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Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. It refers to a range of
liver conditions affecting people who drink little or no alcohol. NAFLD comprises non-alcoholic fatty liver and non-alcoholic
steatohepatitis (NASH), the more aggressive form of NAFLD. NASH is featured by steatosis, lobular inflammation, hepatocyte
injury, and various degrees of fibrosis. Although much progress has beenmade over the past decades, the pathogenic mechanism of
NAFLD remains to be fully elucidated. Hepatocyte nuclear factor 4a (HNF4a) is a nuclear hormone receptor that is highly
expressed in hepatocytes. Hepatic HNF4a expression is markedly reduced in NAFLD patients and mouse models of NASH.
HNF4a has been shown to regulate bile acid, lipid, glucose, and drugmetabolism. In this review, we summarize the recent advances
in the understanding of the pathogenesis of NAFLD with a focus on the regulation of HNF4a and the role of hepatic HNF4a in
NAFLD. Several lines of evidence have shown that hepatic HNF4a plays a key role in the initiation and progression of NAFLD.
Recent data suggest that hepatic HNF4a may be a promising target for treatment of NAFLD.
Keywords: Nonalcoholic fatty liver disease; Hepatocyte nuclear factor 4a; Lipogenesis; Inflammation; Fibrosis; Liver;
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is emerging as
the leading chronic liver disease due to the rising rates of
obesity and diabetes. It refers to a range of liver conditions
affecting people who drink little or no alcohol with the
presence of steatosis in ≥5% hepatocytes. There are two
subtypes of NAFLD, non-alcoholic fatty liver (NAFL) and
non-alcoholic steatohepatitis (NASH). NASH is the more
advanced subtype of NAFLD, which is characterized by
liver steatosis, lobular inflammation, hepatocyte balloon-
ing, and various degrees of fibrosis. NASH may further
progress to cirrhosis, hepatocellular carcinoma (HCC),
and liver failure [Figure 1]. NAFLD is often associated
with diabetes, obesity, and dyslipidemia, and is considered
as the hepatic manifestation of metabolic syndrome.[1]

Hepatocyte nuclear factor 4a (HNF4a) is a nuclear
hormone receptor that is highly abundant in the liver
and highly conserved across the species. In the liver,
HNF4a is best known for its role as a master regulator
of liverspecific gene expression and its essential role in
both fetal and adult liver functions. The expression of
HNF4a is markedly reduced in NAFLD patients and
mouse models of NASH[2,3] or fibrotic livers.[4-6]
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Dysregulation of HNF4a expression is associated with
many human diseases, such as NAFLD, liver cirrhosis,
HCC, ulcerative colitis, colon cancer, and maturity on-
set diabetes of the young. In this review, we briefly
overview the pathogenic mechanisms, diagnosis, and
treatment of NAFLD, but focus on the regulation of
hepatic HNF4a expression, the role of HNF4a in the
pathogenesis of NAFLD, and the potential of HNF4a as
a therapeutic target for NAFLD.
Pathogenic Mechanisms of NAFLD

The pathogenic mechanisms of NAFLD are yet to be fully
understand. Multiple lines of evidence have indicated that
the pathogenesis of NAFLD is a complicated and
multifactorial process involving interactions among
nutrition, metabolism, genetic predisposition, and envi-
ronment [Figure 2]. Historically, a “two-hit” hypothesis is
first proposed, in which fats accumulate in the liver (first
hit) followed by other insults (e.g., inflammatory cyto-
kines, oxidative stress, mitochondrial dysfunction) leading
to inflammation and fibrogenesis (second hit).[7,8] Due to
the complexity of the pathogenesis, a “multiple-hit”
hypothesis is brought forward, in which multiple insults
act together on genetically predisposed subjects to induce
NAFLD.[9,10]
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Figure 1: Progression of NAFLD. NAFLD encompasses NAFL and NASH. NASH may further progress to cirrhosis, HCC, and liver failure. Patients without cirrhosis may also develop HCC.
Cardiovascular disease is the leading cause of deaths in NASH. HCC: Hepatocellular carcinoma; NAFL: Non-alcoholic fatty liver; NAFLD: Nonalcoholic fatty liver disease; NASH: Non-
alcoholic steatohepatitis.

Chinese Medical Journal 2022;135(10) www.cmj.org
Dysregulation of lipid metabolism and NAFL

About 25% of the population has NAFLD worldwide.[11]

NAFLD is often associated with obesity and diabetes.
Nonetheless, NAFLD is also found in non-obese or
overweight children and adults, ranging from 3.3%
to 21.2% of the population (with a body mass index
<25 kg/m2).[12] The prevalence of NAFLD is higher in
Hispanics andwhites than in Black individuals[13,14] and is
twice as much in men as in women.[15] Globally, about
55.5%people with type 2 diabetes and up to 90%of obese
people have NAFLD[16,17] Among people with NAFLD,
cardiovascular disease is the leading cause of death,
followed by cancer and liver-related death.[1]
NAFLD often starts with lipid accumulation in the liver
that is not the consequence of alcohol drinking, a
condition called NAFL. Triglycerides (TG), free fatty
Figure 2: Molecular mechanisms of NAFLD. NAFLD is a complex and multifactorial disease
polymorphisms, gut microbiota, race, gender, etc. Under insulin resistance or diabetes, the in
FFAs, can cause ER stress, oxidative stress, apoptosis, and inflammasome activation via lipot
activation. The change in the gut barrierallows LPS from gut microbiota to enter the portal
inflammation. The change in other gut microbiota products (ethanol, secondary bile acids, etc.)
chREBP: Carbohydrate response element-binding protein; DNL: de novo lipogenesis; DAG: Diacy
Free fatty acids; GCKR: Glucokinase regulatory; HSD17B13: Hydroxysteroid 17-beta dehydroge
bound O- acyltransferase domain-containing 7; NAFLD: Nonalcoholic fatty liver disease; PPP
domain containing 3; SREBP-1c: Sterol regulatory element-binding protein 1c; TM6SF2: Tra
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acids (FFAs), free cholesterol (FC), and cholesterol esters
(CEs) may accumulate in NAFL, albeit largely in the form
of TG. The accumulation of TG in the liver may result
from increased de novo lipogenesis (DNL) and impaired
very low-density lipoprotein (VLDL) secretion or lipolysis.
Impaired fatty acid oxidation (FAO) may also lead to FA
and TG accumulation in the liver.[18]

Insulin resistance is a major risk factor for NAFLD. Under
insulin resistance, more FFAs are released from adipose
tissue and delivered to the liver. Hyperinsulinemia also
transcriptionally induces genes that promote DNL. Sterol
regulatory element-binding protein 1c (SREBP-1c) is a
transcription factor that induces the lipogenic genes, such
as fatty acid synthase, acetyl-CoA carboxylase (ACC), and
stearoyl-CoA desaturase 1. Insulin activates SREBP-1c by
inducing SREBP1c mRNA levels and SREBP-1c proteo-
lytic processing, which can be blocked by wortmannin, an
. The development and progression of NAFLD is affected by insulin resistance, genetic
flux of FFAs from adipose tissue as well as DNL is increased. FFAs, particularly saturated
oxic lipids (LPCs, ceramides, DAG, etc.). Cholesterol crystals also promote inflammasome
circulation and activate toll-like receptors or inflammasome (pyroptosis) for induction of
may also contribute to the development of NAFLD. ApoB: Apolipoprotein B; BAs: Bile acids;
lglycerols; ER: Endoplasmic reticulum; FC: Freecholesterol; FAO: Fatty acid oxidation; FFAs:
nase 13; LPS: Lipopolysaccharides; LPC: Lysophosphatidylcholine; MBOAT7: Membrane-
1R3B: Protein phosphatase 1 regulatory subunit 3B; PNPLA3: Palatin-like phospholipase
nsmembrane 6 superfamily 2.
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inhibitor of phosphatidylinositol 3-kinase, and low
concentrations of rapamycin, an inhibitor of the mecha-
nistic target of rapamycin complex 1 (mTORC1).[19]

Furthermore, insulin-induced SREBP-1c proteolytic proc-
essing can be blocked by inhibition of p70 S6 kinase
(S6K),[20] suggesting that activation of the mTORC1/S6K
pathway is responsible for SREBP-1c processing. Under
overnutrition, endoplasmic reticulum (ER) stress pro-
motes insulin-induced SREBP-1c cleavage.[21] Unlike
insulin, glucose promotes lipogenesis via activation of
carbohydrate response element-binding protein
(ChREBP). In response to increased glucose concentra-
tion, ChREBP is dephosphorylated and translocated to the
nucleus, leading to induction of lipogenic genes and liver-
type pyruvate kinase.[22] However, under insulin resis-
tance or overnutrition, NAFLD is often accompanied by
increased VLDL secretion and hyperlipidemia due to
increased TG availability and microsomal triglyceride
transfer protein (MTP) production.[23] By contrast, the
contribution of FAO to steatosis in NAFLD has been less
clear. It has been shown that NAFLD patients with insulin
resistance have impaired ATP production[24,25] but
increased hepatic FAO.[26] Consistent with the latter
finding, high fat diet (HFD) feeding increases the function
of tricarboxylic acid cycle in mice.[27] Additional studies
with a larger sample size may be needed to clarify the role
of FAO in fat deposit in NAFLD.

Lipolysis also plays a role in NAFLD. Adipose triglyceride
lipase (ATGL; PNPLA2) is the major hepatic triglyceride
lipase,[28,29] although some other lipases are also reported
to display triglyceride hydrolase (TGH) in the liver, such
as some of the carboxylesterase (CES) family, lysosomal
acid lipase, etc.[30] Defective lipolysis contributes to
hepatic TG accumulation. Multiple observations have
uncovered that the common I148M missense mutation
in palatin-like phospholipase domain containing 3
(PNPLA3; adiponutrin) is consistently associated with
NAFLD.[31,32] In the presence of obesity or chronic
alcohol intake, the variant is associated with hepatitis or
cirrhosis.[32] PNpLA3 (I148M) promotes steatosis by
inhibition of ATGL activity through interaction with
comparative gene identification-58 (CGI- 58; ABHD5), a
co-activator of ATGL.[33,34]

In addition to PNPLA3, other genetic variants are also
found to play a role in hepatic fat accumulation and/or
inflammation. The E167K variant in transmembrane six
superfamily two (TM6SF2) causes fatty liver and elevates
alanine aminotransferase (ALT) levels by impairing
normal VLDL secretion.[35,36] The membrane-bound
O- acyltransferase domain-containing 7 (MBOAT7;
LPIATI) variant rs641738 increases risk of NAFLD,[37,38]

which appears to be mediated by changes in hepatic
phosphatidylinositol acyl-chain remodeling.[37,38] Further
studies in mice show that ablation of Mboat7 causes
accumulation of its substrate lysophosphatidylinositol
(LPI) lipids, and that administration of LPI promotes
hepatic inflammation and fibrogenesis.[39] In contrast, the
rs72613567 variant with an adenine insertion in hydrox-
ysteroid 17-beta dehydrogenase 13 (HSD17B13), an
enzyme that is elevated in NAFLD and targets lipid
droplets, is associated with a reduced risk for NASH.[40-42]
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The HSD17B13 rs72613567 variant is also shown to
interact with PNPLA3 I148M and reduce the risk for liver
disease conferred by PNPLA3 I148M.[42] Other studies
have also shown that the variants in glucokinase
regulatory gene or protein phosphatase 1 regulatory
subunit 3B are also associated with NAFLD.[43]
Progression of NAFL to NASH

About 20% NAFL patients will develop NASH and 20%
NASH patients will develop cirrhosis over time.[1,44]

About 1% to 2% or 20% cirrhosis patients may develop
HCC or liver failure over 1 or 2 years, respectively.[1]

Inflammation is a key driver of NAFL progression to
NASH. Under insulin resistance, excessive fatty acid influx
from adipose tissue and increased DNL in the liver
promote accumulation of lipotoxic lipids, which contrib-
ute to oxidative stress, ER stress, inflammasome activa-
tion, and apoptotic cell death, leading to inflammation
and fibrogenesis[45] [Figure 2]. However, NAFLD is not
always associated with insulin resistance. Other factors,
such as genetic polymorphism, gut microbiota, etc., also
contribute to the progression of NAFLD.
Lipotoxicity

Hepatic toxic lipidspeciesaccumulatewhen the liver cannot
handle excessive carbohydrates and fatty acids. FFAs
(saturated and trans fatty acids), diacylglycerols (DAG),
lysophosphatidylcholine (LPC), ceramides, and FC are
considered lipotoxic species, which can mediate inflamma-
tion in NAFLD by causing ER stress, oxidative stress, and
inflammasome activation, leading to apoptosis, necropto-
sis, release of cytokines or chemokines (tumor necrosis
factor [TNF] a, interleukin 1b [IL-1b], IL-6, IL- 18, tumor
growth factor beta [TGF-b], etc.), and activation of stellate
cells.[18,46] Inflammasome is a cytoplasmic protein complex
that responds to danger-associated molecular patterns
(saturated fatty acids, cholesterol crystals, etc.) and
pathogen- associated molecular proteins (e.g., products of
gut microbiota).[47] Activation of inflammasome leads to
expression and release of IL-1b and IL-18, and promotes
inflammation via activation of caspase-1[48,49] and induces
a form of death called proptosis.[50]
Apoptosis

Apoptosis plays a key role in the progression of
NABLD.[51,52] NASH patients have significant levels of
apoptosis and caspase 3 activation.[53,54]Caspase 2 appears
to be an initiator caspase in multiple apoptotic pathways.
Caspase 2 expression ismarkedly upregulated inNAFLand
NASH patients and animal models of NASH, and its
deficiency reduces lipid-induced hepatocyte apoptosis (lip-
oapoptosis) and liver fibrosis.[55] Ablation of caspase 8 in
hepatocytes inhibits methionine-choline deficient diet-
induced inflammation, fibrosis, and liver injury[56] Satu-
rated FFAs induce c-Jun N-terminal kinase (JNK)-depen-
dent lipoapoptosis by activating the proa- poptotic B-cell
lymphoma protein 2 (Bcl-2) proteins Bim and Bax.[57]

Inhibition of apoptosis by the pan-caspase inhibitors VX-
166orEmricasan reduces inflammationor thedevelopment
of fibrosis in mouse models with NASH.[58-60]
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Extracellular vesicles (EVs)

EVs are non-nucleated, lipid-bound particles that include
endosome-derived exosomes (30–150 nm in diameter) and
plasma membrane-derived microvesicles (50–1000 nm).
EVs can carry mRNAs, non-coding RNAs, lipids (choles-
terol, ceramides, sphingomyelin, phosphatidylcholine,
phosphatidylserine), proteins (heat shock proteins
HSP70, HSP90, tubulin, actin, etc.), and mitochondrial
DNA, and deliver them to other cell types[61,62] EVs are
important for cell-cell communications and also act as
drivers of inflammation in NAFLD.[63,64] Kakazu et al[65]

show that lipotoxic hepatocytes induced by palmitate
secrete EVs enriched in C16:0 ceramide, which in turn
activate macrophage chemotaxis via formation of sphingo-
sine-1-phosphate from 16:0 ceramide. Treatment of
hepatocytes with palmitate or the palmitate metabolite
LPC increases the release of EVs containing TNF-related
apoptosis-inducing ligand, which are capable of inducing
the expression of IL-1b and IL-6 in macrophages.[66]

Gut microbiome

Gutmicrobiota is a complex ecosystemwhose composition
and relative abundance of species are comparable between
healthy people but are affected by environmental and host-
related factors, such as diets, drugs, physical activity,
geographic locations, etc.[67] A less diverse microbiota
population is observed in NASH patients in comparison
with thatofhealthy subjects[18] Somestudieshave suggested
a linkbetweengutdysbiosis and theprogressionofNAFLD.
In one study, Bacteroides and Ruminococcus have been
identified as independently associated with steatohepatitis
and fibrosis, respective- ly.[68] The change in gutmicrobiota
compositionmay regulate thedevelopmentandprogression
of NAFLD via their metabolites (short-chain fatty acids,
ethanol, etc.), endotoxemia due to increased gut permeabil-
ity, and changes in hormones and bile acid signaling.[67]

Lipopolysaccharides (LPS)activateToll-like receptor (TLR)
4 and TLR9 on Kupffer cells to induce production of
proinflammatory cytokines and chemokines. PAMPs
derived from gut microbial products activate inflamma-
somes (NRLP3 andNLRP6) to release IL-18 and IL-1b.[18]

The contribution of gutmicrobiota toNASHprogression is
also validated by the use of germ-free animal models.[69]

Diagnosis and Treatment of NAFLD

Diagnosis of NAFLD

NAFL is histologically defined by the presence of macro-
vesicular steatosis in >5% of hepatocytes whereas NASH
is histologically characterized by hepatic steatosis and
hepatocellular injury, including hepatocyte ballooning,
lobular inflammation, and various degrees of pericellular
fibrosis. The majority of NAFLD patients are asymptom-
atic until NAFLD progresses to cirrhosis. Serum ALT and
aspartate aminotransferase (AST) levels are often elevated
with ALT levels higher than AST levels.[70] Hepatic
steatosis can be identified non-invasively by ultrasound,
computed tomography (CT), or magnetic resonance
imaging (MRI). MRI can detect as little as 5% steatosis
whereas ultrasound or CT can detect ≥20% steatosis.[18]

Magnetic resonance elastography measures the stiffness of
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liver tissue, and offers a high accuracy in detection of liver
fibrosis.[71,72] So far, no practically useful surrogate
makers can be used for diagnosis of NASH, and liver
biopsy remains the gold standard for diagnostic evalua-
tion of liver inflammation and fibrosis.[18]

Treatment of NAFLD

Lifestyle change, including a low-calorie diet (a daily
reduction of 500–1000 kcal calorie intake) and 30 min of
daily moderate exercise, is highly recommended. Lifestyle
change-induced weight loss by ≥10% is associated with
NASH resolution and fibrosis regression.[73] For patients
withNASHand obesity, bariatric surgery is associatedwith
a significant lower risk of major adverse liver outcomes
(progression to cirrhosis, HCC, liver transplantation, liver-
related mortality) and major adverse cardiovascular events
(coronary artery or cerebrovascular events, heart failure,
cardiovascular death). [74]Nodrugs have been approved for
NASHtreatment,althoughsomepharmacological therapies
atvariousphasesof clinical trials showpromisingoutcomes.
Ongoing major clinical trials of pharmacotherapies for
NASH treatment mainly target metabolism, inflammation,
and/or apoptosis. Peroxisomeproliferation-activated recep-
torsa/b/g (PPARa/b/g) and farnesoidX receptor (FXR) are
nuclear hormone receptors that play an important role in
regulatingmetabolic pathways and inflammatory response.
PPARg ligands (such as pioglitazone) have been shown to
improve steatohepatitis but also induce weight gain, fluid
retention, osteopenia, and fracture risk.[75,76] PPARa/g or
PPARa/d dual agonists are also being tested in clinical
trials.[18] FXRligands improve insulin sensitivityandNASH
inmice and humans.[77,78]Obeticholic acid (OCA) is awell-
characterized FXR agonist which also causes pruritus and a
moderate increase in low-density lipoprotein cholesterol
(LDL-C) levels at 25mg/day.[77] Apoptosis signaling kinase
1 (ASK-1) activates the P38/JNK pathway to induce cell
death.[79] Inhibition of ASK-1 by selonsertib ameliorates
NASHand fibrosis in humans.[80] Other potential therapies
are also being evaluated for NASH treatment, such as
glucagon-like peptide-1 receptor agonists (e.g., Liraglutide),
ACC inhibitors, a thyroid hormone receptor b-selective
agonist, CCR2–CCR5 inhibitors, etc. (see recent
reviews).[18,81]

Overview and Regulation of HNF4a

HNF4a (NR2A1) is a nuclear hormone receptor that is
highly expressed in the liver, and to a lesser extent in
pancreas, intestine, and kidney.[82] In hepatocytes, HNF4a
is a master regulator of many genes involved in hepatocyte
differentiation and morphogenesis, drug metabolism,
gluconeogenesis, lipid homeostasis, bile acid synthesis
and conjugation, ureagenesis, cell proliferation and inflam-
mation.[83-92] Global Hnf4a�/� mice are embryonically
lethal,[93] highlighting the importance of HNF4a in
development. Loss-of-function mutation of HNF4a causes
maturity onset diabetes of the young type 1.[94] Crystalliza-
tion studies show that HNF4a has long-chain fatty acids in
its ligand-binding domain.[95] HNF4a is constitutively
active as fatty acids constantly bind to the binding pocket of
the ligand binding domain.[96] HNF4a binds as a
homodimer to the direct repeat 1 or DR2 sequences in
the target genes to regulate gene transcription.

http://www.cmj.org
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HNF4a is regulated at the transcriptional and post-
transcriptional levels. Fasting is known to induce HNF4a
mRNA expression,[97] but the underlyingmechanism is not
clear. More studies have been focused on post- transcrip-
tional regulation of HNF4a expression. Studies by liquid
chromatography with tandemmass spectrometry (LC-MS/
MS) have identified several phosphorylation sites (S142,
T166, S167, T432, S436),[98-100] ubiquitylation sites
(K234, K307) and one acetylation site (K458).[98] Sun
et al[101] showthatproteinkinaseCphosphorylates ahighly
conserved serine (S78) to increase HNF4a cytoplasmic
localization and degradation. Phosphorylation by protein
inase A,[99] AMP-activate protein kinase,[102] proto-onco-
gene tyrosine-protein kinase Src (c-Src),[103] or ERK1/2
signaling[104] has also been shown to reduce the DNA
binding activity and/or stability of HNF4a. Interestingly,
inhibitionof p38mitogen-activatedproteinkinase (MAPK)
activity reduces the phosphorylation and nuclear rotein
levels of HNF4a[105] suggesting that phosphorylation by
p38 MAPK is important for the nuclear retention of
HNF4a. Acetylation at lysine residues by CREB-binding
protein is reported to be crucial for the proper nuclear
retention of HNF4a.[106]

HNF4amay physically interact with forkhead boxO1[107]

or tribbles homolog 1[108] to reduce HNF4a stability and
transcriptional activity. HNF4amay also interact with the
co-activator PPARg coactivator 1a (PGC1a) to induce
gluconeogenesisduringfasting[97,109]or steroidreceptorco-
activators (SRC-1, -3) to enhance the transcriptional
activity of HNF4a,[110,111] whereas interaction with the
co-repressorHes family basichelix-loop-helix transcription
factor 6 [112] represses HNF4a transcription activity.
HNF4a may also physically interact with FXR,[113,114]

p53,[115] sterol regulatory-binding protein element 1
(SREBP1),[116] Smad3/Smad4,[117,118] specificity protein 1
(SP1),[119] cyclin D1,[120] or small heterodimer partner
(SHP)[121] to regulate HNF4a activity.

TGF-b1 is shown to induce HNF4a degradation in the
proteosome while nitric oxide incites nitrosylation to
inhibit HNF4a activity.[122] The protein arginine N-
methyltransferase PRMT1 is shown to bind to and
methylate the DNA binding domain of HNF4a, therefore
enhancing the binding affinity of HNF4a to target
genes.[123]

Epigenetic regulation of HNF4a expression by micro-
RNAs has been extensively studied. MicroRNAs are small,
non-coding RNA molecules that regulate gene expression
often by binding to the 30UTR of target genes. Several
microRNAs, including miR-34a, [2,124-127] miR-24, miR-
21,[127] miR-449,[125,126] miR-103a,[128] miR-483-5p,[129]

let-7b,[130] andmiR-122,[131] havebeenreported toregulate
HNF4a mRNA and/or protein levels.
HNF4a in the Pathogenesis of NAFLD

HepaticHNF4a expression ismarkedly reduced inNAFLD
patients anddiabetic orHFD-fedmice.[2,3] The reduction in
hepatic HNF4a expression may be partly due to the
induction of miR-34a as hepatic miR-34a expression is
induced in NAFLD patients and diabetic or HFD-fed
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mice,[2,132] and overexpression of miR-34a markedly
repressesHNF4a expression in the liver[2] [Figure 3]. FFAs,
FC, and p53 are shown to induce miR-34a expression and
repress HNF4a expression.[2,133] During the development
and progression of NAFLD, Kupffer cells may secrete pro-
inflammatory cytokines. Treatment ofHepG2cellswith IL-
1b [134] or TNFa [135] represses HNF4a expression, but it
remains unclear whether and how IL-1b or TNFa inhibits
HNF4a expression in vivo.
HNFa and NAFL

Hepatocyte-specific Hnf4a�/� (Hnf4aDHep) mice have
reduced plasma TG and cholesterol levels and increased
hepatic neutral lipid accumulation.[86] Acute ablation of
hepatic HNF4a by shRNA also markedly decreases
plasma TG and cholesterol levels and increases hepatic
TG levels by four-fold.[136] The drastic changes in plasma
and hepatic lipid levels likely result from a profound
reduction in VLDL secretion as hepatic expression of
apolipoprotein B and MTP are markedly reduced.[86,136]

In contrast adeno-associated virus serotype 8 (AAV8)-
mediated overexpression of humanHNF4a in hepatocytes
prevents the development of hepatosteatosis induced by a
diet enriched im high fat/cholesterol/fructose (HFCF).[56]

In addition to regulating VLDL secretion, hepatocyte
HNF4a is an essential regulator of hepatic lipolysis and
FAO.[137] Hepatic CES1 and CES2 are shown to have
TGH activity and their overexpression increases hepatic
triglyceride hydrolysis and FAO, leading to reduced
hepatic TG levels.[138,139] Both CES1 and CES2 are direct
target genes of HNF4a.[139,140] Overexpression of
hepatocyte HNF4a promotes lipolysis and FAO, whereas
loss of hepatocyte HNF4a has opposite effects.[137] Thus,
CES1 and CES2 may be partly involved in the regulation
of lipolysis and FAO and hepatic TG levels by HNF4a.
HNF4a and NASH

AAV8-mediated overexpression of human HNF4a in
hepatocytes protects against HFCF diet-induced steato-
hepatitis, whereas loss of hepatocyte HNF4a has an
opposite effect.[137] P53 is a tumor suppressor and a
primary stress sensor that is induced in the liver of NAFLD
patients and experimental NASH.[141-143] Ablation or
inhibition of p53 attenuates diet-induced apoptosis and
steatohepatitis.[141,144] Overexpression of HNF4a inhib-
its p53 expression and apoptosis in a p53-dependent
manner.[137] HNF4a plays an important role in regulating
bile acid synthesis. Cholesterol 7a-hydroxylase (CYP7A1)
and sterol 12a-hydroxylase (CYP8B1) are two of the key
enzymes in the classic pathway of bile acid biosynthesis.
BothCyp7a1 andCyp8b1 are reduced inHnf4aDHep mice.
Recapitulation of hepatic Cyp7a1 and Cyp8b1 expression
in Hnf4aDHep mice prevents HFCF diet-induced NASH,
which likely results from activation of FXR[137] as bile
acids are endogenous ligands for FXR. FXR activation by
OCA is shown to inhibit p53 activation and apoptosis.[145]

Overexpression of hepatocyte HNF4a also reduces
hepatic FC and FFA levels whereas loss of hepatocyte
HNF4a has opposite effects. The changes in hepatic FC
and FFA levels may also contribute to hepatic lipotoxicity
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Figure 3: Hepatic HNF4a regulates the development and progression of NAFLD via
multiple pathways.HepaticHNF4a expression is reduced inNAFLD,diabetesandobesity, and
by western diet feeding. HNF4a reduces hepatic lipotoxicity by regulating several pathways,
including the induction of lipolysis, FAO, VLDL secretion, and bile acid synthesis. HNF4a also
inhibits P53 activity. As a result, hepatic apoptosis, oxidative stress, inflammation, and
fibrogenesis are inhibited. FC: Free cholesterol; FAO: Fatty acid oxidation; FFAs: Free fatty
acids; FXR: Farnesoid X receptor; HNF4a: Hepatocyte nuclear factor 4a; NAFLD:Nonalcoholic
fatty liver disease; TG: Triglycerides; VLDL: Very low- density lipoprotein.

Chinese Medical Journal 2022;135(10) www.cmj.org
and NASH development. In addition, HNF4a is shown to
inhibit the expression and nuclear translocation of RelA
(p65) and NF-kB activation via induction of miR-7 and
miR-124.[146] NASH is a risk factor for HCC. Over-
expression of HNF4a inhibits the development of HCC
likely by inhibiting b-catenin activation.[147,148]
HNF4a as a therapeutic target

Since hepatic HNF4a is markedly repressed in NASH and
liver fibrosis.[2-6] HNF4a may be a therapeutic target for
treatment of NAFLD. Adenovirus-mediated overexpres-
sion of HNF4a is shown to attenuate liver fibrosis induced
by dimethylnitrosamine or bile duct ligation.[5] AAV8-
mediated overexpression of HNF4a under the control of
an albumin promoter is shown to attenuate HFCF diet-
induced NAFL and NASH.[137] Yang et al[6] show that
delivery of HNF4a mRNA in lipid nanoparticles to four
different mouse models protects against hepatoxin- and
cholestasis-induced liver fibrosis. Compounds that can
induce HNF4a expression or activation have also been
investigated. Lee et al[149] show that N-trans caffeoyltyr-
amine (NCT) is an HNF4a activator, and administration
of this compound can prevent HFD-induced hepatostea-
tosis, although its role in NASH needs to be evaluated.
These promising findings suggest that HNF4a may be a
good candidate for treatment of NASH.
Conclusion and Future Perspectives

NAFLD is the most common chronic liver disease in
developed countries. So far, the pathogenic mechanisms of
NAFLD remain to be fully elucidated. No drugs have been
approved for NASH treatment. As one of the most
abundantly expressed genes in the liver, HNF4a appears
to be a key player in the pathogenesis of NAFLD, which is
supported by several lines of evidence. First, the expres-
sion of hepatic HNF4a is markedly reduced in NAFLD
1177
patients, diabetic or HFD-fed mice, and fibrotic livers.
Second, ablation of hepatocyte HNF4a promotes the
development and progression of NAFLD in a mouse
model of NASH. Third, AAV8-mediated overexpression
of HNF4a in hepatocytes attenuates steatohepatitis in
mice. Delivery of HNF4a by adenovirus or lipid nano-
particles-embedded mRNA inhibits liver fibrogenesis.
Administration of a compound that induces HNF4a
expression prevents HFD from inducing hepatosteatosis.
These findings highlight the importance of HNF4a in the
pathogenesis of NAFLD and suggest that hepatic HNF4a
may be targeted for treatment of NAFLD.

Hepatic HNF4a inhibits the development and progression
of NAFLD via regulation of multiple pathways, including
VLDL secretion, lipolysis, FAO, apoptosis, lipotoxicity,
and inflammation. P53 and bile acid signaling pathways
playan important role in theprogressionofNAFLtoNASH
mediated by HNF4a. Although increased hepatic HNF4a
expression may cause hyperlipidemia via increased VLDL
secretion, Huang et al[150] report that delivery of small
activating RNA specific for upregulating HNF4a to rats
improves FAO and liver steatosis, and lowers plasma TG
levels, suggesting that raising hepatic HNF4a expression
may even improve dyslipidemia. Hepatic HNF4a can
increase TG hydrolysis, FAO, and the conversion of
cholesterol to bile acids via inducingCYP7A1 andCYP8B1
expression, whichmay help to reduce VLDL-TG or VLDL-
cholesterol levels. Considering the factors discussed above,
it is plausible to summarize that hepatic HNF4a is a
promising therapeutic target for NASH.
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