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Abstract

Diabetes is one of the most challenging health concerns facing society. Available drugs treat the symptoms but there is no cure.
This presents an urgent need to better understand human diabetes in order to develop improved treatments or target remission.
New disease models need to be developed that more accurately describe the pathology of diabetes. Organoid technology provides
an opportunity to fill this knowledge gap. Organoids are 3D structures, established from pluripotent stem cells or adult
stem/progenitor cells, that recapitulate key aspects of the in vivo tissues they mimic. In this review we briefly introduce organoids
and their benefits; we focus on organoids generated from tissues important for glucose homeostasis and tissues associated with
diabetic complications. We hope this review serves as a touchstone to demonstrate how organoid technology extends the research
toolbox and can deliver a step change of discovery in the field of diabetes.
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Abbreviations

ASC Adult tissue-resident stem cell
EEC Enteroendocrine cell

HIO Human intestinal organoid
iPSC Induced pluripotent stem cell
MSC Mesenchymal stem cell
NAFLD Non-alcoholic fatty liver disease
NASH  Non-alcoholic steatohepatitis
PSC Pluripotent stem cell

What are organoids?

The past decade has born witness to the meteoric rise of
organoid technology, a long-term heterogenous stem cell-
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based culture technique, chosen as Nature method of the year
2017 [1]. Organoids have transformative potential; they will
help us to better model human diseases, leading to the devel-
opment of novel treatments, the revolutionising of
personalised medicine and the acceleration of regenerative
medicine. But what exactly are organoids? The definition of
an organoid has been nebulous, owing to its use in describing
the many different types of 3D culture systems developed in
the last 50 years [2]. Since the development of intestinal stem
cell-derived organoid cultures in 2009 (discussed in the Text
box: ‘Genesis of the modern organoid field’), the term now
refers to a specific set of working criteria. The current defini-
tion requires an organoid to be established from pluripotent
stem cells or adult stem/progenitor cells, to demonstrate a 3D
structure resembling the in vivo organ landscape, exhibit an
array of cell types found in vivo and demonstrate some aspects
of the specialised functions of the tissues [3—5].

A step change in disease modelling

A staple tool of the medical research community is the model-
ling of cellular function and disease in vitro. In a dish, exper-
imental variables can be accurately controlled, cells can easily
be manipulated, and outputs measured by standard and high-
throughput technologies. Cell lines and explant cultures have
traditionally been used, but both have limitations. 2D-cultured
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Genesis of the modern organoid field

There were two major leaps that led to the development of modern organoid methods: first, the realisation
that a greater understanding of the steps leading to organ development and the factors controlling them was
needed; and second, identification of the minimal stem cell niche factors required to maintain self-renewal
and direct morphogenesis was essential [7]. Using these as starting points, two groups developed intestinal
organoids from different stem-cell sources: ASCs and PSCs.

In 2009, Sato and colleagues described the generation of single Lgr5* stem cell-derived organoids and
organoids established from purified mouse or human adult intestinal crypts [8, 9]. This discovery was facili-
tated by earlier studies identifying the extracellular matrix and key growth factors, such as EGF, Noggin and
R-spondin, as crucial components of the intestinal stem-cell niche [8]. In this in vitro niche, isolated crypts or
single intestinal stem cells quickly form cystic structures composed of a central lumen lined by a layer of
epithelial cells. They further develop into complex multicellular self-renewing structures, displaying the full
range of expected cell types, organised with defined crypt- and villus-like regions closely resembling the in
vivo architecture [8, 10, 11]. These cultures remained unchanged, with no evidence of chromosome
rearrangement, even after several years of passaging [12].

In parallel, James Wells and colleagues pioneered the conversion of PSCs into intestinal organoids by
directed differentiation, a stepwise approach that mimics embryonic intestinal development. This type of
organoid is often termed ‘human intestinal organoid’ (HIO) [13-16]. Following differentiation, HIOs are also
grown in a 3D matrix with the same growth factors as their ASC counterparts. Similarly, they closely resemble
the intestinal architecture and cell composition in vivo. While ASC-derived organoids contain only epithelial
cells, HIOs also contain mesenchymal-derived cells, including myofibroblasts and smooth muscle cells.
However, PSC-derived organoids are generally considered developmentally more immature [17].

Both methods proved seminal and have given rise to the development of organoids from diverse and ever-
increasing tissue types, including tongue, lung, liver, kidney, pancreas, prostate, mammary, brain and inner

ear.

cells may not act in vitro as they would in vivo, because they
are not grown in conditions that adequately mimic the in vivo
microenvironment. In addition, cell lines are transformed,
making these cells far from ‘normal’, calling into question
how representative of physiology they really are. In contrast,
explant cultures are a more physiologically relevant model as
they contain a heterogenous population of primary cells repre-
sentative of the tissue of origin. However, these cultures
cannot be maintained for long periods, which increases the
need for multiple tissue donors, and they are generally difficult
to genetically manipulate. Organoid cultures address many of
these shortcomings as they are complex 3D, multicellular,
self-renewing primary tissue structures that can be cultured
over months to years without losing their faithful near physi-
ological representation of the tissues they mimic [6]. These
properties provide the research community with a step change
in our ability to model diseases on the bench.

What can organoids do for you?

The power of organoids lies in their ability to be cultured from
human patient-derived adult tissue-resident stem cells (ASCs)
or pluripotent stem cells (PSCs), paving the way for
personalised medicine and primary tissue disease modelling
[18, 19]. Although, as with any model, organoids are not
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without limitations (See Text box: ‘Don’t believe the hype:
organoid limitations’). Currently organoids have been used to
investigate gene function, cell development, tissue and cellu-
lar level physiology and model host-microbiome interactions.
They are also useful for modelling infectious and genetic
diseases, investigating primary tumour growth, and have
applications in drug screening and regenerative medicine
[20, 21]. A further key driver of their utility, in addition to
being a more physiologically relevant model, is their amena-
bility to both standard and high-tech laboratory techniques
and their genetic and molecular tractability. For example,
organoids can easily be manipulated using viral and non-
viral mediated delivery of CRISPR-Cas9 gene editing [22],
they can be investigated using mass spectrometry [23], flow
cytometry [24], multiple single cell ‘omics’ technologies [25]
and naturally their 3D structure lends themselves to all manner
of imaging technologies [26] (Fig. 1). This flexibility provides
exciting opportunities for the generation of organoids from
multiple organs and disease sources, coupled with their
manipulation and phenotypic investigation.

Mini-me: Modelling diabetes in a dish

Organoid technology has the power to accelerate diabetes
research, particularly cell replacement therapies. The
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Don’t believe the hype: organoid limitations

Don’t believe all the hype: organoids are not perfect. There are key considerations to be acknowledged when
using this technology and important limitations that the field needs to overcome. Foremost is the lack of many
of the essential components of the living organ they represent. For example, organoids do not have
integrated nervous, vascular, or functional adaptive and innate immune systems. Generating more complex
organoid models is a current focus of the field and many labs have refined co-culture techniques to enable
the addition of immune cells [27, 28], a functioning nervous system [29] and microbial interactions (including
pathogens [30] and intestinal microbiota [31]), or included endothelial or mesenchymal cells to increase
maturity [32].

However, the maturity of organoid models remains the most challenging aspect of improving the technology.
Orthotopic transplantation of PSC-derived organoids at various tissue sites produces organoids/tissue
structures that more closely resemble the native tissue [32]. In the case of intestinal organoids, kidney-
capsule transplantation induces organoids to develop into segments of gut 1-2 mm in length [33]. Similarly,
human pancreatic organoids consisting of acinar/ductal-like progeny were generated from human PSCs and
further matured following transplantation [34].

Other disadvantages are reflected in the inconsistencies in growth rate and differentiation time between
cultures from different labs, which is, in part, driven by the variability in the reagents used for culturing
organoids. The technology almost universally requires a 3D matrix. The two main products favoured by the
field are Matrigel Matrix and Basement Membrane Extract (BME). They both exhibit batch-to-batch variation
and being animal derived means that they cannot be used for clinical transplantations. This has led to the
development of synthetic functionalised matrices, the physical properties of which can be controlled and be
produced with improved consistency, and which could be developed for clinical use [35]. Equally, there are
considerable issues with the media used to culture organoids. To reduce the costs of using recombinant
growth factors, many labs grow their own conditioned media, particularly for Wnt-3A, Noggin and R-spondin.
There is considerable intra- and inter-lab variation in the concentration of growth factor produced in different
batches. In addition, the media used to culture organoids is not physiological. For example, intestinal
organoids are routinely grown in high glucose concentrations, which is not reflective of the normal gut stem-
cell environment in a healthy individual.

The 3D multicellular composition of an organoid is a strength but also a weakness. For example, accessing
the intact organoid lumen is not easy, making the study of host—microbiome interactions and nutritional
research more difficult. To overcome this, organoids can be micro-injected [36], which is time consuming, or
plated in 2D on a semi-permeable membrane, allowing access to both apical and basolateral surfaces [37,
38], or grown in suspension culture, which inverts their polarity, turning them inside-out [39].

One of the benefits of patient-derived organoids is that they capture clinical heterogeneity, however this
comes with a cost. Samples derived from diverse genetic backgrounds can increase variability and make
replication difficult. This variability may also increase the need for multiple donors, something that is not
always possible.

Clearly, no model is perfect and there are imperfections in organoid technology, both generic and tissue
specific. These inconsistencies will need to be ironed out, but it appears the organoid field is moving towards
standardisation, freeing researchers from tool development and allowing them to focus on answering pivotal
biological questions.

technology perfectly lends itself to the generation of novel
sources of beta cells or the production of new cell-based deliv-
ery systems for insulin. These opportunities and the current
state of the field are well described elsewhere [40—42]. There
are, however, exciting opportunities beyond cell-based treat-
ments of insulin-dependent diabetes. Organoids allow the
modelling of primary disease tissues, insulin-sensitive tissues
and peripheral tissues associated with diabetic complication,
from primary sources (Fig. 2) without the need for trans-
formed cells or large numbers of donors. We now have the

tools to generate organoids from individuals with identified
diabetes-associated genetic variants or to introduce these traits
with CRISPR/Cas9 and use these organoids to provide a more
precise evaluation of their contribution to diabetes pathogen-
esis. Results from these types of experiment may be informa-
tive in stratifying patients for particular interventions. These
opportunities suggest that organoids may eclipse current
in vitro models, transformed cell lines and short-term culture
of primary tissues and provide a new understanding of diabe-
tes pathophysiology.
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Fig. 1 Organoid generation and applications. Organoids can be generated
from multiple species and multiple tissues. There are two general sources:
adult tissue-resident stem cells (ASCs) and pluripotent stem cells (PSCs).
Generation of PSC-derived organoids requires directed differentiation
towards the tissue of interest, whereas those derived from ASCs do not.
Both sources require specific niche factors and an extracellular matrix
(ECM) in which they form 3D multicellular organoids mimicking the

Tissues controlling glucose homeostasis

Pancreas The first pancreatic organoids were generated from
mouse and human embryonic pancreatic cells by Anne
Grapin-Botton’s group [43, 44]. These organoids produced
progenitor-biased hollow spheres that could be differentiated
into branched structures containing acinar, ductal and endo-
crine lineages. Pancreatic organoids have also been generated
from cells derived from the adult pancreas; CD133* cells
isolated from the mouse pancreas can be expanded in vitro
and differentiated towards all pancreatic lincages [45, 46].
However, organoids derived from human CD133* cells
require transgenic overexpression of NGN3, MAFA and
PDX1 to produce endocrine lineages [47].

Generation of islet organoids by turning 2D-directed differ-
entiation of PSCs into 3D structures, has met with mixed
success. Introduction of suspension cultures and an air—
liquid interface produced immature beta cells that did not
secrete insulin [48, 49]. In contrast, 3D islet-like organoids
generated from either human embryonic stem cells [50] or
from spontaneously formed endocrine cell clusters produced
by stepwise differentiation of human PSCs [51] released insu-
lin in response to glucose in vitro and in vivo. More recent
efforts have introduced synthetic hydrogels [52] or co-cultures
with HUVECs and mesenchymal stem cells (MSCs)
combined with a self-condensation system [53]. These more
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tissue of interest. The schematic shows archetypal intestinal organoid
development; the different colours indicate different cell types. Both types
of organoid can be utilised in many downstream methods, as shown (this
list is not exhaustive). BME, Basement Membrane Extract; diff., differ-
entiation; FACS, fluorescence-activated cell sorting; HTS, high-through-
put screening. This figure is available as part of a downloadable slideset

advanced systems produced islet organoids with increased
complexity and maturity, including endothelial cells and
vascularisation.

Islet organoids provide potential improvements over the
traditional pancreatic beta cell lines as they better mimic islet
architecture and morphology. However, their apparent imma-
turity remains their major drawback. Islet organoids often do
not recapitulate nutrient-stimulated insulin secretion adequate-
ly. As such, the current technology is not ready for prime-time
functional exploration, leaving primary islets as the gold stan-
dard tool for assessing islet hormone secretion.

Pancreatic organoids are currently better suited to under-
standing pancreatic morphogenesis and differentiation. For
example, a functional genetic screen in organoids derived
from SOX9* progenitors identified Prdm16 as a novel regu-
lator of islet development [54]. Pancreatic organoids could
also provide a platform for drug screening and personalised
medicine. PSC-derived organoids have been used to model
pancreatic facets of cystic fibrosis and to screen a set of cystic
fibrosis transmembrane conductance regulator (CFTR) activa-
tors [34]. It is also easy to envisage how organoids could help
deepen our understanding of the processes that lead to
immune destruction of beta cells or provide more precise
details as to how genetic susceptibility loci may interact with
the immune system to drive disease initiation and progression.
Modelling these immune interactions could range from the
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Fig. 2 Mini-me: modelling diabetes in 3D. Diabetes is a multi-organ
disease and organoids present an opportunity to generate models that
more closely recapitulate its pathology. (a) Organoids can be generated
from multiple tissues to allow the modelling of disease progression,
investigation of genetic associations, screening of drugs and probing of

simple addition of cytokines or conditioned media from
cultured immune cells [55], to the co-culture of sorted and
activated immune cells [56], or to more complex techniques
developed for mimicking tumour immune microenvironments
[57]. To date, few of these types of experiment have been
leveraged for diabetes research but the potential is self-evident.

Gut The gut is a key player in the integration of luminal signals
and the control of metabolism. It houses enteroendocrine cells
(EECs) that produce over 20 different bioactive peptides
implicated in the local control of absorption and motility, the
signalling of satiety and augmentation of beta cell function
[58, 59].

Organoids provide new opportunities to explore EEC
differentiation, how this might be altered in diabetes and
obesity or by dietary nutrients and how it could be targeted
to manipulate the density of specific cell types for treating
metabolic and other diseases.

The limited availability of donor tissue for islet transplan-
tations has initiated an interest in identifying alternative
sources. Several studies have explored using the gut as a
potential source of insulin-producing cells for the treatment
of diabetes. Both PSC- and ASC- derived organoids have
been used to examine how EECs can be converted into
insulin-secreting cells [60, 61].

Intestinal organoids also allow the investigation of the
basic physiology of the gut epithelium and the function of
EECs under physiological or metabolic disease conditions.
For example, organoids have been used to investigate nutrient

Virtual diabetic patient

Organ-on-a-chip

mechanisms. (b) In the future, combining organoid technology and
bioengineering may make it possible to model inter-organ communica-
tion in diabetes pathogenesis, creating a virtual diabetic patient on a chip.
The image in (b) is adapted from [107], with permission from Elsevier.
This figure is available as part of a downloadable slideset

sensing, transport and absorption, lipid transport, hormone
secretion and intracellular signalling processes [62]. The
organoid platform will also help the microbiome field explore
mechanisms of action. Microbial diversity is reduced in obesi-
ty, but we lack an understanding of the pathological implica-
tions. Protocols that give access to the apical (luminal) side of
the organoid allow the controlled investigation of the
microbiome and its metabolites [31, 39]. As yet, the genera-
tion of organoids derived from obese and/or diabetic individ-
uals or those pre- and post-bariatric surgery, for example, have
not been leveraged, but the platform offers a unique opportu-
nity to ask critical questions of the role of the gut in the path-
ogenesis of metabolic disease and in the identification of
mechanisms of metabolic surgeries or interventions. Finally,
intestinal organoids may provide a finer understanding of the
metabolic impact of nutrients on epithelial function at single
cell and tissue resolution.

Liver The liver plays a central role in glucose homeostasis.
Insulin resistance in the liver directly leads to hyperglycaemia
and is also implicated in the pathogenesis of non-alcoholic
fatty liver disease (NAFLD) and the subsequent development
of non-alcoholic steatohepatitis (NASH). Current animal
models of NAFLD and NASH do not perfectly mimic natural
disease progression. Human liver organoids could provide a
flexible tool for modelling the development of hepatic insulin
resistance, studying glucose metabolism and hormonal
responsiveness in the liver and identifying the underlying
mechanisms driving NAFLD and its progression to NASH.
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The first human liver organoids were generated from
human induced PSC (iPSC)-derived hepatocytes, co-
cultured with MSCs and endothelial cells, embedded in
Matrigel. These original structures consisted mainly of prolif-
erating hepatoblasts [63, 64]. More recently protocols have
emerged to generate organoids from either human adult bile
duct-derived bipotent progenitor cells [65] or primary hepato-
cytes [66, 67], these approaches are reviewed in [68, 69].
Steps to model NAFLD and NASH are under way.
Exposing liver organoids from multiple species to fatty acids
causes lipid accumulation, demonstrating proof of principle
that organoids can be used to model aspects of NAFLD
[70]. More recently, a comprehensive human model of
steatohepatitis has been described by Takanori Takebe.
Using healthy and diseased iPSCs, multicellular human liver
organoids were derived, which, when exposed to NEFA,
exhibited lipid accumulation, inflammation and fibrosis in a
successive manner—key features of human steatohepatitis.
This phenotype could be reversed with farnesoid X receptor
(FXR)-treatment [71]. It is hoped that such a platform could
be used to understand the mechanisms behind the progression
of NAFLD to NASH and identify novel treatments for
NAFLD/NASH, which currently have no approved pharma-
cological options.

Muscle The use of 3D primary tissue-derived cultures to
model skeletal muscle in vitro pre-dates the modern organoid
era. Vandenburgh et al. pioneered the development of
bioartificial muscles (BAMs) generated by suspending
myoblasts (muscle progenitor cells), isolated from muscle
biopsies, in collagen/Matrigel and then casting them in a sili-
cone mould containing two end attachment sites [72—74].
Following differentiation, parallel arrays of myofibres aligned
in the direction of the attachment points and contracted when
stimulated, but their size was limited because of the lack of a
vasculature. This was addressed using a co-culture system
containing HUVECs, which produced organoids consisting
of aligned fibres with an integrated endothelial network [75].
However, human myoblasts have a limited expansion poten-
tial and an unstable differentiated state. To overcome these
issues, several protocols have emerged for PSC-derived
muscle organoids (reviewed in [76]). These organoids devel-
op myobundles, exhibit contractility following electrical stim-
ulation and can be engineered to include a vasculature and a
nervous system [77].

These cultures have the potential to model insulin resis-
tance in 3D but have only been studied in 2D. Iovino et al.
generated myotubes from healthy volunteers and individuals
with Donohue syndrome, a genetic disorder associated with
mutations in the insulin receptor [78]. The myotubes derived
from individuals with Donohue syndrome exhibited defects in
insulin signalling, glucose uptake and glycogen accumulation,
as well as insulin-regulated gene expression. In the future the
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challenge will be to model insulin resistance in human skeletal
muscle organoids generated from diabetic primary or human
PSC-derived myoblasts to better understand the development
of insulin resistance and its consequences.

Adipose tissue Adipose tissue is a prominent site of insulin
resistance in type 2 diabetic patients and is associated with
increased chronic inflammation. Development of a human
in vitro model to study the pathogenesis of adipose tissue in
metabolic disease would be advantageous. There have been
various attempts to generate 3D adipose cultures. Early proto-
cols co-cultured human adipose stromal cells with HUVECS
or used lipoaspirates and embedded them in either silk scaf-
folds or hydrogels [79, 80]. Differentiation of these cultures
allowed lipid accumulation and these cultures secreted leptin,
the archetypal adipokine. Other groups used adipose progen-
itors derived from the stromal-vascular fraction of human
white adipose tissue and self-organised them into spheroids
in hanging drops [81] or by first stirring and then embedding
them in Matrigel they generated self-organised vascularised
organoids [82]. These novel protocols open the door to using
long-term patient-derived adipose cultures to explore the
pathology of adipose tissue in metabolic disease.

Modelling diabetic complications

Many of the long-term complications associated with diabetes
are caused by microvascular damage, which leads to nephrop-
athy, retinopathy and diabetic neuropathy. A paucity of accu-
rate models that mimic the functional and molecular patholo-
gy of these complications has hampered our understanding of
the disease mechanism involved and how the complications
could be managed or prevented. Organoids may offer an
opportunity to address this.

Exposure to hyperglycaemia causes abnormal thickening
of the basement membrane of the vasculature, impairing the
delivery of oxygen and nutrients to tissues, causing inflamma-
tion and damage. Generation of iPSC-derived human blood
vessel organoids recapitulates the abnormal thickening of the
basement membrane when they are exposed to
hyperglycaemia. A subsequent drug screen using this model
has identified a novel pathway for drug targeting,
underscoring the potential of organoid disease modelling [83].

Human and mouse PSC-derived kidney organoids have
been generated using a number of different protocols
[84-86]. However, these protocols either failed to recapitulate
the necessary cell types or produced disconnected nephrons
and collecting ducts. Using optimised stepwise differentiation
to separately generate nephron and ureteric bud progenitors
before mixing in culture with embryo-derived stromal cells
produced more refined kidney organoids [87]. In depth
reviews of the protocols used for generation of kidney
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organoids and their uses are available [88-91]. Kidney
organoids have yet to be leveraged for investigating diabetic
nephropathy but there are several groups working in this area.
The European Commission and the National Centre for the
Replacement, Refinement and Reduction of Animals in
Research (NC3Rs) have awarded funding for projects to
establish in vitro models of diabetic nephropathy and kidney
damage using PSC-derived organoids [92, 93]. The Diabetic
Complications Consortium have also funded a project to
model kidney fibrosis [94]. It will be exciting to see the
outcomes of these innovative projects.

The human retina is a complex organ with no regenerative
capacity, making it particularly sensitive to damage. Retinal
organoids can be generated from both mouse and human
ESCs and human iPSCs, which, when embedded in
Matrigel, spontaneously form hemispherical epithelial optic
vesicle, that invaginate and form the optic cup [95-97].
Further protocol refinement has enabled the generation of
3D retinal cups containing mature photoreceptors, an outer-
segment-disc and demonstrable photosensitivity [98]. In depth
information about retinal organoids is well described in other
reviews [99-101]. Patient-derived retinal organoids offer an
opportunity to more precisely understand the pathophysiology
of diabetic retinopathy provide a platform for drug screening
and will enable the exploration of genomic variants that render
some diabetic patients more susceptible to retinal damage.

The future in 3D

The arguments for applying organoid technology to diabetes
research are persuasive. This technology has facilitated the
generation of high-fidelity models of virtually any tissue in
the body. They offer unprecedented predictive power over
traditional 2D models, promise to bring speed and reliability
to drug discovery and enable the discovery of novel disease
mechanisms. However, organs do not exist in isolation; inter-
organ crosstalk is highly relevant to pathophysiology, partic-
ularly for diseases like diabetes, which affect multiple organ
systems. As such, organoids cannot replace whole body stud-
ies, but the field of bioengineering may provide opportunities
to move towards a virtual diabetic individual. Organ-on-a-
chip technologies have rapidly developed in a short space of
time [102]. The technology allows the simultaneous culture of
cells from different organs on a microfluidic chip, allowing the
precise control of flow between compartments, nutrient
supply, shear stress and local mechanical and electrical prop-
erties [103]. These systems have often relied on 2D cultures;
the challenge now will be to combine organ-on-a-chip tech-
nology and 3D organoid technology. Human islet organoids
derived from human iPSCs have been generated on an organ-
on-a-chip platform [104]. PSCs were initially differentiated
into embryonic bodies followed by endoderm differentiation,

islet differentiation and maturation. Theses organoids
contained heterogeneous islet-like components and function-
alities and may resemble their native tissue more closely than
static organoid cultures. There are several commercial compa-
nies who have developed specialised organ-on-a-chip equip-
ment, ranging from simple multi-well plate systems using
gravity to drive flow [105], to complete chip-based pump
perfused technologies [106]. It is easy to envisage a future
where we will be able to link key human organoid tissue
models using chip-based technology to investigate organ-
level communication in the pathogenesis of diabetes.
Organoid technology is poised to enable researchers to trans-
form our understanding and treatment of diabetes.
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