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The neurocognitive characteristics of mathematically gifted adolescents are characterized by highly developed functional in-
teractions between the right hemisphere and excellent cognitive control of the prefrontal cortex, enhanced frontoparietal cortex,
and posterior parietal cortex. However, it is still unclear when and how these cortical interactions occur. In this paper, we used
directional coherence analysis based on Granger causality to study the interactions between the frontal brain area and the
posterior brain area in the mathematical frontoparietal network system during deductive reasoning tasks. Specifically, the scalp
electroencephalography (EEG) signal was first converted into a cortical dipole source signal to construct a Granger causality
network over the 6-band and y-band ranges. We constructed the binary Granger causality network at the 40 pairs of cortical nodes
in the frontal lobe and parietal lobe across the 8-band and the y-band, which were selected as regions of interest (ROI). We then
used graph theory to analyze the network differences. It was found that, in the process of reasoning tasks, the frontoparietal
regions of the mathematically gifted show stronger working memory information processing at the 8-band. Additionally, in the
middle and late stages of the conclusion period, the mathematically talented individuals have less information flow in the anterior
and posterior parietal regions of the brain than the normal subjects. We draw the conclusion that the mathematically gifted brain
frontoparietal network appears to have more “automated” information processing during reasoning tasks.

1. Introduction

In neuroimaging studies, brain functional connections are
described as the interrelationship of brain regions on
neurophysiological activity, and the two brain regions that
have similar dynamic characteristics over time provide a
physiological basis for information processing and mental
representation [1, 2]. In addition to functional connec-
tivity analysis, directed connectivity analysis is another
research method for connectivity analysis of brain net-
works. Directed connectivity can reflect the mechanism of

real information processing and reveal the interactions
between different brain regions. At the same time, it can
assess how one brain network affects another. Previous
studies have found that mathematically gifted adolescents
have highly developed right hemisphere functions, in-
teractions with the prefrontal cortex, and enhanced
cognitive control between the frontal-parietal cortex and
the posterior parietal cortex. The parietal-frontal inte-
gration theory (P-FIT) model explains the function and
interaction of functional units in the frontoparietal net-
work in detail [3]. White matter bundles between
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frontoparietal regions have fidelity, rapidity, and error-
free information transmission. The temporal and occipital
lobes are responsible for processing early cognitive and
visual information, and the parietal cortex is responsible
for receiving the results of potential sensory and intuitive
processing [4]. These studies have found that the math-
ematical brain may reduce the implementation and su-
pervision of the posterior parietal cortex due to the
forehead, resulting in extensive activation of the posterior
parietal cortex. Studies also have speculated that anterior
cerebral nervous systems with mathematical talent may
have a smaller effect on the posterior parietal cortex.

In the Granger causal analysis theory of directed
connectivity, the lower influence and control of the an-
terior nervous system on the posterior parietal cortex
represents a more “automated” cognitive treatment of the
frontoparietal regions and a faster response to mathe-
matical behavior. However, by summarizing the experi-
mental data obtained from the previous practice, it can be
seen that there is no significant evidence that the fast
behavioral performers must be mathematically talented.
Studies have shown that compared to young people in
general, mathematically talented adolescents are not su-
perior in all aspects; if they achieve higher mission ac-
curacy, they may show delayed response time. From the
results of such experimental data, the researchers spec-
ulate that, compared with other people, the posterior
parietal cortex of adolescents with mathematical talent is
more affected by the anterior nervous system, thus ren-
dering their cognitive processing more “nonautomated.”

To date, most cognitive science research studies have
examined the excellent cognitive control of the prefrontal
cortex, enhanced frontoparietal cortex, and posterior pari-
etal cortex; however, the exact relationship between the
anterior and posterior parietal cortex in the frontoparietal
regions is not known. On the other hand, since the infor-
mation flow in the cortical circuit changes extremely fast, the
evaluation of the influence and control relationship of this
instantaneous establishment in directed connectivity anal-
ysis is still a challenging issue.

Although there are studies of mathematical brain based
on functional magnetic resonance imaging (fMRI), due to
the limitation of temporal resolution, it was impossible to
accurately include the time information required to establish
causal relationships in the brain. Therefore, electrophysio-
logical techniques based on high temporal resolution are
essential research tools for directed connectivity analysis,
which will more accurately analyze the instantaneous di-
rectional information flow between frontoparietal regions.

To more accurately assess the instantaneous directional
information flow between the frontoparietal regions and to
more accurately establish the relationship between the in-
fluence and control between frontoparietal regions of the
mathematically talented, we use Granger causal analysis
based on the sliding time window to study the functional
interaction between the frontal lobe and the parietal lobe
during logical reasoning tasks; that is, we analyze the causal
directed connectivity of brain network dynamics on the
6-band and y-band.
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2. Materials

2.1. Participants. In this study, the mathematically gifted
students (n=20) are selected based on their ability and
performance of showing high interest in math while the
other groups (n = 18) show high general cognitive ability but
are neither specifically gifted nor interested in mathematics.
The principles of selecting subjects in the mathematically
gifted group are expression-based observation, mathemat-
ical academic performance, and intellectual level [5-7]. All
subjects have participated in Raven’s advanced reasoning
test and have a math aptitude test score of greater than 32
(mean + standard deviation: 34.6+0.5). Every participant
has reported that he or she has normal vision and does not
take any medication for mental illness currently. They have
been fully informed about the procedures of the experi-
ments, and they provide written informed consent before
data collection. Institutional Southeast University has ap-
proved this experimental protocol.

2.2. Experimental Design. The whole experimental design
consists of deductive reasoning tasks, which test the most
basic mathematical thinking ability. More specifically, the
blunt syllogism used in this experiment, which is a general
model of deductive reasoning and is widely used in neu-
roscience research [8-15], consists of abstract letters. In the
course of the experiment, the major premise, minor premise,
and conclusion correspond to the premise coding phase,
premise integration phase, and conclusion phase, respec-
tively. They are presented on the computer screen one by one
in a process which lasts for 25-30 minutes for each subject
(see Figure 1).

When a conclusion sentence appears on the screen, the
participant is asked to judge whether the conclusion sen-
tence is consistent with his own inference, and the subject is
required to press the keyboard to indicate his decision within
a limited time of 3000 ms. The entire experimental stimulus
is presented by the E-Prime 2.0 software.

2.3. Data Preprocessing. Data were bandpass filtered be-
tween 1 Hz and 60 Hz and baseline-corrected by subtracting
the average of the first 1000 ms of the baseline period. In-
dependent component analysis (ICA) in EEGLab was used
to remove the eye blinking artifacts [16, 17]. Finally, during
the deductive mathematical task, 780 trials were maintained
with 400 trials of the mathematically gifted group and 380
retained trials of the control group.

2.4. Cortical Dipole Source Signal Conversion. In brain
connectivity study, neuroelectric signals taken directly from
the scalp electrodes are affected by volume conduction,
which leads to overestimation of the coherence between the
source signals during data analysis. The EEG signal collected
by the scalp is the result of superposition of multiple source
signals at the electrode points. So, the electrode points that in
fact are not connected will possibly produce false connec-
tivity, which will affect the correct evaluation of brain
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FIGURE 1: Experimental sequence design of the deductive reasoning task about word logic.

network connectivity. In fact, to overcome the phenomenon
of volume conduction, this study conducts the EEG source
localization of the collected EEG signals to further analyze
the connectivity of the brain network in the cortical layer.
The reconstruction process for the cortical dipole source
signal is to convert the original EEG time series into a time
series of cortical dipole source signals of the same length of
time without losing the original time resolution of the EEG
signal. In this study, the source current estimation method
provided by the open-source Brainstorm neural signal
processing tool is used to perform source space conversion
on EEG signals. The reconstruction process of cortical dipole
source signal includes the calculation of forward model and
inverse model.

The first step of reconstructing the cortical dipole
source signal is to calculate the forward model, which is
essential to explain how the source signal flowing on the
cortical surface affects and generates the scalp electrode
signal. In this study, the ICBM152 magnetic resonance
imaging template recognized by the International Brain
Atlas Union is used to calculate the location coordinates
of the 60 EEG electrodes on the template. At the same
time, we use the symmetrical boundary element method
to calculate the electrical properties of the head so as to
obtain the volume conduction model of the head. The
forward model calculates a head model matrix which is
called the forward model matrix. Its size is the number of
electrodes on the scalp and the number of dipoles on the
cortical surface. Because the EEG signal has the highest
signal-to-noise ratio and sensitivity in the cerebral cortex,
the source space is defined in the cerebral cortex and is
dispersed into 15002 grids as a group of equivalent current
dipole sources. The number of electrode channels used in
this study is 60. Consequently, the positive model matrix
of dimension 60 by 15002, also known as the guide matrix,
is obtained by the above process. Next, by calculating the
noise covariance matrix of the baseline time region signal,
we remove the sensor noise in the signal to reduce the
impact on the inverse model calculation.

The calculation of the inverse model uses the forward
model and the current density map, which generate the
inverse kernel matrix whose dimension is the number of
scalp electrodes on the cortical surface. The inverse kernel
matrix is multiplied by the original EEG scalp electrode
signal matrix to obtain the dipole current source located on
the surface of the cortex. In this study, based on the random
homogeneous segmentation method provided by the
Brainstorm toolkit, the cortical surface is divided into 256
regions of interest, and each region is downsampled to a

cortical dot by fast principal component analysis, which is
used as the network node of the cortical region. These 256
distributed cortical vertices will be used as basic network
nodes for the subsequent brain network connectivity
analysis (see Figure 2).

3. Methods

The Granger causality theory was first proposed by Wiener
[18]. Clive Granger, an economist and Nobel laureate in
economics, further developed linear vector regression causal
relationship model based on random time series data [19].
First developed in the context of the economic theory of
measurement, Granger causality analysis has a wide range of
applications in economics, climate science, and neurosci-
ence. In this paper, we used the directional coherence
analysis based on Granger causality to study the interactions
between the frontal brain area and the posterior brain area in
the mathematical frontoparietal network system during the
deductive reasoning task. The directional coherence de-
scribed by Baccala et al. [20] is a frequency domain de-
scription of Granger causality between multivariate time
series represented by vector autoregressive models. It was
generalized further as partial directed coherence (PDC) [21]
and then the normalized PDC [22]. All versions of the di-
rected coherence are linear. The modern nonlinear Granger
causality is rather a different measure. The most relevant
versions with different nonlinear functions can be found in
[23-26]. Moreover, the versions for nonstationary data are
described in [27-29]. In this study, we used the directional
coherence analysis based on Granger causality to build
causative brain network.

The Granger causality value between the variable y and
the variable x is calculated as follows:

Hyy (@) ZH;Y (@)
Y|X
_ v (w)y=-In| 1- , (1)
fY X lSXX (“’)l
where the partial covariance matrix Xy|x is defined by
Zy|x = Zyy ~ ZYXZS(IXZXY' ()

In equation (1), S stands for the estimated cross-power
spectral density (CPSD) matrix and X for the residuals
covariance matrices. For a VAR process, the CPSD admits
unique spectral factorization [20]:

S(w) = H(w)ZH" (w), (3)
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FiGUure 2: Head model, brain segmentation, and cerebral cortex dipole. (a) Standard head model and spatial distribution of 60 EEG
electrodes on the scalp. (b) The cortical surface is segmented into 256 anatomical regions of interest (128 regions per hemisphere) based on a
random homogeneous segmentation method. (c) Distribution of network nodes of 256 cortical layer regions after downsampling.

where transfer function H(A) is defined as the inverse of the
Fourier transform of the regression coeflicients:

1
P )

H(Aw)=<I—ZAke_’kw> , 0<w<2m. (4)
k=1

Granger causality cannot be processed with nonstationary
data, which is the disadvantage of Granger causality, while
most of the EEG neurophysiological data are nonstationary
and typical randomness. Therefore, we need to process the
EEG data, first of all, detrending and averaging the data to
avoid excessive linearity of the data. Then, the ADF test or
KPSS test is carried out on the data. Next, for the test-passed
data, the autoregressive model order is obtained by using the
BIC criterion, and for, the untested data, the autoregressive
model order is obtained by using the BIC criterion after the
first-order difference. Then, the directional coherence analysis
based on the Granger causality model is used to quantify the
causal relationship between the channels to generate the
adjacency matrix of the causality brain network.

Due to the instability of EEG data, the deductive rea-
soning task cycle is divided into 90 time windows with length
of 100 ms. The Granger causality based on the sliding time
windows is used to analyze the oscillation between brain
network regions in the process of deductive reasoning tasks.
Among them, the sliding time window divides the data into
nonoverlapping windows, and the window whose logic is
shorter is more likely to be approximately static, which
means that there is a tradeoff between the possibility of
stationarity (the shorter the better) and the accuracy of the
model fitting (the longer the better).

In this study, 40 pairs of cortical nodes in the frontal lobe
and parietal lobe are selected as regions of interest (ROIs),
which construct a binary causal directional connection
network. The connection edges are obtained by comparing
significant differences from baseline GC values. More pre-
cisely, when comparing the GC values during the task with
the GC values of baseline period at each sliding window, if
the GC value has a significant difference, the connection
between the pair of nodes is set to 1; otherwise, it is set to 0.

At each sliding window, we calculate the characteristic
path length of each resulting network. For a global network,
the characteristic path length refers to the average minimum

number of connected edges that pass between one node and
another in the network. The short characteristic path length in
the network represents higher parallel information transfer
capability and higher network global performance. The for-
mula for calculating the length of the characteristic path is

1 1 Z'eN,'#'m"
L:ZZL,.:;ZM, (5)

ieN i~ n-l

where L; represents the average distance between node i and
other nodes in the network and m;; represents the shortest
path between nodes i and j.

Causal density: causal density is expressed as a parameter
to measure the degree of close relationship between network
nodes. The higher the causal density value, the closer the
relationship between the network nodes. The formula for
calculating the causal density of the network is as follows:

1
CD(X) - 1’1(1’1 — 1) ;in—>xj|x|ij|’ (6)

where x;;; is the X network after removing x; and x;.

Causal density is used to describe the density of con-
nected edges between nodes in a causal network, which is
calculated according to the value of Granger causality in the
network. On the other hand, the characteristic path length,
which calculates the average value of the shortest path be-
tween two points in the binary directed connection network,
is also based on the Granger causality value. The difference,
however, is that the connection edges of the network are
compared with the Granger causality value of the baseline
period to form binary causal network in computing the
characteristic path length. Both the causal density and the
characteristic path length use Granger causality value but
from different dimensions. The former uses causality value
directly, and the latter is a graph theory analysis value based
on binary causal network.

4. Data Analysis

4.1. Statistical Test. In this study, ANOVA statistical test is
used to analyze the significant differences in the causal
density of directed connectivity networks between mathe-
matical talent subjects and ordinary subjects in each time
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TaBLE 1: Behavioral differences between groups in deductive reasoning tasks.
Mathematically gifted group Control group
Raven advanced reasoning test score 34.6+05 22.8+£0.4 **
Response correct rate 79.8% + 11.6% 62.95% +13.655% -
Reaction time 168358.9 + 34348.17 ms 231370.85 + 50932.80 ms -

p: significance level, *indicates p <0.05, **indicates p <0.01.

Mathematically |
gifted group

The control
group

FIGURE 3: Spatial distribution map of the average Granger causality in the 6-band, a-band, 5-band, and y-band.

window. To evaluate the significance of Granger causality in
the task period and the baseline period, this experiment uses
a cluster-based permutation algorithm to solve the problem
of multiple comparisons in the experimental process, which
generates a permutation ordering of 200 raw Granger causal
data sets [30].

4.2. Behavioral Performance. As shown in Table 1, compared
with the control group, the raven advanced reasoning test
scores of the mathematically gifted group are significantly
higher and have significant differences.

Additionally, in the behavioral performance of the de-
ductive reasoning task, compared with the ordinary subjects,
the mathematically talented individuals show a higher task
response accuracy rate of 79.8% +11.6% compared to the
control group with 62.95% +13.655% (mean + standard
deviation). At the same time, the reaction time (the sum of
the trial time from the gaze point to the time that the button
is pressed) also shows significant intergroup differences. The
mathematically talented group shows a shorter response
time of 168358.90 +34348.17 ms compared to the control
group with 231370.85+50932.80ms (mean + standard
deviation).

4.3. Granger Causal Connection Network. The spatial dis-
tribution map of average Granger causality in 6-band,
a-band, B-band, and y-band is illustrated in Figure 3. We
find that the 0-band causal network has a higher Granger
causality value than the y-band.
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FIGURE 4: Mathematically gifted adolescents and the control group
causal density map in the 6-band. The gray background area is
represented as a time zone in which the mathematically gifted
adolescents and the control group have significant differences in
the causal density.

As shown in Figure 4, in the deductive reasoning process,
there are significant differences between the mathematically
gifted adolescents and the general subjects in the premise
integration phase and the conclusion phase. In the premise
integration phase and the middle and early stages of the
conclusion, the mathematically gifted adolescents show higher
causal density than the control group. In the middle and late
stages of the conclusion phase, the mathematically gifted ad-
olescents show lower causal density than the control group.

Based on the above research results and the behavioral
performance of the participants, we speculate that in the
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FIGURE 5: Mathematically gifted adolescents and the control group
causal density map in the y-band. The gray background area is
represented as a time zone in which the mathematically gifted
adolescents and the control group have significant differences in
the causal density.

TaBLE 2: Significant differences in the causal density of the
mathematically gifted group in different frequency bands in the
deductive reasoning task

Causal density 0 —band y — band p
Premise coding phase 0.56+0.19  0.40+0.29 *
Premise integration phase  0.83+0.56  1.33+0.98 o
Conclusion phase 0.75+0.51  0.61+£0.55  0.317

p: significance level, *indicates p <0.05, **indicates p <0.01, ***indicates
p<0.001.

TaBLE 3: Significant differences in the causal density of the control
group in different frequency bands in the deductive reasoning task.

Causal density 6 — band y —band p
Premise coding phase 0.75+0.37  0.45+0.35 **
Premise integration phase  0.75+0.46  0.37+0.27 e
Conclusion phase 0.64+0.26  0.80+0.56  0.347

p: significance level, *indicates p <0.05, **indicates p <0.01, ***indicates
p<0.001.

conclusion stage of the inference task, the mathematically
gifted adolescents show more efficient and rapid causal
mobility than the average subjects. At the same time, in the
premise integration stage of the reasoning task, the math-
ematically gifted subjects show higher node tightness than
the average subjects for a longer period of time. This in-
dicates that in the premise integration stage, the mathe-
matically gifted adolescents are higher than the common
subject cortex vertices.

As shown in Figure 5, compared with the 0-band, there
are significant differences in the premise coding, premise
integration phase, and conclusion phase in the y-band be-
tween the mathematically gifted adolescents and the ordi-
nary subjects. In the early stage of the premise coding and
the premise integration phase, the mathematically gifted
adolescents show lower causal density values than the
control group. In the early stage of the conclusion phase, the
mathematically gifted adolescents show higher causal

Computational Intelligence and Neuroscience

density values. We speculate that in the early stage of
premise coding and premise integration, ordinary subjects
show higher causal mobility than those of mathematically
talented individuals. In the early stage of the conclusion
phase, mathematically talented subjects show higher causal
mobility.

According to Tables 2 and 3, the causal density values in
the 6-band are significantly higher than the causal density
values in the y-band in the premise coding stage and the
premise integration stage. We speculate that, in the early
stages of the entire inference task process, subjects show
higher causal flows between nodes in the 6-band.

Figures 6(a) and 7(a) depict the evolution of the char-
acteristic path length of the GC networks for each group type
in the 0-band and the y-band. As shown in Figure 6(a), the
mathematically gifted group has a lower characteristic path
length distribution than the control group by the distri-
bution map of the characteristic path length in the 0-band.
Of note in this figure, the characteristic path length of the
mathematically gifted group during the 7000 ms-9000 ms
window is significantly higher than that of the control group.
Since research has pointed out that the characteristic path
length may reflect brain’s ability to conduct parallel infor-
mation processing and the mathematically talented subjects’
right reaction time is significantly less than the ordinary
subjects, we hypothesize that the mathematically talented
group is not in the task processing during this time period.
That is, the mathematically talented subjects have completed
the logical reasoning task early and have been converted into
the default working mode.

By comparing the characteristic path lengths of the two
frequency bands, we see that the 0-band causal connection
network has a shorter characteristic path length than the
y-band causal connection network. Since the characteristic
path lengths can be expressed as the network having higher
parallel information transmission capability and higher
global efficiency, we conclude that the network in the 8-band
has higher flatness information transmission capability and
higher network global efficiency.

At the time window, where the characteristic path
lengths of the mathematically gifted group and the control
group change significantly, a causal connection snapshot is
performed on the binary causal effective connection net-
work, as shown in Figures 6 and 7. From the snapshot
(Figures 6(b) and 7(b)), we see that the mathematically gifted
group shows a stronger network connection than the control
group during the time window from 6000 ms to 6100 ms.
Simultaneously, in the 7500 ms-7600 ms time window, the
mathematically talented individuals show less directed
connectivity between the right prefrontal and posterior
parietal regions than the normal subjects.

According to Tables 4 and 5, it is found that the char-
acteristic path length of the 6-band in the mathematically
gifted group is significantly lower than the characteristic
path length in the y-band throughout the inference task
phase. However, for the control group, only in the con-
clusion phase, the characteristic path length of the 8-band is
significantly lower than the characteristic path length of the
y-band.
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FIGURE 6: (a) Distribution of characteristic path lengths of the frontoparietal network in the 6-band during the deductive reasoning task. (b)
During the deductive reasoning task time window (6000 ms-6100 ms, 7500 ms-7600 ms) in the 0-band, the effective connection network
maps between the mathematically gifted group and the control group.

5. Discussion

In causal network analysis, the causal density value is used as
an important parameter to measure the tightness of the
connection between nodes of the causal network. In the early
stage of the conclusion of the inference task, the mathe-
matically talented individuals show higher causal density
values than the control group, indicating a close connection
causal relationship. At the same time, combined with the
global neuron work area theory [31, 32], in the decision-
making stage—that is, when the mathematics talents select the
problem results—the mathematically talented brain is very
closely linked, and it will be originally separated. The un-
conscious processor is recruited through the efficient inte-
gration of the nervous system to solve new problems, and this
analysis is consistent with previous research findings.

Additionally, causal flow values are used as param-
eters to evaluate the causal effects of neuronal infor-
mation processing and quantify the importance of
different nodes in the entire causal network. In the
process of reasoning, the cerebral ventricles in the
mathematical talents show more causal flow growth and
the posterior parietal cortex shows a reduced causal flow
value. Therefore, there is an enhanced forehead network
causal flow in the reasoning process of the mathemati-
cally talented adolescents, which is characterized by
enhanced central function of the anterior nervous system
and lower causal flow in the posterior parietal cortex. We
believe that the anterior brain region acts as an excellent
central executive processor. It affects the posterior pa-
rietal cortex and promotes brain function integration
during problem-solving.
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FIGURE 7: (a) Distribution of characteristic path lengths of the frontoparietal network in the y-band during the deductive reasoning task. (b)
During the deductive reasoning task time window (6000 ms-6100 ms, 7500 ms-7600 ms) in the y-band, the effective connection network
maps between the mathematically gifted group and the control group.

TaBLE 4: Significant differences in the characteristic path lengths of
the mathematically gifted group in different frequency bands in the
deductive reasoning task.

TaBLE 5: Significant differences in the characteristic path lengths of
the control group in different frequency bands in the deductive
reasoning task.

Characteristic path length 0 — band y — band P Characteristic path length 0 — band y — band P
Premise coding phase 0.66£0.12 1.55+0.35 o Premise coding phase 1.55+0.65 1.69+0.80  0.467
Premise integration phase 1.13+£0.56 1.72+£0.77 e Premise integration phase ~ 1.97+0.95 241+1.15  0.113
Conclusion phase 1.56 +0.65 2.82+0.90 o Conclusion phase 1.62+0.95  2.55+0.84 e

p: significance level, *indicates p <0.05, **indicates p <0.01, ***indicates
p<0.001.

Based on the above results, we speculate that in the
middle and late stages of the conclusion stage, the mathe-
matically talented subjects have less information flow in the
anterior and posterior parietal regions of the brain than the
normal subjects. More specifically, in the middle and late
stages of the conclusion phase, the anterior nervous system

p: significance level, *indicates p <0.05, **indicates p <0.01, ***indicates
p<0.001.

of the brain of the mathematically talented exerts a lower
influence on the posterior parietal cortex. Therefore, the
frontoparietal regions are characterized by automated in-
formation processing and faster response time. This con-
clusion is consistent with the early fMRI study that the
implementation and supervision of the reduction in
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forehead result in a posterior parietal cortex that is exten-
sively activated by the brain. It is hypothesized that the
anterior nervous system exerts a lower effect on the posterior
parietal cortex. At the same time, the lower influence and
control of this anterior nervous system on the posterior
parietal cortex can be considered as a more “automated”
cognitive treatment of the frontoparietal regions.

On the other hand, the results of this study show that the
f-band frontoparietal regions have higher flatness infor-
mation transmission capability and higher network global
efficiency [33, 34]. The early studies about EEG have pointed
out that event-related 0-band oscillations are associated with
brain cognitive load and memory performance, and the
prefrontal cortex is a working memory-related brain region.
Moreover, this research experiment requires the participants
to focus on keeping the consciousness in the task processing
state, continuous information processing and integration,
accessing information in working memory, and finally
presenting conclusions and making comparisons and
choices with their own judgments. Therefore, we conclude
that, during reasoning tasks, the frontoparietal regions of the
mathematically gifted individuals show stronger working
memory information processing in the 6-band.

6. Conclusion

This paper employs the directional coherence analysis based
on Granger causality to analyze the correlation of the di-
rected connectivity of the brain network in the 6-band and
the y-band. A binary effective causal connection network is
constructed for the cortical source signal in the fronto-
parietal regions, and the difference of the connection net-
works between the mathematically talented individuals and
the ordinary subjects is analyzed by graph theory. The real-
time information processing frontal and posterior parietal
network for reasoning tasks has practical significance for the
development and utilization of cortical resources in the
mathematical learning of children and adolescents.
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