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Abstract

Malaria belongs to the infectious diseases with the highest morbidity and mortality worldwide. As a vector-borne disease
malaria distribution is strongly influenced by environmental factors. The aim of this study was to investigate the association
between malaria risk and different land cover classes by using high-resolution multispectral Ikonos images and Poisson
regression analyses. The association of malaria incidence with land cover around 12 villages in the Ashanti Region, Ghana,
was assessed in 1,988 children ,15 years of age. The median malaria incidence was 85.7 per 1,000 inhabitants and year
(range 28.4–272.7). Swampy areas and banana/plantain production in the proximity of villages were strong predictors of a
high malaria incidence. An increase of 10% of swampy area coverage in the 2 km radius around a village led to a 43% higher
incidence (relative risk [RR] = 1.43, p,0.001). Each 10% increase of area with banana/plantain production around a village
tripled the risk for malaria (RR = 3.25, p,0.001). An increase in forested area of 10% was associated with a 47% decrease of
malaria incidence (RR = 0.53, p = 0.029). Distinct cultivation in the proximity of homesteads was associated with childhood
malaria in a rural area in Ghana. The analyses demonstrate the usefulness of satellite images for the prediction of malaria
endemicity. Thus, planning and monitoring of malaria control measures should be assisted by models based on geographic
information systems.
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Introduction

With 250 million estimated malaria cases in 2008 and one million

deaths malaria is the most common vector-borne infectious disease

with Sub-Saharan Africa carrying most of the burden. In regions of

stable transmission children ,5 years of age are at highest risk of

becoming symptomatic after infection with malaria parasites. The

causal protozoon Plasmodium falciparum is transmitted from person to

person through the bite of adult female Anopheles mosquitoes [1,2].

Transmission and prevalence of vector-borne diseases such as

malaria are highly influenced by spatial and temporal changes in

the environment as described during the last 20 years by

geographic information systems (GIS) and remotely sensed (RS)

data [3,4]. Studies mapping potential mosquito habitats, trans-

mission risk, or disease prevalence have been performed in Africa

[5–8], South and Central America [9,10], and Asia [11,12].

However, analyses of the direct correlation between environment

and malaria are rare.

Adult vector abundance is positively associated with the availability

of aquatic habitats necessary for the deposition of eggs, and the areas

with highest malaria risk are often found within just a few hundred

meters of such larval habitats [13,14]. It has been suggested that

extensive cultivation of maize might influence the larval development

of mosquitoes, pupation success, and size of adults in the vicinity [15].

Recent studies from Kenya have shown that highland habitats

created by deforestation or cultivation of natural swamps were

associated with preferred breeding habitats [16,17].

In Ghana, where the present study was conducted, malaria is

prevalent during the entire year and accounts for about 32–42% of

all outpatient admissions and for the major in-patient causes of

death [18]. The main malaria vectors are mosquitoes of the

Anopheles gambiae complex and A. funestus [19].

The aim of the study was to investigate the association between

malaria incidence and different classes of land cover that potentially

influence the malaria vector abundance as well as human

population density. High spatial resolution satellite images as well

as statistical modeling was used to assess the influence of land cover

classes and the human population at risk on the malaria incidence

(per year and 1,000 inhabitants) in children ,15 years of age in an

area of high endemicity. This information might be of importance

to the understanding of environmental determinants of malaria

transmission heterogeneity at a micro-geographical scale.

Materials and Methods

Ethics Statement
Aims and principles of the study were explained in detail to

participants and informed consent was obtained by signature or
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thumb print by the caregiver. The study design and the informed

consent form were approved by the Committee on Human

Research, Publications, and Ethnics, School of Medical Sciences,

Kwame Nkrumah University of Science and Technology, Kumasi,

Ghana.

Study area and data collection
The hospital-based survey was accomplished at the Child

Welfare Clinic and the Pediatric Ward of the Agogo Presbyterian

Hospital (APH), Asante Akim North District, Ashanti Region,

Ghana. The study area was restricted to the 12 study villages

Agogo, Hwidiem, Akutuase, Amantena, Wioso, Domeabra,

Juansa, Kyekyebiase, Nyaboo, Obenimase, Patriensah and

Pekyerekye and their 2 km surrounding areas (Figure 1). The

total area of our study side covered approximately 170 km2. For

more detailed information about the study area see Krefis et al.

2010 [20].

All children ,15 years of age visiting the Child Welfare Clinic

of the APH and with permanent residency in one the 12 study

villages were examined for malaria (criterion: fever $37.5uC and

positive for asexual P. falciparum parasitaemia with .0 parasites/

mL) during the study interval of 18 months (end of May 2007 to

November 2008). Parasite examination was done according to

quality-controlled standardised procedures described elsewhere

Figure 1. Map of the 12 included study villages. Merger of two satellite images (Ikonos) depicting an area with 12 study villages in the Asante
Akim North District, Ashanti Region, central Ghana, West Africa. Areas with a radius of 2 km surrounding the study villages, which were analysed by
supervised maximum likelihood classification, are coloured.
doi:10.1371/journal.pone.0017905.g001
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[21]. Malaria cases presented within 21 days after the initial

malaria diagnosis were considered as a relapse and not counted as

a new case.

For the calculation of incidences the population size, the

admission rate, the proportion recruited, and the proportion of the

population seeking health care in the study hospital were

considered. Population figures were taken from the population

census 2004 with the estimate that 42% of the individuals were

,15 years of age [22]. The proportion of people from each village

attending the APH was assessed by a community survey on health

seeking behaviour that was carried out in 2007 and the

denominator/reference population for the calculation of incidence

was corrected for these proportions [23]. After comparing the

study population with the hospital admission records it was

estimated that 70% of all individuals (range: 67% to 72%)

admitted to the hospital were included on average into the study

and therefore the reference population was likewise corrected for

this factor. Finally, annual malaria incidences per 1,000 children

,15 years of age were computed for each of the villages. The

human population density per village was computed by using

population census and village area data (Table 1).

Mapping land cover classes using remote sensing
In order to map the land cover classes around each village, we

acquired two multispectral Ikonos images with 4-meter spatial

resolution and four broad spectral bands (wavelengths: blue, 0.45–

0.52 mm; green, 0.52–0.59 mm; red, 0.62–0.68 mm; and near-

infrared (NIR), 0.77–0.86 mm), along with one panchromatic band

with 1 pixel/m. Images were acquired on May 4, 2009, and on

November 26, 2009 (it was not possible to obtain two

contemporaneous images of high quality from the area due to

weather, cloud condition, and other acquisition difficulties).

All pre-processing steps were carried out using ENVI 4.4

(ITTVIS, 2009). For easier computation the images were divided

into subsets, each covering one or two village areas. For each

subset a Normalized Difference Vegetation Index (NDVI =

[NIR2red]/[NIR+red]) image was calculated, which is a

commonly used measure of vegetation productivity [24]. Beside

the spectral domain, the spatial domain was also considered by

calculating a set of textural measures based on a grey level co-

occurrence matrix in order to improve the classification [25,26].

Different textural measures (contrast, homogeneity, angular

second moment, variance, mean, dissimilarity, entropy, and

correlation) were received by moving several windows of different

pixel areas (363 to 15615) over the image, leading to a new

textural image for each measure. The optimal window size was

determined by using a confusion matrix to assess the accuracy of

the solely texture based classification [25]. Afterwards, the textural

images were combined with the NDVI image and the four spectral

bands for further analysis.

In March 2010, field sampling of different land cover classes was

conducted by the direct inspection of 490 points randomly

selected in the vicinity of the 12 study villages. We marked the

points using a Garmin eTrexHH Global Positioning System (GPS)

and took notes and photographs on the dominant vegetation or

crop type.

By using the ENVI software, these reference areas were digitised

as regions of interest and were used to represent one of the

following land cover classes: banana or plantain, cacao, palm trees,

oranges, swampy area, water, deforested area and roads, built-up

areas (houses), and forest. Classes describing the crops ‘‘banana/

plantain’’, ‘‘cacao’’, ‘‘palm trees’’ producing palm oil fruits, and

‘‘oranges’’ were mostly mixed fields but dominated by one of these

crops, respectively. Either the presence of a river or stream nearby

or near the ground agricultural crops (such as eggplants, maize,

tomatoes, pepper), which was mostly cultivated in the vicinity,

characterised the combined variable ‘‘swampy area’’. ‘‘Water’’ was

characterised by a river, stream or lake. ‘‘Deforested area’’ was

Table 1. Characteristics of the villages.

Village Village areaa Total populationb
Population
densitya

Proportion with
hospital accessc

Population study
groupd Malaria casese Incidencef

Agogo 5.12 13559 2648 90% 3588 1463 271.9

Akutuase 0.61 1692 2774 43% 214 9 28.1

Amantena 0.27 890 3296 55% 144 21 97.3

Domeabra 1.33 3509 2638 42% 433 73 112.3

Hwidiem 1.08 1402 1298 95% 392 147 250.3

Juansa 1.27 3992 3143 40% 469 52 73.8

Kyekyebiase 0.54 1801 3335 46% 244 28 76.6

Nyaboo 1.02 1582 1551 46% 214 28 87.2

Obenimase 0.51 1096 2149 37% 119 15 83.9

Patriensah 0.54 4463 8265 38% 499 92 123.0

Pekyerekye 0.37 1692 4573 45% 224 27 80.4

Wioso 0.34 1783 5244 52% 273 33 80.7

aper km2.
bPopulation according to the national census 2004 [21].
cProportion of people in each village who reported to visit the Agogo hospital, data from Community Survey.
dPopulation of children ,15 years of age estimated as a proportion of 42% of the population counted at national census 2004 [22] and an additional proportion of 70%

due to inclusion into the study at hospital admittance and by taking into account hospital access.
eStudy period from May 2007 to November 2008 (18 months).
fIncidence in children ,15 years (per year and 1,000 children ,15 years).
Formula: incidence = 1,000*cases/(total_population*0.42*0.70*hospital_access*1.5).
doi:10.1371/journal.pone.0017905.t001
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characterised by burned, grassy or bushy underground or open

spaces; additionally we assigned roads within this class. ‘‘Forest’’

referred to areas with dense tree cover with a closed canopy.

It was not possible to get images completely free of clouds.

Therefore, two additional classes, one for clouds and one for the

shadow of a cloud were generated to mask out those particular

areas.

All combined bands were classified using a supervised maximum

likelihood classifier. Therefore, a random subset of 70% of the pixels

for each of the classes was chosen for a basic analysis (‘‘training

data’’) and 30% were used for assessment of accuracy (‘‘validation

data’’). In the post classification process, we applied a majority/

minority analysis for generalisation of the classification image to

minimise ‘‘salt and pepper effects’’, a term which describes the

existence of dark pixels in bright regions and bright pixels in dark

regions, usually causing noise in the validation procedure. Validation

of the accuracy of the post-processed classification image was based

on the overall accuracy computed from the confusion matrix. The

maximum likelihood classification is usually considered to be

satisfiable when the overall accuracy is higher than 85%. The final

image was transferred to ArcGIS version 9.3, developed by

Environmental System Research Institute (ESRI, 2008).

Taking into account that adult mosquitoes remain generally up

to 2 km of their breeding side [27–29] a radius of 2 km around

each village was created and the percentage of various land cover

classes in each radius was computed. Due to the particular size of

the village Agogo an oval-shaped radius was used (Figure 2). In

order to test the validity of the analyses additional radii of 0.5 km,

1 km, and 1.5 km around each village were used.

Analyses and statistical modeling
The quantitative assessment of associations between propor-

tional land cover and the incidence of malaria was done by

Poisson regression analyses with adjustment for overdispersion

(STATA/SE software, version 10; Stata Corp LP, College Station,

TX). By using Spearman rank correlation we calculated the cross

correlation between potential determinants for malaria: popula-

tion density as a measure for human-mosquito-contact, deforested

area and roads, swampy area, respectively prone to the formation

of puddles and hence breeding sites, water, houses to look for

shelter for mosquitoes during daytime, forest, and vegetation of

banana/plantain, oranges, cacao, and palm trees as potential

resting and breeding sites or food sources. Land cover proportions

were analysed as continuous variables and human population

density as per 1,000 inhabitants. The approximated interquartile

range was used as unit increase for the continuous variables.

Because of the small sample size (12 village clusters), the

influence of each potential determinant was assessed separately in

a univariate Poisson regression in a first step. For a measure of

association between a determinant and malaria incidence, the

relative risk (RR) was calculated and complemented by a 95%

confidence interval (CI) and p-value. In a second step as sensitivity

analysis and to account for confounding, the high correlated

determinants with a p-value less than 0.05 were included in a

bivariate Poisson regression analysis.

Results

Malaria incidence and human population density
A total of 1,988 malaria cases were reported in the study

hospital during the study interval of 18 months (end of May 2007

to November 2008) and were included in the analysis. Annual

malaria incidence ranged from 28.1 to 271.9 per 1,000 children

,15 years of age and year in Akutuase and Agogo, respectively. A

crude annual malaria incidence of 194.5 per 1,000 children ,15

years age and year with a 95% confidence interval of [144.9,

261.3] could be estimated for the whole study area. The total

population of the study villages was 37,461 inhabitants (census

data 2004). The human village population density ranged from

1,298 inhabitants/km2 in Hwidiem to 8,265 inhabitants/km2 in

Patriensah (Table 1).

Classification and correlation of land cover determinants
All four broad spectral bands (blue, green, red, and near-

infrared) from the acquired multispectral Ikonos image along with

the NDVI image were considered in our study. A window size of

969 pixels (equivalent to 969 m) had the highest accuracy of the

texture-based classification and respective textural measures were

chosen for the analyses accordingly (data not shown).

By using reference areas for all nine land cover classes a

maximum likelihood classification was conducted of the combined

NDVI image, the spectral, and the textural bands. Overall

accuracy of the classification ranged from 87% in Wioso and

Akutuase to 95% in Obenimase.

The proportion of areas with banana/plantain vegetation

within a village radius of 2 km varied from 4.8% in Pekyerekye

to 19.7% in Agogo. The highest proportion of swampy area was

found around the village Agogo (37.0%), the lowest proportions

(4.7% and 4.9%) around the two villages Akutuase and Juansa,

respectively. The proportion of forest coverage varied from 6.3%

around Domeabra to 28.7% around Wioso (Table 2, Figure 2).

Spearman rank tests resulted in high positive correlations

between the land cover proportions of forest and deforested area/

roads (r = 0.79, p = 0.002), banana/plantain and built-up areas

(r = 0.86, p,0.001) as well as palm trees and cacao (r = 0.91,

p,0.001) (Table 3). Highest negative correlations were observed

between the land cover proportions of cacao and banana/plantain

(r = 20.73, p = 0.007) and swampy area and oranges (r = 20.78,

p = 0.003).

As expected, the proportions of land cover in the vicinity of

villages in the 0.5 km, 1 km, and 1.5 km radii were not exactly the

same from what was found in the 2 km village radius. The

proportions of built-up areas (houses), deforested areas and roads,

and banana/plantain vegetation decreased with distance to the

village whereas the proportion of areas with forest, palm trees,

orange trees, and cacao trees increased (Tables S1, S2, S3).

Regression modeling
In the univariate Poisson regression analysis, all determinants with

the exception of population density, water, and deforested area and

road coverage showed a significant influence on malaria incidence,

which was positive for banana/plantain cultivation (RR = 3.25),

swampy areas (RR = 1.43), and built-up areas (RR = 2.24), but

negative for forest (RR = 0.53), orange (RR = 0.63), cacao

(RR = 0.48), and palm trees (RR = 0.59) plantation (Table 4).

However, in the sensitivity analysis by means of bivariate Poisson

regression analysis, the univariate results for built-up areas and

orange, cacao, and palm tree plantation turned out to be confounded

because of high correlation between several determinants (Table 3)

and not to be of statistical significance (data not shown).

The association of land cover with malaria incidence in the

other 3 radii were similar to those of the 2 km radius (Table S4)

and the sensitivity analysis showed similar results (data not shown).

Discussion

The risk for malaria is dependent on a number of individual and

environmental factors whereas their impact is dependent on the

Land Cover Determinants and Malaria
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endemicity in a certain area [15,16,20]. Recently, it has been

shown that the spatial variance of malaria incidence might be

pronounced not only in areas with low and seasonal endemicity

but also in holoendemic areas [20,30]. It can be assumed that

mosquito occurrence, the existence of breeding sites, and human

population density are the most important spatial determinants, all

significantly linked to land cover and land use [8,13,14,30].

Accordingly, land cover has been associated with entomological

measures mainly accumulated as entomological inoculation rates

(EIR, infectious mosquito bites per person per year) [3,5]. Studies

using high-resolution satellite images in association with vector-

borne diseases have already been conducted in other areas [3–12].

However, analyses of the direct relationship between environ-

mental factors and human malaria, especially using high-

resolution images and/or subclassification of land cover in such

detail are scarce, most probably due to the absence of precise data

on malaria incidence and exact description of the land cover in

large areas.

The presented analyses have used malaria incidence data over 18

months from a hospital-based survey and high-resolution satellite

images of a holoendemic coverage area in the Ashanti Region,

Ghana. The analyses demonstrate that an accurate stratification of

Figure 2. Supervised maximum likelihood classification map (combined NDVI image, the texture bands, and the four spectral
bands). Classification of land cover within a village radius of 2 km with 11 colours indicating different land cover classes. All classes describing the
crops banana/plantain, cacao, palm trees producing palm oil fruits, and oranges were mainly mixed fields but dominated by one of these crops.
Swampy areas were characterised by either the presence of a river or stream nearby or an agricultural crop cultivated in the vicinity. Water was
characterized by a river, stream or lake. Deforested areas were characterized by roads as well as burned, grassy or bushy underground or open spaces.
Forest referred to areas with dense tree cover, mostly with a closed canopy.
doi:10.1371/journal.pone.0017905.g002
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land cover by satellite images is possible in areas of small-scale

cultivation and changing agriculture. Land cover of banana/

plantain vegetation and swampy areas significantly increased the

malaria risk. In contrast, an increased proportion of forest around

villages was associated with decreased malaria risk. These trends

remained when conducting the analysis using smaller radii.

However, the RRs for banana/plantain cultivation and forest

vegetation decreased with each diminished radius. This trend may

be explained by the increasing proportions of banana vegetation

and decreasing proportions of forest near homesteads and hence the

reducing divergence among all villages (Tables S1, S2, S3).

The increase of malaria risk in the vicinity of swampy areas,

which are preferred mosquito breeding sites, has already been

documented and can be considered as an internal control of the

validity of the analyses [13,14,16,31]. In the presented model each

10% increase of the proportion of swampy areas around villages

increased the malaria risk by 43%.

A higher proportion of all cultivated areas around villages was

associated with a slightly increased risk of malaria (data not

shown). The main plantations in the study area are with banana/

plantains, oranges, cacao, and palm trees [32]. After stratification

for the distinct cultivations, a plantation with banana/plantain was

found of particular impact and a 10% increase was associated with

about 300% higher malaria risk whereas plantations of oranges,

cacao, and palm trees showed a negative association. A number of

studies that were conducted at a microhabitat scale demonstrated

an association between ovipositions of various mosquito species in

rainwater retained in tree-holes and the leaf axils of a variety of

numerous wild and cultivated plants such as banana or plantain

[33–36]. However, none of these studies has directly linked the

existence of breeding sites with malaria incidence.

Likewise, deforested areas and dirt roads have been suspected as

environmental factors associated with malaria risk in the

surrounding areas since both create conditions favourable for

the formation of small puddles that are preferred breeding sites for

Anopheles spp. [16,17,29,37,38]. However, a significant influence of

deforested areas and roads on malaria incidence could not be

observed in the presented study. Similarly, population density as a

Table 2. Proportion (in %) of land cover around a 2 km village centre radius.

Village radiusa
Banana/
Plantain Cacao Palm trees Oranges

Deforested area
and roads

Built-up areas
(Houses)

Swampy
areab Water Forest

Agogo 19.7 9.5 4.5 6.9 9.2 4.1 37.0 0.1 6.4

Akutuase 11.5 10.9 4.1 28.7 9.4 1.4 4.7 1.4 27.9

Amantena 12.1 22.2 23.3 20.4 2.6 0.7 7.5 0.1 10.1

Domeabra 9.8 26.2 23.9 22.7 3.9 2.1 5.0 0.0 6.3

Hwidiem 18.7 13.3 12.6 13.2 5.6 2.6 23.9 0.1 9.9

Juansa 9.2 25.9 24.5 24.0 3.8 2.2 4.9 0.0 5.5

Kyekyebiase 7.3 28.9 24.3 26.6 1.6 0.6 5.2 0.1 5.4

Nyaboo 17.4 15.5 13.9 2.2 19.6 3.9 8.9 0.1 15.1

Obenimase 14.0 19.2 19.5 3.0 17.6 2.5 6.9 0.3 15.0

Patriensah 16.2 15.1 16.5 2.3 18.4 3.4 8.9 0.0 16.0

Pekyerekye 4.8 26.4 22.1 13.5 9.1 0.6 8.4 4.3 10.8

Wioso 9.3 14.4 5.0 22.5 10.2 0.7 7.8 1.2 28.7

aSize of each radius 2 km2.
bSwampy area: either the presence of a river or stream nearby or near the ground agricultural crops (such as eggplants, maize, tomatoes, pepper).
doi:10.1371/journal.pone.0017905.t002

Table 3. Correlation coefficients of the cross correlation function between land cover variables using Spearman rank correlation.

Population
density

Built-up areas
(Houses)

Deforested
area and roads Forest

Swampy
area Water

Banana/
Plantain Oranges Cacao

Palm
trees

Population density 20.51 20.08 0.22 20.11 0.07 20.55 20.24 0.24 0.17

Built-up areas (Houses) 0.09 0.55 0.08 0.52 20.38 0.86 20.66 20.62 20.41

Deforested area and roads 0.80 0.06 0.79 0.37 0.23 0.46 20.66 20.52 20.62

Forest 0.50 0.81 0.002 0.14 0.42 0.18 20.30 20.51 20.67

Swampy area 0.75 0.08 0.23 0.66 20.03 0.64 20.78 20.42 20.43

Water 0.84 0.22 0.48 0.17 0.92 20.24 0.13 20.14 20.46

Banana/Plantain 0.06 ,0.001 0.13 0.57 0.02 0.46 20.67 20.73 20.57

Oranges 0.46 0.02 0.02 0.34 0.003 0.70 0.02 0.27 0.26

Cacao 0.44 0.03 0.08 0.09 0.17 0.66 0.007 0.39 0.91

Palm trees 0.60 0.19 0.03 0.02 0.16 0.13 0.05 0.42 ,0.001

Note: Above the diagonal are the correlation coefficients r, below all p-values.
doi:10.1371/journal.pone.0017905.t003
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measure for potential human-mosquito contact did not show an

effect on the outcome.

A high proportion of forest coverage was associated with lower

malaria incidence with statistical significance. Indeed, the forest

floor with a closed canopy tends to be heavily shaded and littered

with a thick layer of organic matter that absorbs water and renders

it more acidic. Therefore, the proximity of forest could decrease

mosquito abundance and hence decrease malaria risk as the

preferred habitat of A. gambiae larvae are sunlit pools with turbid

water and little or no emergent vegetation and that of A. funestus

are clear water with vertical, emergent vegetation without organic

material [31,37].

There was a tendency of an association between an increased

proportion of build-up areas and malaria incidence. However, this

effect disappeared after adjustment for the highly correlated

variable ‘‘banana/plantain’’ what indicates confounding which is,

however, difficult to formally test due to the ecological study

design. The observation that vicinity to banana/plantain cultiva-

tions seems to be a risk factor for malaria may be because of the

frequent closeness of this vegetation with homesteads.

A limitation of our study is that the proportion of children ,15

years of age in each village was estimated and could not directly be

measured when computing malaria incidences. Moreover, the

underlying values for the total population were three years old

(census data from 2004) and hence might be not precise. However,

it was the best data available for our study population and census

data not more than five years old might represent a quite good

estimate. Additionally, the villages should be comparable in the

proportions of children since they have similar social and ethnic

structures, are of similar size, and are all situated in a rural area

and closely together. Therefore, it is unlikely that a differential bias

was created.

Climate conditions are suspected to be of importance for the

malaria risk and higher precipitation could be directly linked, with

a time lag, to an abundance of vectors and an increase of disease

frequency [39]. The satellite images, which were analysed here,

were taken during or immediately after the rainy season (May and

November). Therefore, most of the open lakes, rivers or streams

were most likely detected and included in our analysis.

Nevertheless, an association of the proportion of open water

bodies and risk of malaria could not be demonstrated in the

presented study. A limitation of the analysis is that the proportion

of open water in the surrounding of the villages was very low and

streams and little rivers were mostly located close to forests and,

therefore, difficult to detect on our satellite images.

Another limitation of the analyses was that some areas were

covered with clouds and their shadows in both images. However,

the proportion of cloudy areas was very low (,5% in total) and

randomly distributed hence should not significantly affect the

results.

In Ghana, the major farming practice is shifting cultivation,

often accompanied by deforestation, and crops mostly change

twice to three times a year [32]. Due to the fact that a time span of

nine and four months occurred between the acquisition of images

(May and November 2009) and the conducted field sampling

(March 2010), respectively, the assigned land cover might be

biased. By interviewing the local population about previous crops

and land cover we attempted to minimise this potential

misclassification.

Maximum likelihood procedures were used for supervised

classification of land cover data, which gave more accurate results

than other classification methods such as Decision Tree-,

Minimum Distance- or K-Means Classification [40–42]. Even

though the overall accuracy of the correlation matrix of the NDVI

image, the spectral and the spatial classification in the subsets

ranged from 87% to 95%, land cover still might be misclassified to

some extent. In the study area as in most areas of Ghana mixed

cultivation is widespread [32] which makes it very difficult to

unambiguously allocate land covers.

Our study was limited by the inability to sub-classify swampy

areas, which are mostly used for near-ground cultivation, into

different crops such as maize, eggplants or pepper for the analysis

of various influences on malaria risk. In Ethiopia a strong

association between maize cultivation in the vicinity of water

bodies, used as breeding habitats, and the larvae development was

demonstrated [15]. However, because of a high number of classes

in relation to 12 village clusters and weak accuracy of data in this

classification analyses, this sub-classification was not possible.

Other geo-ecological influence factors for the malaria risk are

altitude, slope, geology, and soil types [29,43–46]. However, the

intra-radius variation in these measures did not differ significantly.

The consequent next step should be to map individual data in

order to link individual spatial patterns and malaria risk. Indeed,

in an adjacent study area a continuous and linear reduction of the

malaria rate was demonstrated with an increasing distance

between children’s households and forest fringe [30]. Other

individual factors such as socioeconomic conditions and the

access to health facilities could then be included in the model

[20,47,48].

The performed analysis demonstrates that satellite images

together with appropriate analytical tools are able to predict the

risk of malaria in an area of high malarial transmission. Even

though only 12 village sides were included in the study a significant

association of different land cover classes with the occurrence of

malaria incidence could be demonstrated. Human cultivation in

the vicinity of homesteads, in particular with banana/plantain,

may increase the risk for malaria. On the contrary, forest

preservation may decrease malaria risk. In the future, mapping

of GPS positions of each household would enable to determine

individual risk and to confirm and to improve the validity of the

model. Malaria persists to be an important public health problem

and policy makers should involve geographic information systems

for planning and monitoring malaria control strategies.

Table 4. Influence of determinants on malaria incidencea.

Determinant RR
95% Confidence
Interval p-value

Population densityb 0.87 0.70–1.07 0.176

Built-up areas (houses)c 2.24 1.54–3.24 ,0.001

Deforested area and roadsd 1.00 0.70–1.44 0.988

Foreste 0.53 0.28–0.99 0.029

Swampy areae 1.43 1.33–1.55 ,0.001

Waterf 0.70 0.37–1.32 0.270

Banana/Plantaine 3.25 2.23–4.76 ,0.001

Orangese 0.63 0.44–0.91 0.012

Cacaoe 0.48 0.33–0.70 ,0.001

Palm treese 0.59 0.43–0.81 ,0.001

aPoisson regression analysis.
bUnit: 1,000/km2.
cUnit = 2%.
dUnit = 5%.
eUnit = 10%.
fUnit = 1%.
doi:10.1371/journal.pone.0017905.t004
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Supporting Information

Table S1 Proportion (in %) of land cover around a
1.5 km village centre radius. Swampy area: either the

presence of a river or stream nearby or near the ground

agricultural crops (such as eggplants, maize, tomatoes, pepper).

(DOC)

Table S2 Proportion (in %) of land cover around a 1 km
village centre radius. Swampy area: either the presence of a

river or stream nearby or near the ground agricultural crops (such

as eggplants, maize, tomatoes, pepper).

(DOC)

Table S3 Proportion (in %) of land cover around a
0.5 km village centre radius. Swampy area: either the

presence of a river or stream nearby or near the ground

agricultural crops (such as eggplants, maize, tomatoes, pepper).

(DOC)

Table S4 Influence of determinants on malaria inci-
dence. Association of land cover with malaria incidence using

Poisson regression analysis in radii of 0.5 km, 1 km, 1.5 km, and

2 km around each village. Land cover proportions were analysed

as continuous variables and were scaled by units as per 2%

increase in radii coverage by built-up areas (houses), per increase

in open water of 1%, per increase of deforested area and roads of

5%, per increase in forest, swampy area, banana/plantain,

oranges, cacao, and palm tree vegetation of 10%, respectively,

and human population density as per 1,000 inhabitants.

(DOC)
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