to promote the growth of soybean when co-inoculated with Bradyrhizobium
japonicum [79]. Nocardioides endophytes from wheat roots were also proven to be beneficial to
plants as they express antifungal activity against different plant pathogens and reduce disease
symptoms [80]. Therefore, it appears that some soil-dwelling members of Nocardioidaceae and
Thermomonosporaceae are part of the rhizosphere microbial community of certain plants and
that some colonize root tissues as neutral or plant growth promoting endophytes. However, it
is currently unknown what chemical signals are involved in host recognition or induction of
the colonization of plant tissues. Our results suggest that root exudate flavonoids like the 7,40-
dihydroxyflavone are potential signaling candidates influencing these plant—microbe
interactions.
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In the naringenin experiment, we found no significant difference in the soil bacterial com-
munity structure between the control and flavonoid treatments. Nor was there a gradually
increasing response with the increasing flavonoid concentration in the treatment solution.
Instead, we found the largest difference between the low and the high treatments, but there
were very few differentially abundant OTUs. Longer application times or higher treatment
rates may be required to study the effect of naringenin on soil bacterial community structure in
a rhizosphere model system.

Conclusions
We investigated the effect of 7,40-dihydroxyflavone and naringenin on the total soil microbial
biomass and the soil bacterial community structure in rhizosphere model systems that approxi-
mate the root exudation ofM. sativa seedlings. Neither 7,40-dihydroxyflavone, nor naringenin
had an effect on the soil microbial biomass. Despite its antibacterial properties in laboratory
culture studies, naringenin did not appear to inhibit microbial growth in the soil. In the rhizo-
sphere model systems, members of Acidobacteria subdivision 4, Gaiella, Nocardioidaceae, and
Thermomonosporaceae changed their relative abundance due to 7,40-dihydroxyflavone exuda-
tion. Members of these taxa are known to interact with plants, but the signaling compounds
regulating these interactions are currently unknown. Our results indicate that 7,40-dihydroxy-
flavone could be among these compounds, and future studies should investigate the effect of
7,40-dihydroxyflavone and other root exudate flavonoids on the activity of these bacteria in the
rhizosphere and root tissues.
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