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Abstract

Background: The homologous recombination (HR) pathway is vital for maintaining genomic
integrity through the restoration of double-stranded breaks and interstrand crosslinks. The RADS5|
paralogs (RAD5IB, RAD5IC, RAD5ID, XRCC2, XRCC3) are essential for this process in
vertebrates, and the RAD5ID paralog is unique in that it participates in both HR repair and
telomere maintenance. RAD5ID is also known to directly interact with the RADS51C and XRCC2
proteins. Rad5 Id splice variants have been reported in mouse and human tissues, supportive of a
role for alternative splicing in HR regulation. The present study evaluated the interaction of the
Rad5 1d splice isoform products with RAD51C and XRCC2 and their expression patterns.

Results: Yeast-2-hybrid analysis was used to determine that the Mus musculus Rad51d splice
variant product RAD5IDA7b (deleted for residues 219 through 223) was capable of interacting
with both RAD51C and XRCC2 and that RAD5ID+int3 interacted with XRCC2. In addition, the
linker region (residues 54 through 77) of RAD5ID was identified as a region that potentially
mediates binding with XRCC2. Cellular localization, detected by EGFP fusion proteins,
demonstrated that each of the splice variant products tested was distributed throughout the cell
similar to the full-length protein. However, none of the splice variants were capable of restoring
resistance of Rad5 | d-deficient cell lines to mitomycin C. RT-PCR expression analysis revealed that
Rad51d 3 (deleted for exon 3) and Rad51d 5 (deleted for exon 5)transcripts display tissue specific
expression patterns with Rad5/d 3 being detected in each tissue except ovary and Rad5/d 5 not
detected in mammary gland and testis. These expression studies also led to the identification of
two additional Rad5 | d ubiquitously expressed transcripts, one deleted for both exon 9 and 10 and
one deleted for only exon 0.

Conclusion: These results suggest Rad5/d alternative splice variants potentially modulate
mechanisms of HR by sequestering either RAD5IC or XRCC2.
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Background

Homologous recombination (HR) is responsible for
repairing damage affecting both DNA strands and main-
taining chromosome stability [1,2]. In mammals, HR
requires the RAD51 family of proteins including RAD51
and the RAD51 paralogs (RAD51B, RAD51C, RAD51D,
XRCC2, XRCC3) [3]. Genetic studies have demonstrated
that RAD51 family members have non-redundant func-
tions, as individual disruption of each gene confers
increased sensitivity to DNA damaging agents and a
genome instability phenotype [4-8]. In addition, the par-
alog proteins interact to form at least two stable com-
plexes: a dimer consisting of RAD51C-XRCC3 and a larger
"BCDX2" complex consisting of RAD51B, RAD51C,
RAD51D, and XRCC2 [9,10]. RAD51D is unique among
the RAD51 family in that it is the only paralog currently
known to support telomere maintenance in addition to
the DNA repair functions [11].

Alternative pre-mRNA splicing is a mechanism responsi-
ble for proteome diversity and gene regulation in higher
eukaryotes [12-14]. Splice variants of the Rad51d gene
have been reported previously in mouse and human tis-
sues, as well as in cancer derived cell lines [15-17]. Simi-
larly, Rad51d alternative splice variants have also been
identified in Arabidopsis [18]. For Mus musculus, seven
alternative transcripts were identified that are predicted to
encode six distinct putative protein isoforms. Alterna-
tively spliced translation products commonly display dif-
ferent or antagonistic biological functions compared to
their full-length counterparts [19]. Therefore, changes in
the pattern of alternative splicing of regulatory genes
could have an impact on physiology and pathogenesis,

Table I: Alternative transcripts of the RAD5ID gene
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particularly tumor development and progression [20].
Splice variants of DNA repair genes potentially have the
capability to regulate HR. It has been demonstrated that
two splice variants of RAD52 increase the frequency of
direct-repeat recombination from the same chromatid
when expressed in either mammalian cells or yeast
[21,22]. Moreover, mutations in the BRCA1 and BRCA2
genes, known to predispose carriers to breast and ovarian
cancers, were found to disrupt exonic splicing enhancers
and result in aberrant RNA splicing [23]. Recently, a
RADS51 splice variant was uncovered that demonstrated
homologous pairing activity similar to that of the full
length RAD51 protein [24]. Here, we report the Mus mus-
culus Rad51d alternative transcripts encode predicted pro-
teins capable of making specific interactions with
RAD51C and XRCC2 and the identification of two novel,
ubiquitously expressed Mus musculus Rad51d alternative
transcripts.

Results

Alternative transcripts of Rad51d

Multiple Rad51d transcripts were first detected by North-
ern blot analysis [25], and seven splice variants were later
identified by RT-PCR in both mouse and human brain tis-
sues [15]. The Rad51d gene consists of 10 exons, and a
summary of the current evidence for each alternative tran-
script for the human and mouse Rad51d gene from the
ASD and EASED databases is presented in Table 1[17,26].
The Mus musculus Rad51d alternative transcripts are sum-
marized in Figure 1A and for clarity are referred to as
RAD51DA (exon excluded) or RAD51D+(intron
included). The highly conserved ATP binding Walker
Motifs A and B, present in all members of the RAD51 fam-

Variant Name Representative EST/mRNA

Expression

HsRADS5ID 3 ABO016223, DA630921, DA558919, DN997215, BX443779, Brain, kidney, chondrocytes, mammary gland (cancerous),
BI823883, AL597240, NM133627 T Cell (Jurkat), lung, testis

HsRADS5ID 3,5 AB016224, DA493777, NM_133630 Brain

HsRADSID 3,4,5 ABO016225, CD387861, DA422600, DA862519, DB132257, Brain, trophoblasts, cervix, placenta, thymus, prostate
DR005326, N57184, NM 133629

HsRADS5ID 5 AB018360 Brain

HsRAD5ID 4,5 ABOI18361 Brain

HsRADS5 ID+int3 4,5 ABO0I18362 Brain

HsRADS5 I D+int3 ABO018363, BI915277, DN999128, DC391646 Brain, bone marrow, spleen

MmRADS5ID 8 AB052828, BB864057 Brain, bone marrow

MmRADS5ID 7b AB052829 Brain

MmRAD5 D 7,8 AB052830 Brain

MmRADSID 3 AB052831, BB629106 Brain

MmRADS ID 3,7b AB052832 Brain

MmRADS5ID 5 AB052833 Brain

MmRADS5 | D+int3 AB052834 Brain
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Summary of alternatively spliced transcripts of Mus
musculus Rad51d. (A) The ten exons of Rad5/d are shown
as numbered boxes drawn relative to base pair length with
both the full-length transcript (upper panel) and each alterna-
tively spliced transcript shown (lower panel). Shaded areas
designate partial intron retention (+int3) or partial exon
exclusion (A7b). (B) Predicted translation products of the
RADS D isoforms are illustrated. Black and yellow boxes
indicate the location of Walker Motifs A and B respectively.
A core helix-hairpin-helix-GP rich domain (blue) and linker
region (red) are also indicated. Amino acids introduced by
splicing induced frameshift in the transcripts of RAD51DAS,
RADS5IDA3, and RAD51DA3,7b are colored green with the
corresponding novel sequence following. Asterisks represent
sites of premature termination codons.

ily, are contained within exons 4 and 7 of Rad51d respec-
tively (Figure 1B). RAD51D full length (FL) includes both
exons 7a and 7b in contrast to the RAD51DA7b alterna-
tive transcript in which the final 15 base pairs of exon 7
are excluded. Previously, this 3' portion of exon 7 as well
as the retained intron in RAD51D+int3 were labeled as
additional exons [15]. Internal deletions are also pre-
dicted in RAD51DA7,8 and RAD51DA5 (residues 193-
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246, and 116-159 respectively), while stretches of novel
amino acid sequence and premature stop codons are pre-
dicted for the RAD51DA8, RAD51DA3 and RAD51D+int3
isoforms as a result of splicing induced frameshift muta-
tions (residues 224-233, 49-53, and 88-109 respec-
tively). The splice variants RAD51DA3 and
RADS51DA3,7b are predicted to encode identical peptides.

RADS5 ID isoforms interact with members of the BCDX2
complex

To investigate whether the predicted RAD51D isoforms
interact with binding partners of the full-length protein,
each was examined for interaction with RAD51C and
XRCC2 by yeast two-hybrid analyses [27]. Yeast express-
ing the mouse RAD51D-RAD51C and RAD51D-XRCC2
binding partners display growth on selective medium
indicating strong protein interactions. Replica plating
results suggest that RAD51C interacts with RAD51DA7b
while XRCC2 interacts with RAD51DA8, RAD51DA7b
and RAD51D+int3 (Figure 2A). The activating domain
(AD) fusion of RADS51C suggested interaction with
RAD51DA3. Mouse RAD51C-RAD51C displayed positive
growth when tested in both orientations of the GAL4
fusion, which was not reported with the human RAD51C
protein [27,28].

Interaction between RAD51C, XRCC2 and the alterna-
tively spliced isoforms of RAD51D was further assessed by
measuring the activity of B-galactosidase. Colony lift
assays were performed as a qualitative indicator of
enzyme activity. As illustrated in Figure 2B, each of the
matings that displayed growth on quadruple dropout
medium were positive, with the exception of RAD51C-
RAD51C. B-galactosidase activity was weakest for the
interactions of RAD51DA8 and RAD51DA3, suggesting a
weaker or transient interaction with RAD51C and XRCC2.
To quantify the degree of binding between RAD51D iso-
forms and RAD51C/XRCC2, B-galactosidase was meas-
ured using o-nitrophenyl-p-D-galactopyranoside as a
substrate (Figure 2C). RAD51DA7b displays a level of
interaction with RAD51C nearly identical to that of full-
length RAD51D. In agreement with colony lift assays
however, binding between RAD51DA3 and RAD51C was
suggested in only one orientation. RAD51DA7b and
RAD51D+int3 associated with XRCC2 with an affinity
similar to the full-length protein. The RADS51DAS,
RAD51DA7,8, and RAD51DA3 isoforms display an ability
to interact with XRCC2 (36%, 29%, and 22% the level of
full-length RAD51D respectively), but variation in these
interactions is observed depending upon the orientation
of the GALA4 fusion.

Domain mapping of RAD5ID
The observation that RAD51D isoforms may selectively
interact with RAD51C and XRCC2 allowed further
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Interaction of the RADS5 I D alternative isoforms with RAD5 1 C and XRCC2. (A) Sixty-four yeast two-hybrid interac-
tions were tested by plating diploid strains on selective growth medium lacking adenine, leucine, histidine, and tryptophan. (B)
Colony lift assays were performed to qualitatively assess [3-galactosidase activity in mated yeast. (C) Interactions between iso-
forms of RAD5ID with RAD51C and XRCC2 were quantified by measuring -galactosidase activity using o-nitrophenyl-3-D-
galactopyranoside as a substrate. The binding capacity of the splice variants with RAD5|C and XRCC?2 are displayed. Experi-
ments were performed in triplicate with error bars representing standard error of the mean. Abbreviations: 5/C; RAD5I1C,
51D; RADSID-FL, X2; XRCC2, pGAD; pGADT7 vector, pGBK; pGBKT7 vector, AD; activating domain of GAL4, DBD; DNA

binding domain of GAL4.

domain mapping of RAD51 paralog complexes. Miller et
al. reported that the amino-terminal domain of RAD51D
(residues 4-77) interacts with XRCC2, and the carboxy-
terminal region (residues 77-328) is sufficient for interac-
tion with RAD51C [29]. Binding of RAD51DAS (residues
4-233) and RAD51D+int3 (residues 4-109) to XRCC2
support this observation (Figure 2). However, the lack of
association between RAD51DA8 and RAD51C suggests a
more narrow region of the carboxy-terminal domain than
previously reported, consisting of amino acids 234-329,
is required for the interaction between RAD51D and
RAD51C. Interestingly, the yeast two-hybrid analyses dis-
played in Figure 2 also suggest that residues 54-77 within
the amino-terminal region determine whether RAD51D
interacts with XRCC2 (shown in black, Figure 3C). To
confirm these observations, the original RAD51D dele-
tion constructs used in the study by Miller et al were tested
against the RAD51D isoforms. If amino acids 54-77 are
present, as with the RAD51D (4-77) construct, the pep-
tide interacts with XRCC2 (Figure 3). When these residues

are missing, as in the RAD51DA3 isoform, there is an
absence of association with XRCC2 and some interaction
with RAD51C. This span of 24 amino acids (54-77) is
nearly identical to the "linker region" (residues 60-78)
proposed from the structure modeling of human
RAD51D from the Pyrococcus furiosus RAD51 crystal struc-
ture [29].

To further illustrate the position of the proposed region
responsible for regulating these interactions, a protein
homology model was constructed (DiscoveryStudio 2.0,
Accelrys). RAD51D was matched to the RAD51 (RADA)
structure from Pyrococcus furiosus (1PZN) and was shown
to have 24% identity and 46% similarity. While the iden-
tity is somewhat low, the structural conservation of the
RADS51 family supports that meaningful models can be
obtained. After construction and refinement, the linker
region is similar to what was proposed initially, but
according to this model extends further into the alpha-
helices of the N-terminal domain (Figure 3E). The over-
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Domain mapping of Mus musculus RAD5ID. (A-B)
Yeast two-hybrid analysis of RAD51DA3 and RADS | D+int3
are directly compared with the original deletion constructs
of RAD5SID. (C) Diagram of the RAD51DA3 and
RAD5D+int3 alternative splice constructs compared with
the amino (4-77) and carboxy-terminal (77-329) regions of
RADSID. The black box represents the predicted linker
region of RAD5ID. (D) The region of the protein that allows
interaction with XRCC2 is illustrated in bold type, while
sequence required for its interaction with RAD51C is pre-
sented in italics (note a small area of overlap between resi-
dues 223-233). The underlined 24 amino acid region
(residues 54—77) appears to be critical for determining the
specificity of the interaction between RAD5 | D isoforms and
XRCC2. (E) Homology model of RAD51D from the Pyrococ-
cus furiosus RADS| crystal structure. The yellow highlighted
region (left) represents the linker region and the yellow area
(right) represents the 24 amino acid region proposed to
determine XRCC2 specificity. Abbreviations: 51D; RAD51D-
FL, 511G RADSIC, X2; XRCC2, 4-77; residues 4-77 of the
amino-terminal domain of RADS5ID, 77-329; residues 77—
329 of the carboxy-terminal domain of RAD5 D, pGAD;
pGADT?7 vector, pGBK; pGBKT7 vector.
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lapping region that potentially regulates RAD51D interac-
tion with XRCC2 and RAD51C is located at the junction
between the two domains previously demonstrated to
interact with XRCC2 and RAD51C respectively.

Localization of RAD5ID isoforms

RAD51D appears to be present throughout the cell
although localization specific to telomeric regions in both
meiotic and somatic cells has been demonstrated [11]. To
determine if the multiple isoforms of RAD51D display
similar localization, amino-terminal enhanced green flu-
orescent protein (EGFP) tagged constructs were generated
and transiently expressed in Rad51d-deficient mouse
embryonic fibroblasts (MEFs) (see Additional file 1, Panel
A). Fluorescent microscopy reveals EGFP-RAD51D-FL is
present in both the cytoplasm and nuclear compartments,
similar to EGFP vector control. The RAD51D alternatively
spliced isoforms also display a mixed cytoplasmic and
nuclear distribution within the cell. In contrast, full length
EGFP-RAD51C is predominantly nuclear in agreement
with the presence of a non-canonical nuclear localization
signal (NLS) in its carboxy-terminal region [30,31]. Full-
length EGFP-RAD51D was tested for the ability to repair
mitomycin C (MMC) induced DNA damage in Rad51d-
deficient MEFs. The percentage resistance was nearly iden-
tical to that observed from cells transfected with RAD51D-
FL (see Additional file, Panel B), suggesting the amino-ter-
minal EGFP fusion results in a biologically active protein.
Additionally, no change in the localization of EGFP-
RAD51D-FL was observed when expressed in wild-type
MEFs. This confirms that failure to observe nuclear locali-
zation is not due to accumulated mutations in Rad51d-
deficient MEFs (data not shown).

Complementation analysis of RAD5 I D isoforms
Expression of RAD51D-FL was previously demonstrated
to correct the DNA interstrand crosslink repair deficiency
of Rad51d-deficientMEFs [6,32]. To determine whether
RADS51D alternative splice products retain any ability to
restore cellular resistance to DNA interstrand crosslinking
damage caused by exposure to MMC, each was tested in a
complementation assay [32]. In the present study,
approximately 45% of the population expressing full-
length RAD51D was capable of resisting MMC challenge
(Figure 4A). However, none of the alternative RAD51D
isoforms restored resistance to DNA interstrand cross-
links when compared with vector control populations.

Expression and identification of novel Rad51d alternative
transcripts

Mouse Rad51d alternative transcripts were originally iden-
tified in brain tissue [16]. However, the isolation of corre-
sponding expressed sequence tags in a variety of tissues
and cell types suggest that RAD51D isoforms are widely
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The putative translation products from alternative
splicing of Mus musculus Rad5 I d fail to complement a
Rad51d deletion. (A) Alternative transcripts of Rad5/d
were expressed in Rad5 | d/-Trp53-- MEFs. The percentage
resistance indicates the fraction of transfectants that survived
treatment with 4 ng/mL mitomycin C (MMC). Cells trans-
fected with empty vector (vec) were included as controls.
Error bars represent the standard error. (B) Western blot of
HA-tagged proteins expressed in Rad5 | d--Trp53-- MEFs 24
hr post-transfection (upper panel). The expected molecular
mass of each isoform is shown above each. Inmunoblotting
for B-tubulin was performed as a loading control (lower
panel). Expression of RAD51DA3 could not be verified likely
due to the relatively small molecular weight of the putative
translation product (6.7 kDa).

expressed (Table 1). To further investigate, RNA isolated
from C57BL/6] mouse tissues were used for RT-PCR
expression analysis. A series of overlapping PCRs were
designed to detect all Rad51d alternative transcripts (Fig-
ure 5A). RAD51DA3 and RAD51DA5 were consistently
detected in most tissues examined and their identities ver-
ified by restriction enzyme and sequence analysis (not
shown). However, RAD51DA3 was not detected in ovar-
ian tissue. Additionally, RAD51DA5 was not detected in
mammary gland and testis, suggesting that these splice
isoforms are differentially expressed. Because these same
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Figure 5

Expression analysis of Rad5/d alternative transcripts.
(A) RT-PCR for Mus musculus Rad5 | d and selected splice var-
iants was conducted in eight tissues. Expression of
RADS5IDA3 employing primers Rad51d FI and RI (upper
panel); RAD5IDAS5 with Rad51d F2 and R2 (lower panel). (B)
RT-PCR products of human RAD5 /D in normal breast.
Arrows indicate transcripts corresponding to known human
splice isoforms [16]. RAD5IDA3 and RADS5IDADS transcript
positions are underlined. Size markers in base pairs are
shown on the left. Numbers in parenthesis represent tran-
script abundance as determined by Image] analysis of the
band intensities (bk; background). (C) The RADS5ID peptide
is aligned with the predicted amino acid sequence of
RAD51DA9,10 and RAD51DA10. RAD51DA9,10 contains
the first 8 exons of RAD5 1D followed by four out of frame
amino acids (underlined and italicized) encoded by intron 8.
RAD5IDAIO includes amino acids 1-302 of RAD51D fol-
lowed by five novel amino acids encoded by intronic
sequence 5980 bp downstream from the predicted Rad5/d
polyA site. Premature termination codons are indicated by
an asterisk, and exon boundaries are represented by a gap in
the alignment of the predicted amino acid sequences. (D)
RT-PCR for RAD51DA9,10 (upper panel) and RAD5IDAIO
(lower panel) from Mus musculus tissues with primers
Rad51d F3 and Rad51dA9,10 R1 or Rad51dA 10 RI respec-
tively. Abbreviations: 5/D; RAD5 ID-FL, A3; RAD5 I DA3, A5;
RADS5IDAS, A9,10; RAD51DA9,10, A10; RAD51DAIO.
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isoforms were identified in human adult and fetal brain
cDNA libraries [16], initially named HSTRAD-d1 and
HSTRAD-d4 respectively, expression analysis was per-
formed in normal human breast tissue using primers that
span from exon 2 to exon 6. Consistent with the results in
mouse tissue, 21% of the detectable products corre-
sponded to RAD51DA3, whereas RAD51DA5 was not
detectable above background levels (Figure 5B).

As part of our efforts toward verifying the presence of
exons 7 through 10 in Rad51d splice variants [15], 3'RACE
was performed on total RNA isolated from BALB/c mouse
liver tissue. Sequencing of cloned products revealed the
existence of two additional alternatively spliced tran-
scripts lacking sequence corresponding to one or both of
the final Rad51d exons (Figure 5C). Both RAD51DA9,10
and RAD51DA10 transcripts are derived from the use of
alternative splice sites contained within downstream
intronic sequence and predicted to result in C-terminal
truncated RAD51D isoforms. Notably for RAD51DA10,
this alternative splice donor site is located 5980 bp down-
stream, past the predicted Rad51d polyadenylation site. In
addition, both RAD51DA9,10 and RAD51DA10 pre-
dicted translation products contain a short stretch of
novel sequence resulting from the ensuing frameshift.
Using unique primers, both RAD51DA9,10 and
RAD51DA10 were demonstrated to be expressed in all tis-
sues examined (Figure 5D).

Discussion

The studies described here are the first to explore func-
tional properties of RAD51D isoforms predicted to result
from alternative splicing [15]. Each splice product was
first tested for its ability to interact with RAD51C and
XRCC2, proteins known to directly interact with RAD51D
and participate as part of the BCDX2 complex [9]. BCDX2
is a complex that binds to DNA nicks, which is one of the
key steps during homologous recombination repair of
DNA crosslinks and branched structures, which are simi-
lar to Holliday junctions [9,33]. Additionally, BCDX2 per-
forms strand-annealing reactions [33]. Previous domain
mapping of RAD51 paralog interactions indicated that the
amino-terminal portion of RADS51D interacts with
XRCC2 and the carboxy-terminal region interacts with
RAD51C [29].

The RAD51D+int3 isoform is predicted to contain resi-
dues 4-87 of the full-length protein and an additional 20
amino acids from the splice induced frameshift. Consist-
ent with the Miller model [29], this isoform interacted
strongly with XRCC2 and failed to interact with RAD51C
(Figure 2). However, the RAD51DA3 isoform containing
the N-terminal domain, but not the linker region, did not
interact with XRCC2 but did interact with RAD51C, albeit
dependent upon the orientation. These results suggested
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that residues 60-78 within the RAD51D predicted linker
region governs interactions between the XRCC2 and
RAD51C paralogs. Therefore, within the CDX2 complex
there may be three key interactions: 1) RAD51C with both
the N and C-terminal RAD51D domains; 2) interactions
of the RAD51D linker region with XRCC; and 3) interac-
tions between the N and C-terminal RAD51D domains
via a predicted salt bridge [34]. Electron microscopic anal-
ysis showed that RAD51D-XRCC2 alone formed a mul-
timeric ring structure in the absence of DNA, similar to
that of RAD52, but formed a filamentous structure unlike
that of RAD51/RecA upon addition of ssDNA [35]. Regu-
lating these three types of interactions would likely influ-
ence the formation and function of this complex during
HR repair.

The RAD51DA7b isoform was the only alternative splice
product to interact with both RAD51C and XRCC2. Pre-
sumably, internal deletions resulting from RAD51DA7,8
and RAD51DA?5 affect integrity of the C-terminal domain,
particularly the B-sheet [29]. RAD51DA7b is missing a
small portion of exon 7, resulting in an in-frame deletion
of "GQQRE" between residues 219-223. Because the
deletion in RAD51DA7b is in proximity to the adenine
nucleotide binding sequence of Walker Motif B in
RAD51D [25,36], it is possibly required for the hydrolysis
of ATP. The ATPase activity of RAD51D is required for its
role in the repair of DNA interstrand crosslinks [32,37].
Residues adjacent to Motif B have been found to be critical
to ATPase activity in Walker box containing proteins
including RAD51D. Notably, conserved glutamate resi-
dues in ATP-binding cassette proteins have been proposed
to serve as a catalytic base in ATP hydrolysis [38]. Thus,
the observation that RAD51DA7b did not complement
sensitivity of Rad51d-deficient cells from DNA interstrand
crosslinks caused by mitomycin C is consistent with a role
for the "GGQRE" sequence in ATP hydrolysis.

The exclusion of an NLS has been reported or implied
from studies of numerous alternative splice products. For
example, predicted splice variants of both RAD51C and
RAD5 1B are expected to lack their putative NLS sequences
[28,30,31,39]. Given the telomere binding of endogenous
RAD51D in human cells [11] and the observation that
each of the predicted isoforms of RAD51D includes the
"RKIK" putative NLS sequence at the amino terminus,
nuclear localization of EGFP-RAD51D isoforms was
expected. In contrast, RAD51D was expressed throughout
the cell. Another published study, using EGFP-RAD51D,
is consistent with this observation [31]. It is conceivable
that the presence of the EGFP fusion in the amino-termi-
nal region of RAD51D inhibits access to the "RKIK"
sequence whereas the carboxy-terminal NLS present in
RADS51C is unaffected. Alternatively, the over-expression
of EGFP-RAD51D may saturate the cellular machinery
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responsible for import. Recently, a RAD51 alternative
splice isoform was identified which also lacks exons 9 and
10 [24]. This hRAD51-Aex9 had subtle differences in tis-
sue expression, being primarily expressed in testis.
hRAD51-Aex9 was also able to perform strand invasion
activity similar to full-length and was localized to the
nucleus, likely through an RKR motif introduced by the
translational frameshift. In either case, the likelihood
remains that the "RKIK" sequence in RAD51D is not rec-
ognized as an NLS, and transport of RAD51D into the
nucleus occurs as part of a protein complex [31].

The previous protein modeling and interaction studies
suggested linker regions were critical for interaction of the
RADS51 paralogs. Our results are consistent with this inter-
pretation but also suggest this region may play a role in
regulating these interactions. A small region of RAD51C
was also identified to be critical for interaction with both
RAD51B and XRCC3 [40]. It remains to be determined
whether aberrant splicing of Rad51d and related HR genes
play a role during carcinogenesis. However, two of the
human alternative transcripts of RAD51D have been iden-
tified in tumor derived cells (Table 1) [17], including an
EST from a mammary tumor (DN997215) that corre-
sponds to the RAD51DA3 isoform. The association of
alternative gene products in cancer raises the possibility
that the alternative splicing mechanism is a potential tar-
get for gene therapy [19,41,42]. Molecular targeting of res-
idues 54-77 in RAD51D could disrupt interactions within
the BCDX2 recombinosome and sensitize cells to DNA
interstrand crosslinks.

The pattern of protein-protein interactions between iso-
forms of RAD51D and other RAD51 paralogs described
here suggests that RAD51DA7b, RADS51DA3, and
RAD51D+int3 have potential to regulate homologous
recombination repair by sequestering members of BCDX2
complex. In addition, three of the alternatively spliced
transcripts, RAD51DA3, RAD51DAS8, and RAD51D+int3,
harbor premature termination codons and are thus sub-
ject to degradation by nonsense-mediated mRNA decay
(NMD) [43]. More than one third of all mRNAs derived
from alternative splicing are estimated to contain similar
nonsense codons [44]. For that reason, it has been pro-
posed that the pre-mRNA splicing and NMD pathways are
functionally coupled to provide an additional level of
post-transcriptional regulation [45,46]. Therefore, cells
could potentially alter gene expression by favoring the
splicing of pre-mRNA into an alternative transcript that is
targeted to NMD. It is also conceivable that HR may be
directed on a tissue selective manner and that upregula-
tion or downregulaton of specific isoforms provides a
means of regulation. This hypothesis is supported by the
observation that the Rad51d alternative transcripts display
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tissue specific expression patterns (Figure 5). It is also
intriguing that RAD51D+int3 corresponds to one of the
alternative splice isoforms predicted in humans [16]. Dur-
ing the course of these studies, two new RAD51D iso-
forms were isolated, RAD51DA10 and RAD51DA9,10.
Further studies are now necessary to explore the two
newly discovered variants and determine whether splice
isoforms may regulate HR. Finally, it remains to be deter-
mined whether these Rad51d alternatively spliced prod-
ucts interact with additional known RAD51D interacting
proteins BLM and SWS1 [47,48] or contribute to mainte-
nance of telomere integrity.

Conclusion

Here we report the Mus musculus Rad51d alternative tran-
scripts encode predicted proteins capable of making spe-
cific interactions with RAD51C and XRCC2. Expression
studies revealed the RAD51DA3 and RAD51DAS5 tran-
scripts display tissue specific expression, being detected in
each tissue except for mouse ovary or mammary gland
and testis respectively. Additionally, we report the identi-
fication of two novel, ubiquitously expressed Mus muscu-
lus Rad51d alternative transcripts. The predicted RAD51D
isoforms contain truncated C-terminal ends due to the
retention of intron 8 (RAD51DA9,10) and the deletion of
exon 10 (RAD51DA10). The unusual number of alterna-
tive splice variants expressed from the Rad51d gene com-
pared with the other members of the RAD51 family
suggests the RAD51D isoforms potentially regulate spe-
cific HR functions.

Methods

Plasmid construction

Complementary DNA clones encoding each predicted
translation product from alternative splicing of Mus mus-
culus Rad51d were generated [15]. The GenBank accession
numbers are AB052828.1 (RAD51DAS8), AB052829.1
(RAD51DA7b), AB052830.1 (RAD51DA7,8),
AB052831.1/AB052832.1 (RAD51DA3), AB052833.1
(RAD51DA5), and AB052834.1 (RAD51D+int3).

RAD51DA8 was generated by ligating a 734 bp sequence
resulting from a Nhel/Stul digest of full-length Rad51d to
a dsDNA made by annealing Rad51dA8Stul and
Rad51dA8BamHI oligos. RAD51DA7b was produced by
PCR based site directed mutagenesis using primers
Rad51dA7b Fland Rad51dA7b R1. The RAD51DA7,8
expression construct was generated by multiple subclon-
ing steps. First, full-length Rad51d was digested with Xhol/
BamHI, and the resulting 248 bp fragment cloned into
pDsRed2-N1 (Clontech, Palo Alto, CA) to generate the
RAD51DA7,8 3' end. Second, a 622 bp fragment resulting
from Nhel/Avall digest of full-length Rad51d was isolated
and subcloned into the Nhel/Avall sites of the

Page 8 of 12

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052828.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052829.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052830.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052831.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052832.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052833.1
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB052834.1

BMC Molecular Biology 2009, 10:27

RAD51DA7,8 3' end construct. Finally, duplexed oligos of
Rad51dA7,8Avall and Rad51dA7,8Xhol were subcloned
into the pDsRed2-N1 construct generated above prior to
the final cloning step. RAD51DA3 was constructed by
ligating the 200 bp fragment resulting from a Nhel/BstXI
digest of full-length Rad51d to duplexed oligos
Rad51dA3BstXI. The 5' end of RAD51DA5 was amplified
using Rad51dKpnlIF and Rad51dA5NheBamR and cloned
into pUC19. The 3' end was amplified using
Rad51dA5NheF and Rad51dBamR primers prior to sub-
cloning into the RAD51DA5 5' pUC19 construct.
RAD51D+int3 was generated by a restriction digest of full-
length Rad51d using Nhel and BsrFI enzymes. The result-
ing 323 bp fragment was ligated with duplexed oligos
Rad51d+int3F and Rad51d+int3R to construct the final
insert. The make-up of each splice product cDNA was con-
firmed by double-strand sequencing and cloned into the
Nhel/BamHI sites of the pcDNA3.1/Hygro (+) vector
(Invitrogen, Carlsbad, CA) with the exception of
RAD51DA5, which was cloned into the Kpnl/BamHI sites.
Each construct contains an influenza HA epitope-tagging
sequence at the 5' end.

Full-length Mus musculus Rad51c was obtained by reverse
transcribing total RNA from mouse kidney as described
above. The DNA was PCR amplified using Rad51cKpnF
and Rad51cBamR primers. Full-length Mus musculus Xrcc2
was amplified from IMAGE clone 5357630 (American
Type Culture Collection; Manassas, VA) using XRCC2F
and XRCC2R primers. Rad51¢ and Xrcc2 amplification
products were digested with Kpnl/BamHI and subcloned
into the pcDNA3.1/Hyro(+) vector encoding an HA
epitope tagging sequence at the 5' end. The RAD51D (4-
77) and (77-329) deletion constructs were a generous gift
of Dr. Joanna Albala (University of California, Davis, Sac-
ramento, CA).

Yeast two-hybrid analysis

MmRad51d, MmRad51c, and MmXrcc2 inserts containing
the N-terminal hemaglutinin tag were cloned into the
EcoRI/BamHI restriction sites of pGADT7 and pGBKI7
yeast two-hybrid vectors encoding the activating and DNA
binding domains of GAL4 respectively (Clontech). Hap-
loid transformants of AH109 and Y187 were generated
using the EZ Transformation Kit II (Zymo, Orange, CA).
Matings were performed on YPDA plates 16-24 hours
prior to replica plating on dropout media. The presence of
diploids was confirmed by growth on -Leu/-Trp medium
following 3 days of incubation at 30°C. Mated strains
containing interacting proteins were subsequently ana-
lyzed for growth on -Ade/-Leu/-His/-Trp medium. Images
were captured following 10 days of growth at 30°C. Col-
ony lift assays were performed according to the yeast pro-
tocols handbook (PT3024-1, Clontech). To determine the
strength of protein-protein interactions, liquid B-galactos-
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idase assays were performed using ortho-nitrophenyl-p-
galactopyranoside as a substrate (ONPG; Sigma, St. Louis,
MO) essentially as described [15]. All B-galactosidase
assays were performed in triplicate with constructs in both
the GAL4 activating and DNA binding domains.

Localization studies

To generate green fluorescent protein fusions of the alter-
native splice variants, each was cloned into the Kpnl/
BamHI sites of a pEGFP-C1 based vector (BD Bio-
sciences). Constructs were transiently expressed in
Rad51d-deficient MEFs grown on glass coverslips as
described [6]. Cells were harvested 24 hours post-transfec-
tion and coverslips were washed in 1x PBS prior to fixa-
tion with 4% paraformaldehyde for 10 minutes at room
temperature. Fixed cells were subsequently washed and
permeablized with 0.3% Triton-X 100 for 5 minutes.
Nuclei were counterstained with 0.2 pug/mL of 4',6-dia-
midino-2-phenylindole dihydrochloride hydrate (Sigma)
in 1x PBS for 10 minutes and coded before mounting on
glass slides with fluorescent mounting medium (DakoCy-
tomation, Carpinteria, CA). Slides were viewed using a
Nikon Eclipse fluorescent microscope, and images cap-
tured using a 60x dry lens objective.

Complementation analysis

Rad51d-/-Trp53-/- MEFs were grown in monolayer culture
as described [6]. One microgram of each plasmid con-
struct was transfected into Rad51d-/- Trp53-/- MEFs using
Lipofectamine with Plus reagent in six-well format accord-
ing to the manufacturer's instructions (Invitrogen).
Twenty-four hours post-transfection cells were
trypsinized, mixed, and divided equally (~7.5 x 105 cells
per dish) onto two 150 mm dishes. Twenty-four hours
after plating, cells were selected in growth medium con-
taining 200 pg/mL Hygromycin B with or without the
addition of mitomycin C (4 ng/mL). Colonies were har-
vested approximately twelve days after selection and fixed
with 100% ice-cold methanol prior to staining with
Giemsa. Colonies containing > 50 cells were scored posi-
tive. The percentage of mitomycin C resistant colonies was
determined by dividing the number surviving selection
with mitomycin C and Hygromycin B by the number that
grew in the presence of Hygromycin B alone on the dupli-
cate plate. Statistical significance of the experimental data
was determined using SPSS® version 11.0 for Mac OS X.
The mean numbers of percentage mitomycin C resistance
for each construct were compared by ANOVA.

Protein expression and western blotting

Protein expression and Western blotting was conducted as
described previously [32] with the exception that each
sample was resolved on a 15% SDS-PAGE. For detection
of the smaller RAD51DA3 and RAD51D+int3 constructs,
cells harvested from two separate wells per sample were
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pooled and 200 pg of each sample was resolved on 10-
20% Tricine gel followed by transfer onto a 0.1 micron
nitrocellulose membrane (Protran BA-79, Whattman).

Expression analysis of Rad5 Id alternative splice variants
Total RNA was purified from C57BL/6] mouse tissues
(Aurum Total RNA Isolation kit; Bio-Rad) and reverse
transcribed using both oligo(dT) and random hexamers
(iScript cDNA Synthesis kit; Bio-Rad). Primers specific for
Rad51d (Rad51d F1, Rad51d F2, Rad51d R1, and Rad51d
R2), Rad51d 9,10 (Rad51d F3 and Rad51dA9,10 R1), or
Rad51d 10 (Rad51d F7 and Rad51dA10 R1l) were
employed. Amplification was performed under the fol-
lowing conditions: 94 °C for 3 min, followed by 35 cycles
at 94°C for 30 s, 60°C for 30 s, and 72°C for 1 min. All
sequences of primers used in this study are listed in Table
2. For expression analysis in human cells, total RNA from
normal breast tissue (Stratagene, #735044) was reverse
transcribed as above and PCR amplified for 35 cycles
using the HSTRF1 and HSTRR1 primers, corresponding to
exon 2 and exon 6 respectively, as initially described [16].
The products were separated on a 5% polyacrylamide gel.
Image J software http://rsbweb.nih.gov/ij/ was used for
quantitative analysis of band intensity levels by the gel
analysis function.

Table 2: Primers used for cloning and expression studies
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Rapid amplification of Rad51d 3' cDNA ends

Total RNA from pooled adult mouse BALB/c livers (Clon-
tech) was used for 3'RACE according to manufacturer
instructions (Gene Racer kit; Invitrogen). Amplification
was performed using the GeneRacer 3' Primer and Rad51d
F1. Nested PCR was carried out with the Gene Racer
Nested Primer and Rad51d F2. Amplification products
were cloned into pCR4-TOPO (Invitrogen), and
sequences of newly identified isoforms deposited into
GenBank [GenBank: EU627687 (RAD51DA9,10),
EU627688 (RAD51DA10)].
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Primer Name Sequence

Rad51d FI 5'-GCTGACTTGGAGGAAGTAGCCCAGAAGTGT-3'
Rad51d F2 5'-CTACTTGATGCTGGCCTCTATACTGG-3'
Rad51d F3 5'-GCAGGAAGCAACTTCTTCAGGCG-3'

Rad51d RI 5'-AGCCTGTAGTAGCTGGAGGAGG-3'

Rad51d R2 5'-TGAACGCACCACCTGTATCCTCTGGAGAG-3'
Rad51dA9,10 R1 5'-GTTCTAAGACAGACAGAGCAC-3'

Rad51d AIO RI 5'-GAGACACAGGTTCTTCACCACAC-3'

Rad5 [ dA8Stul
Rad5dA8BamHI
Rad51dA7b Fl
Rad5IDA7b RI

5'-TGACCAACCACTTGACTCGAGATTGGGATGGTAGG-3'
5'-GATCCCTACCATCCCAATCTCGAGTCAAGTGGTTGGTCA-3'
5'-GCCCCACTTCTGGGAGGCCTGGCCTTGATG-3'
5'-CATCAAGGCCAGGCCTCCCAGAAGTGGGGC-3'

Rad51dA7,8Avall
Rad51dA7,8Xhol
Rad51dA3BstXI
Rad5 I dKpnlF
Rad51dA5NheBamR
Rad51dA5SNheF
Rad51dBamR
Rad5Id+int3F

Rad5|d+int3R

Rad5 | dex6F
Rad51dA9,10BamR
Rad51dA10BamR
Rad5 I cKpnF
Rad51cBamR
XRCC2F

XRCC2R

5.GACCTTCGCGGCACCATAGCCCAGCAGGTGACCAACCACTTGAC-3'
5 . TGCAGTCAAGTGGTTGGTCACCTGCTGGGCTATGGTGCCGCGAAG-3'
5 GTGGCTTGTCCTACAAGCCTGGACAAACTACTTGAG-3'

5. GGACTATGGGTACCCTCAGGGCA-3'
5-CAGGATCCAGCTAGCCTGGGTTTTGCC-3'

5 AACTCAGGCTAGCGCTCTCCAGAGG-3'

5 .CAGTGGATCCCAATCAACAGTGTCA-3'
5-CCGGCATCGGAAGGTTTGTATGCGAACCTGGACAAGCCTGGACAA
ACTACTTGATGCTGGCCTCTATACTGGGGAAGTGAG-3'
5-GATCCCTCACTTCCCCAGTATAGAGGCCAGCATCAAGTAGTTTGTC
CAGGCTTGTCCAGGTTCGCATACAAACCTTCCGATG-3'

5 CCAGAGGATACAGGTGGTGCGTTCATTTGAC-3'
5.CCGGGATCCGTTCTAAGACAGACAGAGCAC-3'
5.CCGGGATCCGAGCACAGGTTCTTCACCA-3'

5. CTTGGTACCCAGCGGGAGTTGGTGGGT-3'

5 .CAGTTAACTGGATCCACTGGCA-3'

5. ATGCTACGGCTCGTGACAGTTCTT-3'

5. AGAAGATGACCCTGTGCTTCACGA-3'
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Additional material

Additional file 1

Intracellular localization of RAD51D isoforms. (A) Localization of
over-expressed EGFP-RAD51D isoforms. Panels represent images taken
from cells transfected with the following DNA constructs: EGFP vector
control (a), EGFP-RAD51C (b), EGFP-RAD51D-FL (c), EGFP-
RAD51D 8 (d), EGFP-RAD51D 7b (e), EGFP-RAD51D 7,8 (f),
EGFP-RAD51D 3 (g), EGFP-RAD51D 5 (h), EGFP-RAD51D+int3 (i).
(B) Repair activity of RAD51D tagged with amino-terminal enhanced
green fluorescent protein. Rad5 1d-deficient mouse embryonic fibroblasts
were challenged with 4 ng/mL mitomycin C following transfection. Error
bars represent the standard error. Abbreviations: 51D; RAD51D-FL (no

tag), GFP; EGFP-RAD51D-FL, Vec; pcDNA3.1/Hygro vector.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2199-10-27-S1.jpeg]
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