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Abstract: The large family of C-type lectin (CLEC) receptors comprises carbohydrate-binding proteins
that require Ca2+ to bind a ligand. The prototypic receptor is the asialoglycoprotein receptor-1 (ASGR1,
CLEC4H1) that is expressed primarily by hepatocytes. The early work on ASGR1, which is highly specific
for N-acetylgalactosamine (GalNAc), established the foundation for understanding the overall function
of CLEC receptors. Cells of the immune system generally express more than one CLEC receptor that
serve diverse functions such as pathogen-recognition, initiation of cellular signaling, cellular adhesion,
glycoprotein turnover, inflammation and immune responses. The receptor CLEC10A (C-type lectin
domain family 10 member A, CD301; also called the macrophage galactose-type lectin, MGL) contains
a carbohydrate-recognition domain (CRD) that is homologous to the CRD of ASGR1, and thus,
is also specific for GalNAc. CLEC10A is most highly expressed on immature DCs, monocyte-derived
DCs, and alternatively activated macrophages (subtype M2a) as well as oocytes and progenitor cells
at several stages of embryonic development. This receptor is involved in initiation of TH1, TH2,
and TH17 immune responses and induction of tolerance in naïve T cells. Ligand-mediated endocytosis
of CLEC receptors initiates a Ca2+ signal that interestingly has different outcomes depending on
ligand properties, concentration, and frequency of administration. This review summarizes studies
that have been carried out on these receptors.
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1. Introduction

ASGR1 and CLEC10A are members of a large group of proteins called ‘lectins’ that non-enzymatically
bind carbohydrate structures. In plants these proteins usually occur in storage tissues such as seeds.
Research over the past four decades identified a vast number of lectin receptors in mammalian tissues,
which function as surveillance of the extensive glycome in normal tissues, recognition of environmental
danger signals, cell-cell adhesion, ligand-specific endocytosis, glycoprotein turnover, and mediators of
inflammation and immune responses. Five major families of lectin-type receptors have been cataloged:
the I-type Siglec receptors are specific for glycan ligands that contain terminal sialic acid [1–3]; galectins
bind ligands that contain β-galactoside moieties [4,5]; F-type lectins bind fucose [6]; and R-type lectins
resemble the protein ricin [7]. By far the largest and most diverse family, indeed a superfamily, consists
of C-type lectins that in most but not all cases require Ca2+ to bind the ligand within a conserved
carbohydrate-recognition domain (CRD) [8–10]. Starting from the late 1980s, research on these lectins
identified 17 sub-groups based on structure of the CRD and specificity of the sugar ligand [10–12].

Among the large family of Ca2+-dependent lectin receptors, two are of particular interest.
The prototypic C-Type Lectin Domain Family 4 Member H1 (CLEC4H1, asialoglycoprotein receptor-1,
ASGR1) and C-Type Lectin Domain Family 10 Member A (CLEC10A, macrophage galactose-type
lectin, MGL, CD301) contain homologous CRDs that bind N-acetylgalactosamine (GalNAc) with much
higher affinity than galactose (Gal). ASGR1 is expressed nearly exclusively by hepatic parenchymal
cells but also by cells in the dermis of human skin [13] and at a much lower level in human peripheral
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blood monocytes [14]. Most of the early functional information on C-type receptors was developed
with ASGR1, which functions to survey blood cells and plasma proteins for removal when sialic
acid, the terminal sugar of attached glycans, is lost. CLEC10A is expressed at several critical stages
of human development, with the highest expression in oocytes [15]. The totipotent 8-cell stage of
embryogenesis expresses CLEC10A at a level 70-fold higher than later embryonic stem cells [16], and a
three-fold increase in expression occurs upon differentiation of mouse multipotent stem cells to myeloid
committed progenitor cells [17]. CLEC10A is also expressed on immature dendritic cells (DCs) [15,18],
monocyte-derived DCs (mo-DCs) [19,20], alternatively activated M2a macrophages [21,22], and at
low levels in human intermediate (CD14++CD16+) monocytes [23]. GalNAcα1-3Galβ is the most
potent ligand for human circulating primary DCs [24]. CLEC10A mediates various immune responses
dependent on the microenvironment and the nature of the ligand [19,25,26].

2. ASGR1

Gilbert Ashwell and his colleagues discovered ASGR1 during studies of the remarkably active
uptake of serum glycoproteins by liver cells [27–31]. While most serum proteins contain glycan chains
with terminal sialic acid, loss of this terminal sugar over time and exposure of penultimate Gal residues
leads to rapid internalization by liver cells and degradation of these asialoglycoproteins. Orosomucoid
(α1-acid glycoprotein) was the most actively internalized protein after removal of terminal sialic acid
residues by treatment with neuraminidase [28]. Orosomucoid contains 183 amino acids (~20 kDa)
but its mass is doubled by five N-linked glycan structures [32,33]. Ashwell’s team revealed the
major characteristics of ASGR1, which include (i) a preference for terminal α-D-GalNAc (for example,
a 60-fold greater affinity for GalNAc over Gal is expressed by the rat ASGR1) [34,35], (ii) increased
affinity as a function of multivalency of the ligand, (iii) the number of receptors per cell, (iv) the overall
rate of endocytosis (cellular uptake of the protein), and (v) receptor recycling.

ASGR contains two subunits, of which the predominant subunit, ASGR1 (CLEC4H1), contains
291 amino acids, whereas the less abundant ASGR2 (CLEC4H2) contains 311 amino acids, but the two
are surprisingly different in sequence and in binding specificity. ASGR2 has only a two-fold selectivity
for GalNAc over Gal, which is evident from the sequence of the CRD, and is easily dissociated
from ASGR1 oligomers [35]. Various oligomeric structures were described, from the functional receptor
occurring as homo-oligomers [36], a 2:2 heterotetramer [37], to a 3:1 heterotetramer [35]. Hardy et al. [38]
observed two independent classes of binding sites for asialo-orosomucoid, described by KD values of
0.44 nM and 9.7 nM. A synthetic ligand that contained six nonreducing Gal residues provided KD values
of 0.63 nM and 25.3 nM for the two sites, which, respectively, accounted for 817,000 and 1.23 × 106 sites
per rabbit hepatocyte. These studies were performed at 2 ◦C to prevent internalization of the receptor.
Steer and Ashwell [31] had estimated 1.2 × 106 total binding sites for asialo-orosomucoid per rat
hepatocyte, whereas 200,000 to 500,000 receptors were detected on the surface of these cells [39,40].
The number of receptors on the surface at any one time depends on the extent of endocytosis and
recycling [40,41].

The endocytic process was studied extensively by Schwartz et al. with asialo-orosomucoid [39–43].
Although Gal itself is a low affinity ligand for the receptor, multivalency—five terminal Gal residues
per protein molecule or more, depending upon the extent of branching of the glycan—enhances avidity
by orders of magnitude [43]. Even without a ligand, the receptor is internalized with a half-time of
5 to 6 min. In the presence of ligand, internalization is more rapid, with a t 1

2
of 2.5 to 3 min, and the

receptor returns to the cell surface in 5 to 7 min [44]. This remarkably active process of continuous
recycling involves internalization with clathrin-coated pits [45], dissociation of ligand and receptor in
the endosome concomitant with vesicle uncoating, and return of the receptor to the surface. The ligand
is funneled through the vacuolar system to its fateful degradation in lysosomes [42,43]. Products
of degradation of the asialo-orosomucoid appear in the medium about an hour after initial receptor
binding [41]. Interestingly, there was a rapid loss of ASGR1 from the surface when cells were treated
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with weak bases such as chloroquine or primaquine, which inhibit acidification of the endosome and
the return of the internalized receptor to the cell surface [44].

ASGR1 requires three bound Ca2+ ions to bind a ligand, and thus, dissociation of ligand in the
endosome must be preceded by dissociation of the cation from the receptor. Whereas the initial
insertion of Ca2+ occurs during folding of the protein within the endoplasmic reticulum, the continuous
recycling of the receptor over several hours indicates that the CRD is recharged repeatedly with Ca2+

upon exposure to the extracellular fluid. This intuition is supported by the refolding of recombinant
CRD of ASGR1 after expression in Escherichia coli. The inclusion body that resulted was solubilized in
8 M urea containing β-mercaptoethanol and then dialyzed against buffer containing 25 mM CaCl2 [46].
Although the three disulfide bonds that stabilize the CRD structure are apparently maintained during
recycling, they form correctly from the completely unfolded structure after bacterial expression.

The extracellular concentration of Ca2+ is 1 to 2 mM, whereas the cytosolic concentration is less
than 0.1 µM. During endocytosis, the Ca2+ concentration within the endosome drops rapidly [47],
and as it is lowered below about 330 µM, the KD of the two ‘high’ affinity Ca2+ binding sites in the CRD
and with a reduced pH of 6.9, the ligand dissociates. This condition is achieved in about 3 min [47,48].
These events are dependent on acidification of the endosome by vacuolar H+-ATPase (V-ATPase) on
the endosomal membrane [49,50]. Acidification of the endosome is a prerequisite to the reduction
in the endosomal Ca2+ concentration, which suggests that an exchange mechanism is engaged to
transport Ca2+ into the cytosol [51–53]. Although the cell has several mechanisms to control cytosolic
Ca2+ concentrations near 0.1 µM, a transient elevation in the concentration induced by ligand-mediated
recycling of the receptor initiates Ca2+-dependent signaling pathways within the cell.

3. Targeting Liver Cells via ASGR1

Extensive studies have been performed to find ligand conjugates that will provide specific transfer
of drugs into hepatocytes through ASGR1. A basic structure of a tri-GalNAc ligand was initially
synthesized by Lee and Lee [54]. Other teams further investigated multivalency and modifications
of the ligand, and even polymers of GalNAc [55], to deliver various ‘cargoes’ into the liver [56–58].
Khorev et al. [59] designed trivalent structures with polypropylene or peptide spacers to extend the
GalNAc residues into a space that would fit a trimeric receptor complex. The IC50 of binding of these
ligands to the receptor follows the increasing avidity with valency, with mono-, di-, tri-, and tetravalent
structures found to have KD values of approximately 1 × 10−3, 1 × 10−6, 5 × 10−9, and 1 × 10−9 M,
respectively. Cargoes attached to these structures for delivery into liver cells include radiolabeled
human serum albumin or asialofetuin to measure liver function [60,61]. The structure-activity
relationship between the optimal number of GalNAc residues and the linkage to the cargo have been
extensively evaluated [62]. Recent advances involved GalNAc to deliver siRNAs, anti-microRNAs and
antisense oligonucleotides for gene silencing in hepatocytes [62–66]. Initial clinical phase I trials found
conjugates of a tri-GalNAc construct with antisense oligonucleotides to be highly potent and with a
high margin of safety [67,68]. Ligand structures based on peptides, Gal or pullulan (a polysaccharide
consisting of maltotriose units) were developed to deliver chemotherapeutic drugs such as doxorubicin
and paclitaxel to treat hepatic cancers [69–71]. Complex structures in which GalNAc is attached to
the tyrosine hydroxyl oxygen of proteins or peptides also express a KD in the nanomolar range [72].
Studies of the size of the ligand indicated that particles with a diameter greater than 70 nm could not
be processed by ASGR1 [73].

4. CLEC10A

In the late 1980s a lectin similar to the hepatic ASGR was found on mouse macrophages and
designated the macrophage lectin specific for Gal and GalNAc (macrophage asialoglycoprotein-binding
protein or M-ASGP-BP) [74]. This receptor was also called the mouse macrophage Gal and GalNAc-specific
lectin (MMGL) [75]. Irimura’s team extended these studies, which were described in an extensive series
of reports, and found that the mouse contains two related lectins, one specific for Gal (macrophage
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Gal-type lectin, MGL1) that is expressed predominantly by macrophages, while the other specific for
GalNAc (MGL2) is expressed primarily by DCs [76,77]. A human protein (hMGL) was found that
is homologous to the mouse MGL2 [78,79]. A powerful demonstration of the differential binding
specificities of MGL1, MGL2, and hMGL was provided by Artigas et al. [80], who showed that
hMGL effectively bound a glycopeptide containing one or two GalNAc adducts (e.g., the Tn antigen,
D-GalNAcα1-OSer/Thr) but not when Gal was added to GalNAc to form Gal-GalNAc-OSer/Thr
(the Thomsen-Friedenreich or T antigen). The human receptor (hMGL or simply MGL) bound to the
glycan array in a similar fashion as murine MGL2, although the latter also bound to the T antigen with
low affinity.

A receptor homologous but not identical to ASGR1 was discovered that is expressed by mo-DCs
and was designated DC-ASGPR [81]. This receptor is 55% identical to ASGR1 but 82% identical in
the CRD surrounding the QPD (Gln-Pro-Asp) sequence (boxed in Figure 1) that is correlated with
Gal/GalNAc specificity [82,83]. DC-ASGPR is completely homologous to CLEC10A isoform 1 (MGL).
(The National Center for Biotechnology Information does not include DC-ASGPR; the reported short
form of DC-ASGPR [81] is C-type lectin domain family 10 member A isoform 2). CLEC10A has three
major isoforms that are generated by alternative splicing. Isoform 1 contains 316 amino acids, whereas
isoforms 2 and 3 contain 292 and 256 amino acids, respectively. Higashi et al. [79] found a total of
seven isoforms in immature DCs and all contained the endocytic motif YENF (boxed in Figure 1) in
the cytosolic domain. The gene for CLEC10A is located on chromosome 17 (17p13.1) and resides in a
sequence of CLEC10A—ASGR2 with ASGR1 nearby.
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Figure 1. Comparison of the sequences of CLEC10A (isoform 1) and ASGR1. CLEC10A has two
additional amino acids at the C-terminus, SH. ASGR1 has four additional amino acids, PPLL, at the
C-terminus. The endocytosis motif (positions 5 to 8) and the QPD sequence that correlates with
specificity for Gal/GalNAc are boxed.

These receptors have a strong preference for α-GalNAc over β-GalNAc, with very low binding
to Gal [80,84]. CLEC10A is the only C-type lectin in the human immune system that exclusively
binds terminal GalNAc residues [18,84,85]. CLEC10A was also found to bind tumor-associated
sialylated-GalNAc antigens, Neu5Acα2,6-Tn, and NeuGcα2,6-Tn with similar affinities [86]. As with
ASGR1, CLEC10A actively undergoes endocytosis. Most commonly, this process is analyzed by the
disappearance of a tagged anti-CLEC10A antibody from the surface of DCs. The t 1

2
of internalization

of a bound antibody is about 5 min at 37 ◦C with mo-DCs [81,87,88]. Both ASGR1 and CLEC10A
are type II transmembrane proteins, with the N-terminus in the cytosol. CLEC10A contains an
endocytosis motif YENF near the N-terminus whereas the motif in ASGR1 is YQDL (boxed in Figure 1).
Phosphorylation of the tyrosine residue (Y5, see Figure 1) is required for internalization [88] and
subsequent signaling [89].
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Within the immune system, CLEC10A is expressed by immature DCs [79]; CD1c+ DCs,
for which CLEC10A is a specific marker [87]; mo-DCs [20,25,81]; M2a (alternatively activated)
macrophages [21,90]; intermediate monocytes [23]; and at very low levels in many other cell types
including monocytes, eosinophils, and erythroblasts [91–93]. CD1c+ blood DCs were recently
subdivided into ‘non-inflammatory’ CD1c+A (DC2) and ‘inflammatory’ CD1c+B (DC3) sub-types,
both of which express CLEC10A [94–96]. Moreover, CLEC10A is expressed by DCs that differentiate
from monocytes that are recruited to inflammatory environments such as rheumatoid arthritis or
ovarian ascites [20,97]. Expression of CLEC10A by DCs in the skin is most likely to detect pathogens
containing GalNAc or Gal [98,99] and leads to strong Th2 or Th17 immune responses. Migration of the
endocytic, active immature DCs to lymph nodes for interaction with T cells and initiation of an immune
response has been found to require several days, during which time the DCs mature and express the
co-stimulatory surface factors and MHC class II complexes that are required to activate T cells [100–102].
However, maturation of DCs leads to down-regulation of expression of CLEC10A [87,103].

Widespread interest has been focused on CLEC10A as an immuno-active receptor on immature
DCs and alternatively activated macrophages [18,22,92]. As a pathogen-recognition receptor,
CLEC10A binds to GalNAc in the teichoic acid of Staphylococcus aureus cell wall [104] and the
surface of parasites such as helminths [84,105,106]. A common antigen on carcinoma cells, the Tn
antigen (D-GalNAcα1-OSer/Thr) [78,79,107–109], binds to CLEC10A with relatively low affinity
(KD = 8–12 µM) [85,110]. However, more complex GalNAc-containing ligands interact with additional
groups within the binding site, which consequently increase the affinity by several orders of
magnitude [111]. This feature was clearly demonstrated by Marcelo et al. [112], who found that a
change from His286 to Thr286 (His259 in the sequence of their recombinant MGL) in the sequence
His284-Phe-His286 (HFH286 in Figure 1) changed the specificity and lowered the affinity of Tn-peptide
ligands. In particular, the sequence His284-Phe-Thr286 still recognized the Tn antigen but the receptor
had much reduced ability to bind longer structures such as the blood group A structure. Moreover,
whereas sialyl-Tn was bound by CLEC10A [86], the His286 to Thr286 mutation still bound the Tn antigen
but eliminated binding of the sialylated ligand [112]. A ‘second’ binding site was thereby inferred that
includes His286, which forms H-bonds with the underlying peptide or sugars in the ligand in addition
to GalNAc [112]. Thus, the CRD of CLEC10A interacts with the carbohydrate structure and also the
peptide backbone. Hepatic ASGR1 contains the analogous His257-Phe-Thr259 sequence (Figure 1),
which may prevent the liver from actively ingesting young, sialylated red blood cells. The sequence in
ASGR2 is Glu257-Val-Gln259 and the absence of His seems to reduce the specificity for GalNAc [111].

The highly glycosylated, cell membrane protein tyrosine phosphatase, CD45, which bears the Tn
structure at positions 137 and 140 in exon B of the sequence [113], was identified as an endogenous ligand of
MGL (CLEC10A) [103]. CD45 is expressed as several isoforms, with the full-length protein (CD45RABC)
containing exons A, B, and C in the extracellular domain [114]. Binding of CLEC10A to exon
B-containing isoforms causes attenuation of T cell activity, apoptosis, and immunosuppression [103].
However, activation of T cells leads to expression of shorter isoforms of CD45 such as CD45RO and
CD45RA that lack exon B [115,116].

High avidity ligands for CLEC10A have been designed by increasing the number of GalNAc
residues on MUC-derived peptides [19,25,111], which provide KD values in the nanomolar range.
Tn glycosylation of the MUC6 protein strongly affected its immunogenicity by diminishing a TH1
response while promoting a TH17/IL-17 response [117]. Multivalent Tn structures have been synthesized,
built on a tri-lysine core, that contain 4 to 12 terminal GalNAc residues and have KD values of 50 to
100 nM for binding to MGL [98,118–120], or simply polymers of GalNAc that have KD values in
the nanomolar range [55]. Multivalent Tn glycopeptides induced strong stimulation of CD4+ TH2
responses, with secretion of IL-4, IL-5, IL-13, and IL-10 and high levels of antibodies specific for
the tumor-associated Tn antigen [98,118]. These ligand constructs that include the Tn antigen take
advantage of the natural sugar as the specific ligand for CLEC10A [118–120].
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5. A Ligand Mimetic

A tetravalent peptide with arms that mimic GalNAc was designed as a ligand for CLEC10A.
The peptide has a KD of binding to the receptor in the low nanomolar range, with an optimal
concentration in cell cultures of 10 nM [121]. The arms of the peptide have the sequence NQHTPR
(Asn-Gln-His-Thr-Pro-Arg), which is linked to a tri-lysine core through the sequence GGGS (Gly-Gly-
Gly-Ser). The 6-mer sequence (sv6D) is the C-terminal half of a 12-mer sequence (svL4) originally
identified through a screen of a phage display library with the GalNAc-specific lectin from Helix pomatia.
The 12- and 6-mer peptides effectively suppress ovarian ascites, which is an inflammatory environment
that recruits monocytes that differentiate into DCs that express CLEC10A [20].

Although non-antigenic in the mouse, antibodies were raised against sv6D conjugated to
keyhole limpet hemocyanin (KLH). This antibody preparation recognized GalNAc conjugated to
polyacrylamide, which demonstrated the authenticity of the peptide as a mimetic of GalNAc [121].
The predicted characteristics of binding of the peptide to CLEC10A and ASGR1 are similar to those
of GalNAc. In silico modeling suggested that the peptide is larger than a single GalNAc unit but
binds to CLEC10A in the same site as the sugar (Figure 2A,B). The QPD (Gln-Pro-Asp269) sequence
that correlates with specificity for GalNAc/Gal, in contrast to EPN (Glu-Pro-Asn) that determines
mannose binding in the mannose receptor [82,83,122], lies at one end of the binding pocket in CLEC10A.
The guanidino group of Arg is in close contact with the sidechain carboxyl of Asp269 in the model of
the receptor (Figure 2B). His286 provides preference for GalNAc in an engineered mannose binding
protein [82,111,122] and lies under the peptide bound to CLEC10A. His274 is in contact with the peptidic
His, while Trp271 lies behind the His-Thr-Pro-Arg sequence of the peptide. Interestingly, the oxygen
atoms of the peptide are oriented outward while the ‘back’ of the peptide, in contact with the receptor,
is largely hydrophobic and shielded from the Ca2+ ion by the Trp271 and His274. The predicted binding
energy, ∆G′ = −41.6 kJ/mol, is derived from peptide/protein interactions [123]. Although the model
predicts that the peptide does not directly interact with the Ca2+ ions, binding occurs in a strictly
Ca2+-dependent manner [121].
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Figure 2. (A) In silico docking of an arm of sv6D (NQHTPR) to ASGR1 (accession number 1DV8) with
CABS-dock (RMSD = 0.7611 Å) [124]. The peptide is enclosed in red shading. (B) The structure of
CLEC10A was generated with SWISS-MODEL Deep View from the structure of ASGR1 [125]. Docking
was modeled with CABS-dock (RMSD = 1.421 Å) and downloaded into ArgusLab. The position of sv6D
in the binding pocket is shown after additional molecular dynamics. The peptide is colored (carbon,
grey; nitrogen, blue; oxygen, red) while the binding site is yellow. The QPD sequence (Gln-Pro-Asp) is
at the upper left of the binding site. The positions of His274, His284, and His286 of the binding site are
indicated (see Figure 1). (C) A lysate of human mo-DCs was incubated with (1) mouse anti-human
CLEC10A, which was recovered with magnetic beads coated with Protein A; (2) biotinylated sv6D;
or (3) biotinylated svL4, which were recovered with magnetic beads coated with streptavidin. Proteins
were eluted from the beads and subjected to electrophoresis with a BioAnalyzer (Agilent) in the presence
of dithiothreitol. Molecular mass markers are indicated for IgG heavy chain (50 kDa), IgG light chain
(25 kDa), and a streptavidin C1 subunit (13.6 kDa). The top band is an instrument marker.
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A demonstration of the specificity of binding of peptides to CLEC10A in mo-DCs is shown in
Figure 2C. Biotinylated peptide ligands of CLEC10A, sv6D, and svL4 [121], were incubated with a
lysate of cells and then retrieved with streptavidin-coated magnetic beads, which pulled out a single
protein. The calculated molecular mass of unglycosylated CLEC10A is 35,446 Da. With the two
identified N-linked glycans, the mass is expected to be about 41 kDa. These cells are known to express
DC-SIGN [126,127] and the mannose receptor [128], but CLEC10A was the only protein detected by
this technique. In particular, a protein with the mass of DC-SIGN (45,775 Da plus the single N-linked
glycan, or about 48 kDa) was not detected. CLEC10A was not detected in lysates of THP-1 monocytes
(data not shown), but this protein was detected at very low levels on the surface of unstimulated THP-1
cells by flow cytometry [91]. Analyses of expression by single-cell RNA sequencing indicated a low
level in primary monocytes [20,94].

6. Roles for CLEC10A in Health and Disease

Vlismas et al. [16] observed that human embryos at the totipotent eight-cell stage expressed CLEC10A
at least 70-fold higher than the levels in embryonic stem and pluripotent cells. Klimmeck et al. [17] found
that differentiation of hematopoetic multipotent progenitor cells to myeloid committed progenitors in
the mouse was accompanied by a several-fold increase in expression of MGL2 (CLEC10A). The function
of the receptor at these early stages of development is not known. Interestingly, a large population of
‘undifferentiated’ cells occurs in the peritoneum of Balb/c mice, which essentially disappeared when
the animals were injected with svL4, a peptide ligand mimetic of MGL2. Concomitant with loss of
the undifferentiated cells were increases in populations of mature immune cells [121]. In contrast,
the undifferentiated population was minimal in C57BL/6 mice but increased dramatically within 24 h
after an injection of svL4. After a second injection of svL4, the loss of this population was accompanied
by increases in mature immune cells. The undifferentiated population was Lineage negative and
did not stain for markers of mature cells. It was concluded that a common myeloid progenitor
population resides in the peritoneum of Balb/c mice that differentiates to mature immune cells upon
subcutaneous injection of a ligand for CLEC10A, and that this population can be induced in C57BL/6
mice [121]. Therefore, it appears that CLEC10A mediates proliferation of progenitor cells at least at
two steps in the developmental pathway of mature immune cells in the peritoneal cavity of mice.
The consequence of treatment with the peptide is expansion of the innate immune system, which may
thus serve a foundational immunological role. The question is the specific action of CLEC10A/MGL2
in these processes.

An initial consequence of introduction of a ligand of CLEC10A is stimulation of endocytosis,
with a concomitant influx of Ca2+. In studies with fibroblasts, endocytosis of fluorescent dyes
(non-specific ligands) contributed a significant amount of Ca2+ to the cellular interior at a rate as much
as 2 µM min−1 [47]. Acidification of the endosome, driven by vacuolar H+-ATPase (V-ATPae) [49,50]
is a prerequisite to the reduction in the endosomal Ca2+ concentration, which suggests an exchange
mechanism is engaged to transport Ca2+ into the cytosol [51–53]. Umemoto et al. [129] discovered that
an influx of Ca2+ stimulated mitochondrial ATP production, which led to cell division of hematopoietic
stem cells in C57BL/6 mice. These cells were described as ‘stem cells’ (Lin- Sca-1−), which may be
analogous to the myeloid committed progenitor cells described by Klimmeck et al. [17].

Several studies found a correlation between expression of CLEC10A and positive or negative
outcomes in disease. Dusoswa et al. [109] found that glioblastoma tumor cells express relatively
high levels of the Tn antigen. Moreover, CLEC10A is expressed at higher levels by tumor-associated
macrophages and microglial cells in the brain. When a murine glioma cell line was engineered to
further increase the expression of Tn, growth of tumors from the implanted cell line was enhanced.
The increased number of infiltrating macrophages that expressed MGL (CLEC10A) also expressed
PD-L1, both of which are immunosuppressive factors and were considered the cause of enhanced
tumor growth. Similarly, Kurze et al. [130] found increased expression of Tn antigen in breast cancer
tissues in mice treated with 4-hydroxy-tamoxifen, which increased phagocytic activity of macrophages
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that expressed CLEC10A within tumor tissue. However, in this case, the increase in Tn was associated
with improved survival attributed to removal of damaged and dead cells.

Interestingly, house mite-induced dermatitis in mice is exacerbated in MGL1 (CD301a)-deficient
strains of mice [13]. Repair of a point mutation in the gene for MGL1 by CRISPR attenuated severity
of the dermatitis. Reporter cells that expressed MGL1 responded to a glycoprotein extracted from
the mites that contained Tn and T structures, which ameliorated secretion of inflammatory cytokines.
Whereas dermatitis caused a dramatic thickening of the epidermis, treatment with this glycoprotein
reduced dermatitis induced by lipopolysaccharide in wild-type mice and restored the epidermis to
a more normal thickness. Kanemaru et al. [13] proposed that ASGR1 is the human ortholog that
defends against dermatitis. In a similar condition, MGL1 was upregulated in the lungs of a murine
model of pneumonic sepsis caused by infection with the gram-negative bacterium Klebsiella pneumoniae.
Deficiency of MGL1 resulted in significantly greater mortality, which indicated that MGL1 is required
for resolution of pulmonary inflammation. Thus, MGL1 appeared to play a protective function in
this bacterial infection [131], although the mechanism by which the receptor performs this function is
not known.

7. Activation of T Cells

Tolerance defines a state of T cells. Whether T cells become tolerant is determined by the signal(s)
given by DCs. Because CLEC10A is expressed by DCs and is often described as a “tolerogenic”
receptor [18,109,119,132,133], it is useful to briefly review the outlines of T cell activation.

After phagocytosis by a pathogen-recognition receptor, peptide products generated by digestion
in the endolysosomal system within DCs are loaded onto major histocompatibility complex (MHC)
class II complexes and transported on vesicles to the cell surface. A functional presentation of these
digestion products to the T cell receptor (TCR) on naïve CD4+ T cells requires three signals in correct
sequence [134]. Signal 1 is recognition by the TCR of the antigen (’danger signal’) [135] presented by the
MHC class II complex. Consequently, the TCR on T cells that recognize the antigen is phosphorylated
on its cytoplasmic ITAM (immunoreceptor tyrosine-based activation motif) sequence, which leads to an
increase in intracellular Ca2+. Signal 2 is expression of co-stimulatory factors CD40/CD80/CD86 by DCs
as they migrate to draining lymph nodes where they interact with CD28 on the T cell. Furthermore,
signal 3 is an inflammatory stimulus via secretion by DCs of cytokines such as IL-12, the principal
cytokine for a TH1 response, type I interferon (IFN-α/β), or IL-27 [136] that amplify T cell differentiation
and expansion [137–139]. Secretion of the type I interferons is an expression of a danger signal emitted
by stressed cells or cells with damaged DNA that provide the essential context for an immune response,
without which T cell receive a tolerogenic signal from DCs [140,141].

Upon binding of an antigen (signal 1), the ITAM sequence in the cytoplasmic domain of the CD3
subunit of the TCR is phosphorylated by the Src protein-Tyr kinases Lck and Fyn, which leads to
subsequent phosphorylation of ZAP70 [142]. ZAP70 activates phospholipase C-γ1 (PLC-γ1}, which
hydrolyzes phosphatidylinositol 3-P (PIP3) to diacylglycerol (DAG) and inositol 1,4,5-triphosphate
(IP3), both of which are required to activate T cells. PIP3 is generated by PIP3 kinase, which is
activated by CD28 on T cells by interaction with its ligands CD80/CD86 on DCs (signal 2). IP3 binds
to its receptor on the endoplasmic reticulum and causes release of Ca2+, which binds to calmodulin
and activates the Ca2+-dependent Ser/Thr phosphatase, calcineurin, which in turn dephosphorylates
NFAT [142–144]. Translocation of dephosphorylated NFAT into the nucleus allows binding of the
transcription activation factor to specific promoter regions and induction of expression of activation
genes. DAG activates protein-Tyr kinase C-θ (PKCθ), which phosphorylates MAP kinases, including
JNK2, which phosphorylates the Jun/Fos subunits of AP-1. AP-1 binds to and stabilizes the association
of NFAT within regulatory elements of activating genes. PLC-γ1 and the Ca2+ arm lead to activation
of NFAT, whereas PCKθ activity is required for AP-1, which in combination with NFAT induces
expression of activation genes [144]. AP-1 is the key link between chromatin opening and activation of
naïve T cells [145]. Reduced levels of AP-1 lead to loss of expression of activation genes and sustained
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unresponsiveness of the cells to subsequent stimulation by promoting expression of inhibitory genes
by NFAT alone [144–147]. Whereas antigen presentation to the TCR activates the Ca2+ arm of T cell
activation, treatment with anti-PD-1 compensates for a weak or absent signal 2.

Tolerance is achieved by several mechanisms. Lack of co-stimulatory signals such as CD86 leads to
the absence of active AP-1, which leads to anergy and deletion, or bona fide tolerance, as described by
Steinman [148]. Heissmeyer et al. [142] showed that a sustained elevated Ca2+ signaling induces a state
of unresponsiveness in T cells by calcineurin-mediated degradation of PLC-γ1 and PCKθ. Without
AP-1, NFAT locks in an inhibitory transcriptional pattern of genes [142,144–147], which leads to anergy.
A lengthier process, described as ‘exhaustion,’ is associated with loss of effector T cell function and
altered transcriptional patterns [149]. Whereas anergy is achieved within a few days, development of
exhaustion requires weeks. The exhausted state can be overcome by checkpoint blockade [150].

An important program within the immune system’s repertoire is an actively regulated, antigen-
dependent state of immunosuppression or an anti-inflammatory response that evolved to keep the
immune system from over-reacting [141,151–153]. Upon ligation of CLEC10A on DCs, a signal
transduction pathway is activated that leads to phosphorylation of CREB and expression of the IL-10
gene [89]. IL-10 binds to the receptor IL-10R on T cells, which is associated with Janus kinase 1 (JAK1)
and tyrosine kinase 2 (TYK2). Phosphorylation of these kinases leads to phosphorylation of tyrosine
residues in the cytosolic domain of IL-10Rα, to which the transcriptional factor STAT3 is recruited.
Activation of STAT3 by phosphorylation allows its translocation to the nucleus and initiation of
expression of a set of genes that provide an anti-inflammatory response [154]. Interestingly, treatment
of mo-DCs with a multivalent GalNAc-containing dendrimer significantly reduced expression of
several genes encoding enzymes in energy metabolism and the rate of glycolysis [120]. This effect may
also moderate the strength of the signals provided to T cells by DCs.

8. The Ca2+ Connection

Ca2+ is a critical regulatory messenger for many cellular activities [154,155]. Constitutive recycling
of endocytic receptors such as ASGR1 [41], the heightened rate with a bound ligand, and transport
of Ca2+ from the endosome to the cytosol [47–51], leads to an elevated cytosolic concentration [47].
Moreover, IgG-mediated phagocytosis through the receptor FcγRIIIb is accompanied by an increase
in intracellular Ca2+ [156,157]. The maintenance of low intracellular concentrations of Ca2+ is
determined by transport channels on the plasma membrane, the endoplasmic reticulum, mitochondria,
and lysosomes [93,158–160]. Given that cellular responses may differ as a function of the Ca2+

concentration, we searched for clues that suggest how CLEC10A and other C-type receptors either
induce tolerogenic or activation signals. The evidence suggests that high level engagement of the
receptor (high occupancy) induces a high rate of Ca2+ influx and stimulation of a signal transduction
pathway that leads to tolerance, whereas minimal occupancy (low concentrations of ligand) leads
to activation. Full engagement of CLEC10A likely occurs when an antibody against the receptor
is introduced, which leads to secretion of IL-10 [18,25,89,132,161]. A multivalent glycopeptide that
contained 12 Tn (GalNAc) termini, added at a concentration of 5 µM, also induced secretion of
IL-10 and TNF-α [98]. Other ligands of MGL (CLEC10A) often used to study DC function are the
glycoproteins MUC1 and MUC6 or fragments of these proteins that have been modified to contain
additional Tn antigens that bind the CRD. When added at a concentration of about 1 µM, Napoletano
et al. [25] concluded that MGL (CLEC10A) engagement with the peptide containing 9 Tn adducts
promoted DC activation. The responses were strongly dependent upon the type of ligand provided,
with the Tn-MUC glycopeptide having advantages over the anti-MGL antibody for DC activation [26].
These studies show that a range of pathways, from activation to tolerance of DCs, can be induced
with the appropriate conditions. Primary among these conditions is the ligand and the frequency and
concentration of administration, i.e., the extent of engagement of the receptor [25,26] and the resulting
Ca2+ response.
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IL-10 is the main tolerogenic cytokine that keeps the immune system under control [153,154,161,162].
Increased secretion of IL-10 but decreased secretion of IFN-γ and IL-12 is indicative of a switch
to an immunosuppressive (tolerogenic) profile. Within the reciprocal relationship between the
anti-inflammatory IL-10 and pro-inflammatory IL-12 [163], extensive evidence has demonstrated
that IL-10 is produced in response to an increase in intracellular Ca2+ [164–168]. In contrast, low
concentrations of intracellular Ca2+ result in production of IL-12 [169]. Ligand-induced endocytosis
of CLECs transfers Ca2+ bound to the receptor and in the extracellular fluid into the cell, where
mechanisms described earlier transport Ca2+ from the endosome into the cytosol. Phosphorylation of
tyrosine in the motif (YENF) in the cytoplasmic domain of CLEC10A [88], which is described as an
endocytic motif as well as a hemITAM [170], initiates activation of a Src/Syk signal transduction pathway
that includes PLCγ2, ERK1/2, p90RSK, and CREB and leads to expression of IL-10 [89]. A similar
response was found in macrophages in which a Dectin-1/calmodulin-mediated activation of protein
kinase II and Pyk2 led to phosphorylation of CREB and production of IL-10 [171]. Phosphorylation of
the transcriptional factor, CREB, by calmodulin-dependent protein kinases mediates the response to
Ca2+ and production of IL-10 [172,173].

This question can be further addressed with small ligands with which relative occupancy of the
receptor can be manipulated. Eggink et al. [121] designed small peptide mimetics of GalNAc that bind
to CLEC10A with high avidity (see Figure 2). Injection of the mimetic svL4 into glioma tumor-bearing
mice at 1 nmole/g had little effect on reduction of tumor growth [174]. However, tumor size was an
order of magnitude less in animals given 0.1 nmole/g doses for two weeks as compared with the
untreated control (unpublished results). Tetravalent, short peptide mimetics of GalNAc, induced an
initial (4 h after injection) TH1 type cytokine response in female Balb/c mice bearing an implanted breast
tumor, in which the levels of IL-12 and IFN-γ were increased to a much greater extent than IL-10 [121].
The peptide dramatically extended survival of mice with an ovarian cancer cell line implanted in
the peritoneal cavity, and doses of 0.1 nmole/g were more effective than 1 nmole/g [121]. In vitro
experiments with human peripheral blood myeloid cells (PBMCs) showed that incubation with 10 nM
sv6D caused a rapid (within 10 min) and extensive (up to 80%) dephosphorylation of a large number
of signal transduction intermediates, followed by a rapid re-phosphorylation (unpublished results).
This effect has the appearance of ‘resetting’ the signal transduction kinase intermediates to deliver
an activation response. In contrast, 100 nM peptide did not cause a decrease in phosphorylation and
only a slight rise in the phosphorylation state of several intermediates after 15 min. Activation by
mo-DCs of secretion of IFN-γ by T cells was optimal at a concentration of 10 nM [121]. As shown in
Figure 3, effects of peptides svL4 and sv6D on several processes in vivo, including proliferation of
peritoneal cells, inhibition of ascites accumulation in a model of ovarian cancer, and reduction in the
growth of glioma tumors, followed a bell-shaped curve. With the mouse, in vivo doses between 0.1
and 1.0 nmole/g seemed to correspond to the in vitro range of 10 to 100 nM.

Mayes et al. [175] presented a critical analysis of the potential dual activities of agonist
immunotherapeutic antibodies. In contrast to antagonist drugs whose effects rise to a maximum
at complete receptor occupancy with a sigmoidal dose-response curve, agonist drugs often induce
maximal effects near 50% receptor engagement, with a reduction in effect at higher concentrations.
Activities of the receptors are also strongly affected by the extent of clustering induced by the ligand.
Westerfield and Barrera [176] proposed a mechanism for receptor activation based on ligand-induced
clustering that determines efficiency and sensitivity. At high receptor occupancy, the receptor may
aggregate to a greater extent, which would exclude CD45, the ubiquitous protein tyrosine phosphatase
on immune cells, and allow the phosphorylated receptors to prolong the initiation signal. Clustering
(dimerization) of the platelet receptor CLEC2 was required for phosphorylation by Syk/Src kinases of
the hemITAM sequence (YITL) within the cytoplasmic domain and activation of downstream signaling,
which involves PLCγ2 [177], a pathway similar to that for CLEC10A [89]. Ligand binding induced an
increase in cytosolic Ca2+ that reached a maximal level about 90 sec after adding ligand, which was
dependent upon the fluidity/stability of the membrane [177]. CLEC10A occurs on cell membranes as a
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trimer [178] and may form larger clusters with multivalent ligands. A bell-shaped pharmacodynamic
curve for effects in the mouse as shown in Figure 3 has also been found with other Ca2+-mediated
processes [179,180] and may be a common feature of the effects of C-type lectin receptors.
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9. Conclusions

The cell biology of lectin-like receptors was established by the extensive early research with
ASGR1, which set the stage for the work on C-type lectin receptors that followed. The role of C-type
lectin receptors in the responses of immune cells to pathogens has been a critical motivator for research
on these proteins. Although CLEC10A has been a research interest for many years, and a large amount
of data has been obtained, the apparent pleiotropic effects induced by different environments and
various ligands leave the action of this receptor as a conundrum. To achieve a deeper understanding
of the activities of these receptors, it will be important to determine the extent to which activation of
specific signal transduction pathways by C-type lectin receptors are dependent upon the cytosolic
concentration of Ca2+ and the kinetics of transients of the cation [93]. There is a large body of evidence
on the regulation of cellular events by Ca2+ on which these approaches can be based.
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