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Dnm2fl/fl Pf4-Cre (Dnm2Plt–/–) mice lacking the endocytic GTPase dynamin 2

(DNM2) in platelets and megakaryocytes (MKs) develop hallmarks of

myelofibrosis. At the cellular level, the tyrosine kinase JAK2 is constitutively

active but decreased in expression in Dnm2Plt–/– platelets. Additionally,

Dnm2Plt–/– platelets cannot endocytose the thrombopoietin (TPO) receptor

Mpl, leading to elevated circulating TPO levels. Here, we assessed whether the

hyperproliferative phenotype of Dnm2Plt–/– mice was due to JAK2 constitutive

activation or to elevated circulating TPO levels. In unstimulated Dnm2Plt–/–

platelets, STAT3 and, to a lower extent, STAT5 were phosphorylated, but their

phosphorylation was slowed and diminished upon TPO stimulation. We further

crossed Dnm2Plt–/– mice in the Mpl–/– background to generate Mpl–/–

Dnm2Plt–/– mice lacking Mpl ubiquitously and DNM2 in platelets and MKs.

Mpl–/– Dnm2Plt–/– platelets had severely reduced JAK2 and STAT3 but normal

STAT5 expression.Mpl–/– Dnm2Plt–/– mice had severely reduced bone marrow

MK and hematopoietic stem and progenitor cell numbers. Additionally, Mpl–/–

Dnm2Plt–/– mice had severe erythroblast (EB) maturation defects, decreased

expression of hemoglobin and heme homeostasis genes and increased

expression of ribosome biogenesis and protein translation genes in spleen

EBs, and developed anemia with grossly elevated plasma erythropoietin (EPO)

levels, leading to early fatality by postnatal day 25. Mpl–/– Dnm2Plt+/+ mice had

impaired EB development at three weeks of age, which normalized with

adulthood. Together, the data shows that DNM2-dependent Mpl-mediated

endocytosis in platelets andMKs is required for steady-state hematopoiesis and

provides novel insights into a developmentally controlled role for Mpl in normal

erythropoiesis, regulating hemoglobin and heme production.
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Key Points
Fron
• Dynamin 2 (DNM2)-dependent Mpl-mediated

endocytosis in platelets and megakaryocytes is required

for steady-state hematopoiesis.

• Mpl developmentally regulates mouse erythropoiesis.
Introduction

Blood platelets play an essential role in maintaining

hemostasis and the integrity of the vasculature. High blood

platelet count and platelet hyperactivation increase the risk of

thrombosis and stroke, while low blood platelet count and

platelet dysfunction predispose to hemorrhage. Platelets also

participate in antimicrobial host defense and secrete

cytokines that can induce inflammation and growth factors

contributing to tissue repair. Thus, platelet homeostasis must

be tightly regulated to avoid adverse effects of high or low

platelet count.

Signaling of the hematopoietic cytokine thrombopoietin

(TPO) through its receptor Mpl is essential for thrombopoiesis

(1–3) and hematopoietic stem and progenitor cell (HSPC)

maintenance (4–10). Patients with loss-of-function mutations

in TPO or Mpl develop congenital amegakaryocytic

thrombocytopenia (CAMT) and subsequent bone marrow

failure (11–13). Mice lacking either TPO or Mpl have low

megakaryocyte (MK) numbers and consequently develop

severe thrombocytopenia (14–16). Hepatocytes are a major

source of TPO, secreting the cytokine into the blood

circulation (17). The mechanisms regulating circulating TPO

levels are being debated. In one model, levels of circulating TPO

are maintained solely by its uptake and metabolism by high-

affinity Mpl receptors on platelets and MKs (18–23). In another

model, circulating platelet levels regulate TPO mRNA

expression in the liver by the proinflammatory cytokine

interleukin 6 (IL-6), providing a regulated pathway to increase

platelet production during acute inflammatory responses

(24–26). More recent data suggest that the removal of aged,

asialylated platelets stimulates hepatic TPO synthesis to

maintain steady-state circulating TPO and platelet levels (27).

In platelets and MKs, the interaction between TPO and its

receptor Mpl initiates an intracellular signaling cascade that

involves the phosphorylation and activation of the tyrosine

kinase JAK2 and the subsequent phosphorylation of

signal transducer and activator of transcription (STAT)

proteins (28). TPO binding to Mpl is also associated

with cellular uptake of TPO and its subsequent degradation

in a process regulated by receptor-mediated endocytosis

(RME) (29, 30). RME plays an integral and physiologically
tiers in Oncology 02
relevant part in regulating plasma TPO levels. Cells

expressing the JAK2V617F mutant commonly found in

myeloproliferative neoplasm (MPN) patients display

reduced recycling and increased degradation of Mpl,

leading to elevated circulating TPO levels (31, 32). Mice

specifically lacking Mpl or JAK2 in platelets and MKs, in

which Mpl-mediated TPO endocytosis is blunted, display

severe HSPC and MK hyperplasia and consequent

thrombocytosis (33–35). However, the role of impaired

TPO homeostasis in the HSPC and MK hyperplasia has not

been conclusively demonstrated.

Dynamin 2 (DNM2) is a highly conserved GTPase

essential for RME (36). DNM2 mutations in humans have

been associated with Charcot-Marie-Tooth disease,

centronuclear myopathy, and early T-cell precursor acute

lymphoblastic leukemia (37–39). Ubiquitous Dnm2 deletion

or loss of function in mice results in early embryonic lethality

(40, 41). We have previously shown that Dnm2fl/fl Pf4-Cre

(Dnm2Plt–/–) mice lacking DNM2 in platelets and MKs

develop HSPC and MK hyperplasia, extramedullary

hematopoiesis, and splenomegaly (42). Additionally,

Dnm2Plt–/– mice develop severe macrothrombocytopenia

and bleeding (43). At the cellular level, Dnm2Plt–/– platelets

display constitutive activation but decreased expression of

JAK2 and are unable to endocytose Mpl, leading to elevated

circulating TPO levels.

Here, we assessed whether the hyperproliferative phenotype

of Dnm2Plt–/– mice was due to JAK2 constitutive activation or

elevated circulating TPO levels. STAT3 and to a lower extent

STAT5 were phosphorylated in unstimulated Dnm2Plt–/–

platelets. However, their phosphorylation was slowed and

diminished when Dnm2Plt–/– platelets were stimulated with

TPO. Additional Mpl deletion resulted in the loss of JAK2 and

STAT3, but not STAT5 in Mpl–/– Dnm2Plt–/– platelets, linking

JAK2 and STAT3 expression to Mpl and DNM2. At three weeks

of age, Mpl–/– Dnm2Plt–/– mice displayed a near complete

depletion of bone marrow MKs and significantly reduced

HSPCs, indicating that Mpl is the primary receptor

contributing to the hyperproliferative phenotype of Dnm2Plt–/–

mice. However, Mpl–/– Dnm2Plt–/– mice showed severe anemia,

erythroblast (EB) maturation defects, decreased expression of

hemoglobin and heme homeostasis genes and increased

expression of ribosome biogenesis and protein translation

genes in spleen EBs, and gross ly e levated plasma

erythropoietin (EPO) levels, resulting in early fatality by

postnatal day 25. Mpl–/– Dnm2Plt+/+ mice also displayed

reduced EB development, which returned to normal with

adulthood. Taken together, the data shows that DNM2-

dependent Mpl-mediated endocytosis in platelets and MKs

is required for steady-state hematopoiesis and provides

novel insights into a developmentally controlled role for Mpl

in normal erythropoiesis, regulating hemoglobin and

heme production.
frontiersin.org

https://doi.org/10.3389/fonc.2022.959806
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Eaton et al. 10.3389/fonc.2022.959806
Methods

Mice

Dnm2Plt–/– mice were crossed with Mpl–/– mice to obtain

mice lacking DNM2 in platelets and MKs and Mpl ubiquitously

(14, 42). Mouse genotyping was confirmed by PCR of ear tissue

DNA using primers: CCCTGCTAGTGACCTTTCTTGA

(forward) and GCAGGAAGACACACAACTGAAC (reverse;

Dnm2+ 172bp and Dnm2fl 271bp); CCTGTATTCC

CAGAGTGTGCC (forward), GGAGCTTGAGCAGGTAG

AGAG (reverse; Mpl+ 203bp), and CCAGCTCATTCCT

CCCACTC (reverse; Mpl– 295bp); and AGATGCCAG

GACATCAGGAACCTG (forward) and ATCAGCCACAC

CAGACACAGAGATC (reverse; Pf4-iCre 237bp). Mice were

treated according to the National Institutes of Health and

Medical College of Wisconsin Institutional Animal Care and

Use Committee guidelines (Animal Use Application 5600).
Platelet preparation

Mouse blood was collected from the retroorbital plexus in

anticoagulant citrate dextrose solution (43). Platelet-rich plasma

was obtained by centrifugation of the blood at 100 g for 8 min,

followed by centrifugation of the supernatant and buffy coat at

100 g for 6 min. After washing twice in washing buffer (140 mM

NaCl, 5 mM KCl, 12 mM trisodium citrate, 10 mM glucose, and

12.5 mM sucrose, pH 6.0), platelets were resuspended at 4 x 10

(8) platelets/ml in resuspension buffer (140 mM NaCl, 3 mM

KCl, 0.5 mM MgCl2, 5 mM NaHCO3, 10 mM glucose, 10 mM

HEPES, pH 7.4) and were allowed to rest for 30 min before use.
Immunoblot analysis

Platelets were lysed in 1% Nonidet P-40, 150 mMNaCl, and 50

mM Tris/HCl, pH 7.4, containing 1 mM EGTA, 1 mM sodium

orthovanadate, and cOmplete Protease Inhibitor Cocktail (Roche).

SDS-PAGE buffer was added to lysates in the presence of 1% b-
mercaptoethanol. Proteins were resolved by SDS-PAGE following

quantification by Bradford protein assay and transferred onto

PVDF membrane. After blocking overnight with 1% BSA in 0.2%

Tween-20, 100 mM NaCl, and 20 mM Tris/HCl, pH 7.4,

membranes were probed with rabbit antibodies directed against

total or phosphorylated STAT3 (Tyr705) and STAT5 (Tyr694 in

STAT5A; Tyr699 in STAT5B) (Cell Signaling), JAK2, b-actin, or
GAPDH, followed by secondary horseradish peroxidase-conjugated

goat anti-rabbit IgG antibody (Thermo Fisher Scientific). Detection

was performed by enhanced chemiluminescence.
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Complete blood counts

Mouse blood was collected from retroorbital plexus and

diluted in Cellpack (Sysmex) supplemented with EDTA and

PGE1 (43, 44). Complete blood counts were measured on a

Sysmex XT-2000i automatic hematology analyzer.
TPO and EPO levels

Plasma EPO and TPO levels were quantified using a Mouse

Thrombopoietin and Erythropoietin Quantikine ELISA kit

(R&D Systems), respectively, following manufacturer

recommendations (42).
Cryosectioning and immunolabeling

Femurs of mice were fixed overnight in 1% paraformaldehyde/

phosphate-lysine-sodium periodate and cryoprotected for at least

72 h in a 30% sucrose/phosphate buffer solution at 4°C before

subsequent freezing in Sakura Tissue Tek O.C.T. compound

(Andwin Scientific). Frozen cryosectioning on slides was

performed at the Medical College of Wisconsin Histological

Laboratory and Core Center. For MK counts, 7-µm femur

sections were rehydrated and permeabilized in TBS-T for 15 min

at room temperature (RT) then blocked overnight in a 5% BSA/PBS

solution at 4°C. Sections were incubated for 2 h at RT with

monoclonal rat-anti-GPIba (Emfret Analytics) and polyclonal

rabbit anti-laminin (Sigma-Aldrich) followed by a 1 h RT

incubation with conjugated secondary antibodies (Molecular

Probes). Sections were washed and mounted with Prolong

Diamond Antifade Mountant with DAPI (Invitrogen) and

imaged on a Nikon Eclipse Ti2-E platform equipped with a DS-

Qi2 camera and Plan Apo 10x/0.45 (NIS-Elements AR 5.02.00

software). Data were image-processed using Imaris (Bitplane) and

Matlab (Mathworks) softwares. Surfaces were created toward the

greatest signal intensities GPIba-positive cells and quantitatively

analyzed using Imaris and Excel (Microsoft).
Bone marrow and spleen histology

Mouse femurs and spleens were fixed overnight in 4%

paraformaldehyde/PBS. Bones were decalcified in 0.5 M

EDTA, pH 8.0 (Boston BioProducts) for 7 days under

rotation, exchanging EDTA twice daily. Tissues were paraffin

embedded, and sections were stained with hematoxylin and

eosin (H&E) at the Versiti Blood Research Institute and

Medical College of Wisconsin Histology Core.
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Blood smears

Blood smears were performed via Wright-Giemsa stain.

Anticoagulated whole blood was thinly smeared across a glass

slide and fixed for 3 min in methanol, stained 1 min in Wright-

Giemsa, and washed for 5 min in PBS. Imaging was performed

on a Nikon Eclipse E600 microscope equipped with a SPOT

insight firewire color mosaic camera (SPOT imaging solutions)

and Plan Apo 40x/0.75 objective, with SPOT imaging

5.1.3 software.
Flow cytometry analysis

Spleen and bone marrow cells were collected and

homogenized through a 70-µm filter. For the EB analysis,

spleen cells were stained with FITC-conjugated anti-CD71

and PE-conjugated anti-TER-119 (BD Biosciences) after

homogenization and washing (45, 46). For the HSPC

analysis, bone marrow cells were prepared for staining by

erythrocyte lysis (BD Pharm Lyse; BD Biosciences). Cells

were then stained in ice-cold PBS containing 2% FBS using

the following antibodies: lineage cocktail containing TER-

119, CD11b (Mac-1), Ly-6G/Ly-6C (Gr-1), CD3ϵ, and

CD45R (B220); CD117 (Kit); Ly-6A/E (Sca-1); CD150

(Slamf1); CD48 (Slamf2); CD16/32; CD34; CD41 (Itga2b);

and CD105 (endoglin) (BioLegend and eBiosciences). 4′,6
Diamidino-2-phenylindole (Invitrogen) was used for dead

cell discrimination. SLAM and MKEP panels used were

described previously (47–49). Samples were analyzed by

flow cytometry using an LSR II (BD Biosciences) .

Post-acquisition analysis of data was performed with

FlowJo software.
Erythroblast Dnm2 DNA analysis

Spleen cells were collected and homogenized through a 70-µm

filter and leukocytes were depleted using anti-CD45 beads

(Miltenyi Biotec). Remaining cells were stained with FITC-

conjugated anti-CD71, PE-conjugated anti-TER-119, and APC-

conjugated anti-CD45 as control. Immature CD71high EBs were

collected on a FACSAria II cell sorter (BD Biosciences). EB

genomic DNA was obtained using the QIAamp Mini DNA kit

(Qiagen). Duplicates of real-time PCR experiments were

performed on a QuantStudio 6 Flex Real-Time PCR System

(Applied Biosystems) amplifying Dnm2 and Rn18s as reference

(50). Primers used were: CCCTGCTAGTGACCTTTCTTGA

(forward) and GCAGGAAGACACACAACTGAAC (reverse;

Dnm2fl 271bp); and TTGACGGAAGGGCACCACCAG
Frontiers in Oncology 04
(forward) and GCACCACCACCCACGGAATCG (reverse;

Rn18s 131bp). Ct numbers were extracted for both Dnm2 and

Rn18s with auto baseline and manual threshold.
Erythroblast Bulk RNA sequencing
analysis

EB RNA was isolated using Trizol reagent (Invitrogen)

and an Autogen Prep-245 system and was assessed with the

Bioanalyzer RNA Nano Assay (Agilent). All samples had

observed RNA Integrity Number values >7.4 with DV200

over 81%. RNA libraries were prepared (Illumina TruSeq

Stranded mRNA, single indexed) and run on the Illumina

High Seq-2500 for 125bp paired end reads at the Medical

College of Wisconsin Genomic Sciences and Precision

Medicine Center. Samples were sequenced to an average

depth of 40 million reads. All data was quality controlled

using FastQC and RSeQC, followed by manual review and

data visualization (51). Bulk RNA-seq data were aligned to

the Mus musculus mm10 genome and quality control was

performed using Nextflow pipeline (nf-core/rnaseq 1.4.2)

(DOI:10.5281/zenodo.1400710) (52). Gene expression was

quantified at the gene level using Salmon. RNA-seq libraries

were then normalized and genes were tested for differential

expression between Dnm2Pl t+ /+ , Dnm2Pl t– /– , Mpl– /–

Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– samples with DESeq2

v1.24.0 (53). DESeq2 Wald tests were used to determine

whether fold changes were significantly different from zero.

For visualization, data were transformed using the

regularized logarithm transformation (53). Pre-ranked gene

set enrichment analyses were conducted using shrunken fold-

changes and clusterProfiler v3.12.0 (54). Kyoto Encyclopedia

of Genes and Genomes (KEGG), Reactome, and GO

databases were used for Gene Set Enrichment Analysis

(GSEA) (55–57). The Benjamini-Hochberg method was

used to adjust p-values for false-discovery in both

differential expression and GSEA analyses (58). Genes were

defined as differentially expressed if they were upregulated or

downregulated 1.5-fold with an adjusted P-value <.05.
Statistical analysis

Results were compared statistically with the unpaired

Student’s t-test (mean comparison between two groups), one-

and two-way ANOVA (mean comparison between multiple

groups), and the Log-rank test (survival distribution

comparison) using Prism software (GraphPad). Differences

were considered statistically significant when P <.05.
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Results

Impaired STAT signaling in
Dnm2Plt–/– platelets

The TPO-Mpl interaction initiates a signaling cascade that

involves JAK2 activation and the subsequent phosphorylation of

STAT proteins (28). Dnm2Plt–/– mice specifically lacking DNM2

in platelets and MKs develop HSPC and MK hyperplasia,

extramedullary hematopoiesis, and splenomegaly (42). While

JAK2 expression is decreased in Dnm2Plt–/– platelets, its TPO-

independent phosphorylation at tyrosine residues 1007 and 1008

indicates constitutive activation (42). To understand the

alterations in JAK2-STAT signaling, we evaluated the

phosphorylation of STAT3 and STAT5 in Dnm2Plt–/– platelets

(Figures 1A−C). As expected, STAT3 and STAT5 were not

phosphorylated in unstimulated control Dnm2Plt+/+ platelets.

Incubation of Dnm2Plt+/+ platelets with 50 ng/ml of TPO

resulted in STAT3 and STAT5 phosphorylation on tyrosine

residues 705 and 694/699, respectively, that began at 2 min and

became maximal at 5 min. We observed STAT3 and to a lower

extent STAT5 phosphorylation in unstimulated Dnm2Plt–/–
Frontiers in Oncology 05
platelets. However, compared to controls, STAT3 and STAT5

phosphorylation was slowed and diminished in Dnm2Plt–/–

platelets following stimulation with TPO. The data is

consistent with JAK2 constitutive activation but decreased

expression in Dnm2Plt–/– platelets.

To ascertain the role of impaired Mpl-mediated

endocytosis in the hyperproliferative phenotype, we crossed

Dnm2Plt–/– mice in the Mpl–/– background to generate mice

lacking DNM2 in platelets and MKs and Mpl ubiquitously. We

measured a ~60% and ~50% reduction in JAK2 expression in

platelets lacking DNM2 and Mpl, respectively (Figures 1D, E).

By contrast, expression of STAT3 and STAT5 was increased by

~40% in platelets lacking DNM2, but was unaffected by Mpl

deletion (Figures 1D, F, G). The combined deletion of DNM2

and Mpl resulted in the loss of JAK2 and STAT3, but not

STAT5 in Mpl–/– Dnm2Plt–/– platelets (Figures 1D−G).

Together, the data links JAK2 and STAT3, but not STAT5

homeostasis in platelets to Mpl and DNM2 expression. While

proteins were loaded according to protein amount, no standard

controls (b-actin, b-tubulin, GAPDH) gave a good signal forMpl–/

– Dnm2Plt–/– platelets, suggesting major protein up- and

down-regulation.
A B

D E F G

C

FIGURE 1

JAK2-STAT signaling defects in Dnm2Plt–/– platelets. (A) Dnm2Plt+/+ and Dnm2Plt–/– platelets were activated with 50 ng/ml TPO for 10 min at
37°C, lysed, subjected to SDS-PAGE, and probed for total and phosphorylated STAT3 (pSTAT3; Tyr705), total and phosphorylated STAT5
(pSTAT5; Tyr694 in STAT5A, Tyr699 in STAT5B), and b-actin as loading control, as indicated. Densitometry analysis of STAT3 (B) and STAT5 (C)
phosphorylation. Results represent mean ± SD of 4 independent experiments and are compared statistically by two-way ANOVA (**,P <.01;
***, P <.001). (D) Platelet lysates of Dnm2Plt+/+, Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– mice at P24 corresponding to 2 µg of
protein were subjected to SDS-PAGE and probed for JAK2, STAT3, STAT5, and GAPDH as loading control, as indicated. Results are
representative of 3 independent experiments. Densitometry analysis of JAK2 (E), STAT3 (F), and STAT5 (G) expression. Results represent mean ±
SD of 3 independent experiments and are compared statistically by one-way ANOVA (ns, not significant, *P <.05; **P <.01; ***P <.001).
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Early lethality in Mpl–/– Dnm2Plt–/– mice

We crossed Mpl–/– Dnm2Plt+/+ and Mpl+/– Dnm2Plt–/– mice

and obtained four offspring genotypes, i.e., Mpl+/– Dnm2Plt+/+,

Mpl+/– Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/–,

with a normal Mendelian inheritance ratio at birth (data not

shown). Mpl+/– Dnm2Plt+/+, Mpl+/– Dnm2Plt–/–, and Mpl–/–

Dnm2Plt+/+ mice reached adulthood (Figure 2A), as described

previously for Dnm2Plt–/– and Mpl–/– mice (14, 42). By contrast,

Mpl–/– Dnm2Plt–/– mice became pale and moribund (data not

shown) and died at a median age of 25 days postnatally (Log-

rank P <.001).

We measured body weights at postnatal day 14 (P14), P19,

and P24 (Figure 2B). WhileMpl+/–Dnm2Plt+/+,Mpl+/–Dnm2Plt–/–,

and Mpl–/– Dnm2Plt+/+ mice gained weight over time, Mpl–/–

Dnm2Plt–/– mice failed to thrive after P14 and showed

diminutive growth at P24, with a body weight of 9.05 ± 3.48 g,

compared to 13.07 ± 1.88 g in Mpl+/– Dnm2Plt+/+ littermates, a

31% decrease (P = .005). DNM2 deletion in platelets and MKs led

to severe splenomegaly, independently of Mpl expression

(Figure 2C), indicating that the extramedullary hematopoiesis of

Dnm2Plt–/– mice was not related to impaired Mpl-mediated

endocytosis in platelets and MKs.
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Severe anemia in Mpl–/– Dnm2Plt–/– mice

To understand the cause of early mortality of Mpl–/–

Dnm2Plt–/– mice, we measured hematological parameters

between birth (P0) and P24. In Mpl+/– Dnm2Plt+/+ mice, the

platelet count increased from 536 ± 130 x 103/µl at P0 to 1398 ±

257 x 103/µl at P24 (Figure 2D), as described for control Mpl+/+

mice (44). Consistent with previous observations (14, 42), mice

lacking DNM2 in platelets and MKs and/or Mpl ubiquitously

developed severe thrombocytopenia, with platelet counts

constantly below 200 x 103/µl, which was observed at birth

and throughout development.

The RBC count rose continuously in Mpl+/– Dnm2Plt+/+,

Mpl+/– Dnm2Plt–/–, and Mpl–/– Dnm2Plt+/+ mice (Figure 2E). By

contrast, the RBC count failed to increase after P14 in Mpl–/–

Dnm2Plt–/–mice, which displayed severe anemia and an aberrant

increase in reticulocyte count at P24 (Figure 2F). All four mouse

genotypes had a normal white blood cell (WBC) count

throughout development (Figure 2G). Together, the data

suggested that DNM2 deletion in platelets and MKs combined

with Mpl ubiquitous deletion induced an age-dependent lethal

anemia in Mpl–/– Dnm2Plt–/– mice. We, therefore, investigated

megakaryopoiesis and erythropoiesis in further detail.
A B D

E F G

C

FIGURE 2

Mpl–/– Dnm2Plt–/– mice exhibit early lethality, failure to thrive, splenomegaly, and severe anemia. (A) Survival of Mpl+/– Dnm2Plt+/+, Mpl+/–

Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– littermates. Results are estimated using the Kaplan-Meier method and are compared
statistically using the Log-rank test (n = 20 mice in each group: ***, Log-rank P <.001). Body weights (B) and spleen/body ratio (C) at P14, P19,
and P24. Platelet (D), RBC (E), reticulocyte (F), and WBC (G) counts from birth (P0) to postnatal day 24 (P24). Results represent mean ± SD of
5-19 independent experiments and are compared statistically by two-way ANOVA (**P <.01; ***P <.001).
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The MK hyperplasia of Dnm2Plt–/– mice
requires Mpl expression

We evaluated platelet counts and bone marrow

megakaryopoiesis at P24 and P56 (Figure 3). At P24, DNM2

deletion in platelets and MKs and/or Mpl ubiquitous deletion

resulted in comparable severe thrombocytopenia with platelet

counts of 111 ± 43 x 103/µl in Dnm2Plt–/–, 158 ± 53 x 103/µl in

Mpl–/– Dnm2Plt+/+, and 189 ± 196 x 103/µl in Mpl–/– Dnm2Plt–/–,

compared to 1243 ± 300 x 103/µl in control Dnm2Plt+/+ mice

(P <.0001) (Figure 3A). Similar low platelet counts were obtained

at P56, with 152 ± 57 x 103/µl in Dnm2Plt–/– and 151 ± 79 103/µl

in Mpl–/– Dnm2Plt+/+ mice, compared to 1299 ± 227 x 103/µl in

control Dnm2Plt+/+mice (P <.001) (Figure 3E). Due to their early

lethality, hematological parameters could not be evaluated at

P56 for Mpl–/– Dnm2Plt–/– mice.

We evaluated bone marrow MKs by immunofluorescence

microscopy using an antibody directed against GPIba. At P24,
Dnm2Plt–/–mice displayed a severe MK hyperplasia, with 104.1 ±

4.5 MKs/mm2, compared to 23.3 ± 1.6 MKs/mm2 in control

Dnm2Plt+/+ mice (P <.001), a 4.5-fold increase (Figures 3B, C).

Mpl deletion resulted in near-complete depletion of bone

marrow MKs in Mpl–/– Dnm2Plt–/– mice (2.5 ± 1.3 MKs/mm2),
Frontiers in Oncology 07
like Mpl–/– Dnm2Plt+/+ mice (5.0 ± 1.6 MKs/mm2). Comparable

results were obtained by H&E staining in femur bone marrow

and spleen tissues (Supplementary Figures 1A, B), and the MK

hypoplasia of Mpl–/– Dnm2Plt+/+ mice remained at P56

(Figures 3F, G). The data demonstrated that the MK

hyperplasia of Dnm2Plt–/– mice required the expression of the

TPO receptor Mpl.

Consistent with the loss of DNM2-dependent Mpl-mediated

endocytosis, plasma TPO levels were elevated in mice lacking

DNM2 in platelets and MKs and/or Mpl ubiquitously: 1253 ±

411 pg/ml in Dnm2Plt–/–, 6318 ± 1014 pg/ml in Mpl–/– Dnm2Plt

+/+, and 5144 ± 800 pg/ml inMpl–/– Dnm2Plt–/–, compared to 269

± 139 pg/ml in control Dnm2Plt+/+ mice (P <.001) (Figure 3D).

Together, the data showed that Mpl-mediated endocytosis in

platelets and MKs required DNM2 expression to regulate plasma

TPO levels.
Severe erythroid maturation defects in
Mpl–/– Dnm2Plt–/– mice

Because of the escalating RBC deficit and death at P25, we

evaluated RBC counts and erythroid maturation more in detail
A B D

E F G

C

FIGURE 3

The MK hyperplasia of Dnm2Plt–/– mice requires Mpl expression. Platelet count at P24 (A) and P56 (E). Results represent mean ± SD of 7-13
independent experiments and are compared statistically by one-way ANOVA (ns, not significant, ***, P <.001). Seven-µm frozen bone marrow
sections of Dnm2Plt+/+, Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– mice at P24 (B) and P56 (F) were probed for resident MKs (GPIba,
green) and bone marrow vasculature (laminin, red). Sections shown are representative of 3-4 mice in each genotype. Scale bars represent 150 µm.
Bone marrow MK numbers at P24 (C) and P56 (G). Results represent mean ± SD of 3-4 independent experiments and are compared statistically by
one-way ANOVA (ns, not significant, **P <.01; ***P <.001). (D) Plasma TPO levels at P24. Results represent mean ± SD of 5-16 independent
experiments and are compared statistically by one-way ANOVA (*P <.05; **P <.01; ***P <.001).
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at P24 (Figures 4A−E). Dnm2Plt–/– and Mpl–/– Dnm2Plt+/+ mice

had normal RBC counts with and 7247 ± 513 x 103/µl and 6900

± 750 x 103/µl, respectively, compared to 7255 ± 727 x 103/µl in

control Dnm2Plt+/+ mice (Figure 4A), indicating that individual

loss of either DNM2 in platelets and MKs or Mpl ubiquitously

does not affect RBC counts. By contrast, DNM2 deletion in

platelets and MKs combined with ubiquitous Mpl deletion led to

a significant decrease in RBC count to 2171 ± 983 x 103/µl in

Mpl–/– Dnm2Plt–/– mice (P <.001). The severe anemia of Mpl–/–

Dnm2Plt–/– mice was accompanied by a grossly elevated

reticulocyte count of 83.8 ± 23.8%, compared to 7.3 ± 1.4%,

14.6 ± 7.1%, and 13.5 ± 7.0% in Dnm2Plt+/+, Dnm2Plt–/–, and

Mpl–/– Dnm2Plt+/+ mice, respectively (P <.001) (Figure 4B).

Analyzing thin blood smears showed that Mpl–/– Dnm2Plt–/–

mice developed marked polychromasia (Supplementary

Figure 1C), suggesting premature release during RBC formation.

Erythroid maturation at P24 was evaluated by flow

cytometry analysis using CD71 and TER-119 as surface

erythroid markers (Figure 4C), where immature EBs are

defined as CD71high/TER-119low and mature EBs as CD71low/

TER-119high (45, 46). In the spleens of control Dnm2Plt+/+ mice,

76.3 ± 8.5% of erythroid cells were mature CD71low/TER-119high

EBs (Figure 4D). The population decreased to 41.7 ± 21.7% in

Dnm2Plt–/– mice (P = .006) and 37.9 ± 21.1% in Mpl–/–
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Dnm2Plt+/+ mice (P <.001). In the spleens of Mpl–/– Dnm2Plt–/–

mice, only 4.5 ± 5.3% (P <.001) of erythroid cells were marked as

mature EBs, as the majority failed to properly develop beyond an

earlier CD71high stage.

While plasma EPO levels were in the normal range in

Dnm2Plt–/– and Mpl–/– Dnm2Plt+/+ mice, they were grossly

elevated in Mpl–/– Dnm2Plt–/– mice, with 325 ± 282 ng/ml,

compared to 314 ± 128 pg/ml in control Dnm2Plt+/+ mice (P

<.001), a ~1000-fold increase (Figure 4E). The data showed that

the severe anemia of Mpl–/– Dnm2Plt–/– mice was due to a

blockade of erythroid maturation at an early CD71high stage.

Thus, the loss of DNM2 in platelets and MKs combined with

Mpl ubiquitous deletion caused a severe defect in erythrocyte

development and maturation.
Mpl contributes to erythroblast
maturation during early mouse
development

While Mpl deficiency has been associated with

pancytopenia in humans (59), anemia has not been

observed in mice lacking either Mpl or TPO, which mainly

develop thrombocytopenia (14–16). To understand how our
A B D E
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C

FIGURE 4

Mpl–/– Dnm2Plt–/– mice exhibit impaired erythroid development at P24. RBC count at P24 (A) and P56 (F). Reticulocyte count at P24 (B) and
P56 (G). Results represent mean ± SD of 4-18 independent experiments and are compared statistically by one-way ANOVA (ns, not significant,
***P <.001). Flow cytometry profiles of spleen EBs at P24 (C) and P56 (H) using the erythroid markers CD71 and TER-119. Data shown are
representative of 3-13 mice in each genotype. Percentage of mature spleen CD71low/TER-119high EBs at P24 (D) and P56 (I). Results represent
mean ± SD of 5-10 independent experiments and are compared statistically by one-way ANOVA (ns, not significant, *P <.05; **P <.01;
***P <.001). Plasma EPO levels at P24 (E). Results represent mean ± SD of 5-15 independent experiments and are compared statistically by one-
way ANOVA (ns, not significant, ***P <.001). (J) Genomic Dnm2 expression in isolated spleen CD71high EBs was evaluated by qPCR and
normalized to Dnm2Plt+/+ cells. Results represent mean ± SD of 4 independent experiments and are compared statistically by Student’s t-test.
(ns, not significant).
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observations at P24 differ from these previous studies, we

evaluated RBC counts and erythroid maturation in adult mice

(Figures 4F−I). As observed at P24, the RBC and reticulocyte

count at P56 was normal in Dnm2Plt–/– andMpl–/– Dnm2Plt+/+

mice (Figures 4F, G). Evaluating erythroid maturation

further, the mature CD71low/TER-119high EB population in

Dnm2Plt–/– mice increased between P24 and P56 to 77.2 ±

7.8%, although it did not reach control levels (P = .01)

(Figures 4H, I). Mpl–/– Dnm2Plt+/+ mice had normal

erythropoiesis at P56, with 89.3 ± 3.9% mature EBs,

compared to 88.1 ± 5.7% in control Dnm2Plt+/+ mice. Thus,

the TPO-Mpl dependence of erythroid maturation was not

evident when mice reached adulthood, demonstrating a

developmental role for Mpl in erythropoiesis.
DNM2 is normally expressed in
Dnm2Plt–/– erythroblasts

Because ubiquitous Dnm2 deletion or loss of function

leads to microcytic anemia and embryonic lethality (40, 41),

we investigated whether Dnm2 was erroneously excised in

Dnm2Plt–/– EBs (Figure 4J). Genomic DNA was collected from
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Dnm2Plt+/+ and Dnm2Plt–/– CD71high spleen EBs and probed

by quantitative PCR using primers flanking the 5’ Dnm2 loxP

site, in conditions where the reverse Dnm2 primer would not

have a template to anneal to and no PCR product would be

generated if the region between the two Dnm2 loxP sites had

been excised (40). Dnm2Plt+/+ and Dnm2Plt–/– EBs yielded

comparable amount of Dnm2fl PCR product, compared to

control 18S rRNA, demonstrating that Dnm2 was not excised

and therefore DNM2 was normally expressed in Dnm2Plt–/

– EBs.
Hematopoietic stem and progenitor cell
(HSPC) dysregulation in Mpl–/–

Dnm2Plt–/– mice

We performed a quantitative assessment of the bone

marrow HSPC compartment at P24 using flow cytometry

and well-established immunophenotypic markers (Figure 5)

(47–49). Compared to control Dnm2Plt+/+ mice, the lineage–/

Sca-1+/Kit+ (LSK) compartment of Dnm2Plt–/– mice was

significantly expanded (Figure 5A), including long-term

CD150+/CD48– (Figure 5B) and short-term CD150–/CD48–
A B
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C

FIGURE 5

The increased HSPC expansion of Dnm2Plt–/– mice requires Mpl expression. Frequency of bone marrow Lin–/Sca1+/Kit+ (LSK) (A), long-term
(LT)-HSC (B), short-term (ST)-HSC (C), Pre-Meg-E (D), MK progenitor (MKP) (E), Pre-CFU-E (F), and CFU-ProE (G) in Dnm2Plt+/+, Dnm2Plt–/–,
Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– mice at P24. Results represent mean ± SD of 4-12 independent experiments and are compared
statistically by one-way ANOVA (**P <.01; ***P <.001). ns, not significant.
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(Figure 5C) HSCs (LT- and ST-HSCs, respectively). The LSK

compartment was severely and equally reduced in Mpl–/–

Dnm2Plt+/+ and Mpl–/– Dnm2Plt–/– mice. The lack of LT-

and ST-HSCs in the absence of Mpl is consistent with the

reported requirement for TPO and Mpl in regulating HSCs

(15, 60, 61).

MK and erythroid progenitors were evaluated in further

details. Consistent with the observed MK hyperplasia and

studies in adult mice (42), Dnm2Plt–/– mice displayed an

expansion of the Pre-Meg-E (Figure 5D) and MK progenitor

(MKP) (Figure 5E) compartments. The Pre-Meg-E and MKP

expansion was abrogated in Mpl–/– Dnm2Plt–/– mice,

demonstrating that it was mediated by Mpl ubiquitous

expression. While the Pre-CFU-E compartment was minimally

affected by deletion of either DNM2 in platelets and MKs or Mpl

ubiquitously (Figure 5F), the CFU-ProE compartment was

elevated in Mpl–/– Dnm2Plt–/– mice (Figure 5G). Together, the

data demonstrated that the loss of DNM2-dependent Mpl-

mediated endocytosis in platelets and MKs was responsible for

the expansion of the LSK, Pre-Meg-E, and MKP compartments

in Dnm2Plt–/– mice. It also led to an expansion of the CFU-ProE

compartment in Mpl–/– Dnm2Plt–/– mice, consistent with the

observed erythroid maturation arrest at the stage of CD71high

immature EBs.
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Genome-wide transcriptome effects
in erythroblasts

To evaluate the role of Mpl ubiquitous deletion and DNM2

deletion in platelets and MKs on erythropoiesis, spleen EBs

isolated from Dnm2Plt+/+, Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and

Mpl–/– Dnm2Plt–/– mice at P24 were subjected to transcriptional

profiling (n = 3 in each cohort). A total of 35,324 genes were

retained, and two separate gene sets were generated to assess the

effects of Mpl ubiquitous deletion or DNM2 deletion in platelets

and MKs.

Following the analysis of Mpl–/– Dnm2Plt+/+ and Mpl–/–

Dnm2Plt–/–, compared to Dnm2Plt+/+ and Dnm2Plt–/– mice, the

Mpl effect gene set contained 45 upregulated and 401

downregulated genes (Figures 6A, B; Supplementary Table 1).

Notably, hemoglobin (Hbb-bs, Hbb-bt, Hbq1a) and heme

homeostasis genes (Alas2, Fech, Bpgm, Ftl1, Slc48a1) were

downregulated. Delving further into the transcriptomic data,

the heat map of average FPKM values from all four groups

showed that hemoglobin and heme homeostasis genes were

severely decreased in mice lacking Mpl ubiquitously,

independently of DNM2 deletion in platelets and MKs

(Figure 6E). Together, the data indicate that Mpl plays a

critical role in EB maturation by regulating hemoglobin and
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FIGURE 6

Transcriptional profiling of spleen EBs in Dnm2Plt+/+, Dnm2Plt–/–, Mpl–/– Dnm2Plt+/+, and Mpl–/– Dnm2Plt–/– mice. Volcano plots showing genes
differentially expressed in EBs of Mpl–/– Dnm2Plt+/+ + Mpl–/– Dnm2Plt–/– versus Dnm2Plt+/+ + Dnm2Plt–/– mice (Mpl effect), displayed as adjusted
P-value (A) and baseMean (B). Volcano plots showing genes differentially expressed in EBs of Dnm2Plt–/– + Mpl–/– Dnm2Plt–/– versus
Dnm2Plt+/+ + Mpl–/– Dnm2Plt+/+ mice (DNM2 effect), displayed as adjusted P-value (C) and baseMean (D). The log2FoldChange indicates the
mean expression level change for each gene. Dashed lines indicate fold changes of -1.5 and 1.5 (x-axis) and adjusted P-value of.05 (y-axis). Each
dot denotes one gene. Heat maps showing relevant genes identified using the Mpl (E) and DNM2 (F) effects in all four groups.
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heme production, both critical to erythropoiesis (62). Additional

relevant downregulated genes are involved in ubiquitination

(Ubb, Mkrn1, Marchf2, Usp15) and ribosome recruitment and

translation initiation (Pabpc1). Alternatively, H2A cluster

histone genes (H2ac7, H2ac10, H2ac12, H2ac13, H2ac14) were

upregulated in Mpl–/– >Dnm2Plt+/+ and Mpl–/–Dnm2Plt–/– EBs,

compared to Dnm2Plt+/+ and Dnm2Plt–/– EBs. Genes involved in

inflammation (S100a8, S100a9, Cyba, Cybb, Ncf1) were

decreased in all three thrombocytopenic genotypes, while

platelet genes (Gp1bb, Pf4) were elevated in Dnm2Plt–/– mice

presenting MK hyperplasia (Figure 6E).

Following the analysis of Dnm2Plt–/– and Mpl–/– Dnm2Plt–/–,

compared to Dnm2Plt+/+ and Mpl–/– Dnm2Plt+/+ mice, the

DNM2 effect gene set contained 89 upregulated and 803

downregulated genes (Figures 6C, D; Supplementary Table 2).

E2 ubiquitin-conjugating enzymes (Ube2l3, Ube2n) and

cytochrome c oxidase genes (Cox5b, Cox7c) were upregulated

in mice lacking DNM2 in platelets and MKs, independently of

Mpl ubiquitous deletion (Figure 6F). E3 ubiquitin ligase genes

(Cish, Rbx1), genes involved in ribosome biogenesis (Rpl21,

Rpl22l1, Rpl23, Rpl27a, Rpl28, Rpl35, Rpl36, Rpl37, Rpl37a,

Rpl38, Rpl39, Rps14, Rps15a, Rps21, Rps24, Rps27), and

translation initiation factor eIF2a genes (Eif2s1, Eif2s2) were

upregulated inMpl–/– Dnm2Plt–/– mice. The observed increase in

erythroferrone (Erfe) is consistent with severe anemia and

grossly elevated plasma EPO levels (63).
Discussion

Here, we assessed whether the hyperproliferative phenotype

of Dnm2Plt–/– mice specifically lacking DNM2 in platelets and

MKs was due to JAK2 constitutive activation or elevated

circulating TPO levels (42). Our data shows that DNM2-

dependent Mpl-mediated endocytosis in the MK/platelet

lineage is required for steady-state hematopoiesis and provides

novel insights into a developmentally controlled role for Mpl in

normal erythropoiesis.

STAT3 and, to a lower extent, STAT5 were tyrosine

phosphorylated in Dnm2Plt–/– platelets in the absence of TPO,

consistent with JAK2 constitutive activation (42). However,

STAT3 and STAT5 phosphorylation were slowed and

diminished following stimulation with TPO. The slowing of

STAT phosphorylation indicated that the MK hyperplasia of

Dnm2Plt–/– mice was not due to constitutive Mpl signaling in

MKs. Instead, the phenotype of Dnm2Plt–/– mice resembles that

of mice lacking Mpl or JAK2 in platelets and MKs, in which

Mpl-mediated JAK-STAT signaling and TPO endocytosis are

blunted (33–35). To ascertain whether elevated plasma TPO

levels stimulating Mpl-expressing HSCs led to the severe MK

hyperplasia and HSPC expansion, we generated Mpl–/–

Dnm2Plt–/– mice lacking DNM2 in platelets and MKs and Mpl

ubiquitously. JAK2 expression was further diminished in Mpl–/–
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Dnm2Plt–/– platelets. STAT3, but not STAT5 expression was also

decreased, suggesting that JAK2 and STAT3 expression in

platelets and MKs are intimately regulated by DNM2 and Mpl.

JAK2 expression was also decreased in Mpl–/– platelets,

consistent with a scaffolding role for Mpl (64–66). Further

proteomics and RNAseq analysis data may reveal how Mpl

and DNM2 regulate the expression of these and other platelet

and MK proteins.

Ubiquitous Mpl deletion in Mpl–/– Dnm2Plt–/– mice resulted

in a severe deficiency of bone marrow MKs and HSCs, like in

Mpl–/– mice, demonstrating that impaired Mpl-mediated

endocytosis in platelets and MKs lacking DNM2 is responsible

for the MK hyperplasia and HSC expansion of Dnm2Plt–/– mice.

Ablation of the MK population and HSC niche inMpl–/– mice is

consistent with previous studies characterizing the mouse model

(14, 15, 67), and others using a signaling deficient, cell surface

truncated form of the receptor (68, 69). Mpl deficiency is

associated with abnormal maturation of neonatal MKs and

developmental stage-specific defects in platelet function (44).

Hence the MK defect and thrombocytopenia result from

defective and inefficient MKs. Comparing Mpl–/– and Thpo–/–

mice revealed that Mpl expression, but not TPO, was critical for

the hyperproliferative phenotype of a JAK2V617F+ MPNmouse

model, including the splenomegaly (66). The authors

hypothesized that expression of hyperactive JAK2V617F in

HSCs was likely decreased in the absence of its chaperone,

Mpl. In our experiments, Mpl deletion did not alleviate the

severe splenomegaly of Mpl–/– Dnm2Plt–/– mice, indicating that

other mechanisms are at play. The data suggests that

extramedullary hematopoiesis, including the production of

premature erythrocytes, occurs in the spleen despite the loss of

DNM2-dependent endocytosis in platelets and MKs and Mpl

deletion. However, the precise role of DNM2 and Mpl in

regulating spleen homeostasis remains to be determined.

We did not anticipate the premature death of Mpl–/–

Dnm2Plt–/– mice at P25, which was attributed to severe

anemia and disrupted EB maturation in early development.

Increased circulating reticulated RBCs and grossly elevated

plasma EPO levels confirmed a rise in stress erythropoiesis.

Dnm2 was not excised in EBs isolated from Dnm2Plt–/– mice,

confirming that DNM2 was normally expressed in erythroid

progenitors. The data, therefore, excludes defective DNM2-

dependent CD71-mediated transferrin uptake in EBs as the

cause of the severe anemia, as has been described in mice

expressing the Dnm2 loss-of-function mutation V235G

ubiquitously (41). This poses the question of how additional

Mpl deletion in the platelet- and MK-specific Dnm2Plt–/–

background aggravates the RBC phenotype.

Our RNA sequencing analysis supports the notion that Mpl

plays a critical role in regulating hemoglobin and heme

homeostasis in EBs, as associated genes (Hbb-bs, Hbb-bt,

Hbq1a, Alas2, Fech, Bpgm, Ftl1, Slc48a1) were significantly

decreased in EBs lacking Mpl, independently of DNM2
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deletion in platelets and MKs. Additional downregulated genes

are involved in ubiquitination (Ubb, Mkrn1, Marchf2, Usp15)

and ribosome recruitment and translation initiation (Pabpc1).

Hemoglobin production depends on the fine-tuned sequential

process of joining two a-globin and two b-globin subunits with

the addition of attached iron-binding heme groups. In b-
thalassemia, overabundant a-globin is polyubiquitinated and

targeted for protein degradation, thereby preventing

proteotoxicity (70, 71). The data further suggests poor

proteome integrity in EBs lacking Mpl, as the RNA-binding E3

ubiquitin ligase Makorin 1 (Mkrn1) interacts with poly(A)-

binding protein 1 (Pabpc1) to maintain ribosome-associated

quality control of poly(A) translation (72). Alternatively, H2A

cluster histone genes (H2ac7, H2ac10, H2ac12, H2ac13, H2ac14)

were upregulated in EBs lacking Mpl. Whether this increase

contributes to chromatin condensation and enucleation required

for RBC formation remains to be determined (73, 74).

Remarkably, DNM2 deletion in platelets and MKs

resulted in upregulation of E2 ubiquitin-conjugating

enzymes (Ube2l3, Ube2n) and cytochrome c oxidase

(Cox5b, Cox7c) in EBs, independently of Mpl ubiquitous

deletion. Ube2l3 and Ube2n have been implicated in

autophagic clearance of depolarized mitochondria (75),

suggesting increased mitophagy in EBs in mice lacking

DNM2 in platelets and MKs. E3 ubiquitin ligase genes

(Cish, Rbx1), genes involved in ribosome biogenesis (Rpl21,

Rpl22l1, Rpl23, Rpl27a, Rpl28, Rpl35, Rpl36, Rpl37, Rpl37a,

Rpl38, Rpl39, Rps14, Rps15a, Rps21, Rps24, Rps27), and

translation initiation factor eIF2a genes (Eif2s1, Eif2s2)

were upregulated in Mpl–/– Dnm2Plt–/– mice, consistent with

increased protein translation (76, 77). Together, the data

suggests that the severe anemia and early mortality of Mpl–/

– Dnm2Plt–/– mice is due to the combined effects of decreased

hemoglobin and heme product ion , mi tochondr ia l

dysfunction, and proteotoxicity, resulting from increased,

but poorly quality-controlled protein translation in EBs.

How does specific DNM2 deletion in the MK/platelet

lineage affect the expression of these genes and ultimately

erythroid development? One possibility is that MKs and

platelets internalize cytokines to contribute to regulating EB

maturation. In the absence of DNM2-dependent endocytosis

in the MK/platelet lineage, combined with the severe MK

hypoplasia and thrombocytopenia in the Mpl–/– background,

increased levels of these cytokines lead to EB maturation

blockage. MKs are the primary source of transforming growth

factor b1 (TGF-b1) and as such regulate steady-state

erythropoiesis by restraining progenitor cell and EB

production (78). MK TGF-b1 and platelet factor 4 (PF4)

also maintains HSC quiescence during homeostasis and

promotes HSC regeneration after chemotherapeutic stress

(79, 80). A second hypothesis is that Mpl deficiency greatly

limits the proliferation of the bone marrow HSPC pool,
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thereby reducing the availability of differentiating HSCs to

develop along the erythroid lineage. The consequences of Mpl

loss on erythroid development have been reported previously

in studies using induced pluripotent stem cells (iPSCs)

derived from CAMT patients, where deficient Mpl signaling

results in a loss of MEP differentiation and is critical for

successful erythropoiesis (81).

While their circulating RBC and reticulocyte counts were

normal at P24 and P56, Mpl–/– Dnm2Plt+/+ mice developed a

transient erythropoiesis defect, with a percentage of mature EBs

about half that of Dnm2Plt+/+ mice, which was only apparent

during early development (P24). By adulthood (P56), Mpl–/–

Dnm2Plt+/+ mice were able to normalize the EB maturation

defect. The data indicates that Mpl regulates erythropoiesis

during early development in mice. TPO expands erythroid

progenitors, increases RBC production, and enhances

erythroid recovery following myelosuppressive therapy (82).

Others have implicated an EPO-independent, macrophage-

associated pathway supporting terminal erythropoiesis in this

expansion system in humans (83). The fetal/neonatal

hematopoietic system must generate enough blood cells to

meet the demands of rapid growth. This unique challenge

might underlie the high incidence of thrombocytopenia

among preterm neonates (44). It is possible that under

developmental stress and increased need for blood production,

there is crosstalk between EPO and TPO signaling in regulating

hematopoiesis to produce platelets and RBCs efficiently

simultaneously. Therefore, Mpl-dependent erythropoiesis is

likely more significant than expected under pathological and

developmental pressure to produce platelets and RBCs rapidly.

Conversely, EPO can also induce megakaryopoiesis, supporting

the notion that the two pathways cooperate to ensure platelet

and RBC numbers (84).

In conclusion, DNM2-dependent Mpl-mediated endocytosis

in platelets and MKs is required for steady-state hematopoiesis.

It provides novel insights into a developmentally controlled role

for Mpl in normal erythropoiesis, regulating hemoglobin and

heme production.
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