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Narrow ovale foramina may be
involved in the development of
primary trigeminal neuralgia
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1Department of Neurosurgery, Shanghai Ninth People’s Hospital, A�liated to Shanghai Jiao Tong

University School of Medicine, Shanghai, China, 2Department of Imaging, Shanghai Ninth People’s

Hospital, A�liated to Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: The etiology of primary trigeminal neuralgia remains unclear

and is worthy of further study; In this study, the morphometric characteristics

of ovale foramina between various groups were compared and analyzed to

explore the novel cause of primary trigeminal neuralgia.

Methods: High-resolution three-dimensional reconstruction images from

head computed tomography of 109 patients with primary trigeminal neuralgia

a�ecting the third branch of the trigeminal nerve and 46 healthy controls

were retrospectively reviewed. Among the 109 primary trigeminal neuralgia

patients, 79 patients with apparent neurovascular compression (not simply

contact) demonstrated onMRI or during surgery were divided into the classical

trigeminal neuralgia group and 30 patients with MRI showing no significant

abnormalities were divided into idiopathic trigeminal neuralgia group. The

morphometric parameters including the area, width and length of ovale

foramina were examined through the use of radiologic methods.

Results: In this study, the average minimum area, width and length of 79

ovale foramina on the a�ected and una�ected sides in the classical trigeminal

neuralgia groupwere 21.83± 8.45, 21.94± 7.93mm2, 2.32± 0.91, 2.58± 0.81,

5.32± 1.29, and 5.26± 1.21mm, respectively. No significant di�erence in these

parameters was observed (p > 0.05). However, in the idiopathic trigeminal

neuralgia group, the average minimum area, width and length of 30 ovale

foramina were 21.33 ± 8.21, 22.85 ± 8.36 mm2, 2.25 ± 0.90, 2.79 ± 0.96, 5.20

± 1.27, and 5.28 ± 1.19mm, respectively. The width on the symptomatic side

was significantly smaller (p = 0.03) than that on the asymptomatic side. No

significant di�erence in area (p = 0.48) or length (p = 0.79) was observed. In

addition, when compared with the healthy control group, the area and width

of ovale foramina on the symptomatic side in both groups were significantly

smaller. No significant di�erence in length was observed.

Conclusions: By comparing and analyzing the statistical data, it can be inferred

that a narrow foramen ovale is associated with primary trigeminal neuralgia, as

well as its recurrence after microvascular decompression.
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Introduction

As a functional disorder of the peripheral nervous system,

trigeminal neuralgia (TN) is characterized by drastic and

electric shock-like orofacial neuropathic pain in the distribution

area of the trigeminal nerve (1). TN tends to occur in

the elderly, but is also observed in children (2, 3). In

2018, the International Headache Society classified TN into

several categories, including classical TN (CTN), idiopathic

TN (ITN), and secondary TN (STN) (4). The first two, also

termed primary TN (PTN), are distinguished by the degree

of neurovascular contact (NVC) (5). NVC has been widely

accepted to be the main cause of PTN due to the extremely

high rate of postoperative pain relief with microvascular

decompression (MVD) (5–9). Nevertheless, there are still

some clinical observations and symptoms that fail to be

explained by NVC. For example, some PTN patients without

NVC have been observed during posterior fossa explorations

(10–13), whereas a number of individuals with NVC never

present specific clinical manifestations similar to PTN (14–16).

Therefore, some researchers have proposed that NVC is not

the only etiology of PTN (17–19), which warrants further study

and attention.

Anatomically, the foramen ovale is an important aperture

in the skull base and transmits the third division of the

trigeminal nerve (i.e., the mandibular nerve) and several small

vessels (20). Many investigations have reported that foramen

ovale has great clinical significance in some manners (21–23).

In this study, we aimed to emphasize that the mandibular

branch could be entrapped during its course through a narrow

foramen ovale, thus suggesting that a narrow foramen ovale

may play a role in the development of PTN (20, 24, 25).

This perspective was first proposed by Neto et al. (19). In

addition, they proposed the idea that a narrow foramen

ovale may account for the higher prevalence of PTN on

the right side because many anatomical and radiological

studies have suggested that the right-sided ovale foramina were

narrower than left-sided ovale foramina in most people (26–

28).

Clinically, PTN patients with no pain relief or with

recurrence after MVD have always represented an intractable

medical problem that has not been effectively addressed.

Although the high pain relief rate (80–98%) after MVD

has been previously reported (29), the postoperative long-

term recurrence rate can reach as high as 15–35% (30, 31).

Currently, in the case of PTN patients with recurrence, it is

still controversial as to whether to perform MVD again or to

treat the problem with percutaneous procedures (32–34). In this

study, we measured and compared the size of ovale foramina

between various groups to explore whether a narrow foramen

ovale is associated with the pathogenic mechanism and relapse

of PTN, thus helping to provide new insights into the existing

surgical procedures.

TABLE 1 Demographic and pain characteristics of HC, CTN and ITN

groups.

CTN ITN HC Significance

Demographic

Case number (N/%) 79 (51.0) 30 (19.4) 46 (29.7)

FO number (N/%) 79 (39.3) 30 (14.9) 92 (45.8)

Gender

Female (N/%) 21 (70.0) 48 (60.8) 29 (63.0) ns

Male (N/%) 9 (30.0) 31 (39.2) 17 (37.0)

Age 60.4 65.5 58.2 ns

Pain characteristics

Side

Right (N/%) 14 (46.7) 42 (53.2) ns

Left (N/%) 16 (53.3) 37 (46.8)

Branch

V3 9 (30.0) 29 (36.7)

V2+3 21 (70.0) 42 (53.2)

V1+2+3 0 (0.0) 8 (10.1)

ns, no significant difference.

Methods and materials

Data source

In this retrospective study, we screened consecutive TN

patients attending the Department of Neurosurgery, Shanghai

Ninth People’s Hospital, affiliated with Shanghai Jiao Tong

University School of Medicine, from January 2019 to January

2022. The diagnosis was based on the Third Edition of

the International Classification of Headache Disorders. The

inclusion criterion included PTN involving the mandibular

branch. The exclusion criteria included STN, skull base

fractures, and other headache disorders (such as migraines). A

total of 250 TN patients were screened and 141 patients were

excluded: 17 with STN, 21 with anatomic variants like bony

spur and tubercle bony plate of ovale foramina, and 103 patients

with PTN not affecting the mandibular branch. At length, 109

PTN patients consisting of 79 CTN patients and 30 ITN patients

were eligible and divided into the CTN group and ITN group

according to the degree of NVC which was determined by

MRI/MRTA and intraoperative exploration findings. For the

sake of the following discussion, the two groups were also

referred to as the PTN group. Additionally, we also recruited 46

healthy controls (HCs) as the HC group. The demographics and

patient characteristics are listed in Table 1.

Imaging technique

Measurements were conducted on high-resolution, thin-

slice head computed tomography (CT) images which were
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FIGURE 1

Observation and measurement of the length and width of the

foramen ovale from the bottom on 3D reconstruction images.

obtained by a 256-slice CT (Phillip, Netherlands) scanner

and transferred to the Picture Archiving and Communicating

System of the Radiology Department. A 3D reconstruction

was then created on a post-processing workstation (Advantage

Workstation 4.6, GE Healthcare, Milwaukee, WI). After the 3D-

CT image of the cranium was obtained, the both-sided ovale

foramina can be observed by looking at the cranium from

the bottom, and the parameters of each foramen ovale were

measured with a self-contained measuring tool.

Statistical analysis

To avoid a measurement bias, the collection of clinical

data and the measurements of ovale foramina were performed

by independent neuroradiologists. In this case, the length

was defined as the diameter along the longest dimension of

each shape, and the width was defined as the perpendicular

bisector of length. The length and width of ovale foramina

were measured on 3D reconstruction images (Figure 1). To

ensure the accuracy of the data and the level that we measured

was the smallest level, the area was measured in the oblique

position, instead of the axial position, with the angle adjusted

to be perpendicular to the outer opening of the foramen

ovale (Figure 2). Data were expressed as the mean ± standard

deviation (SD) and compared by using one-way analysis

of variance (one-way ANOVA) for parameters with normal

distributions. A multivariate analysis was then performed by

using logistic regression. In addition, constituent ratios of sex

and side were examined via the chi-square test or Fisher’s

exact probability test. The abovementioned statistical analyses

were performed by using IBM SPSS Version 26.0 (IBM Corp.,

Armonk, New York, USA). A p-value of <0.05 was considered

to be statistically significant.

Results

Di�erences in the morphometry between
the left and right sides

The morphometric parameters of ovale foramina in the HC,

CTN, and ITN groups were recorded and compared separately

between the left side and the right side. The detailed statistical

data and corresponding p-values are listed in Table 2. Although

the mean size of the left-sided ovale foramina was slightly

smaller than that of the right-sided ovale foramina in most

individuals, there was no significant difference in morphometric

characteristics found between the left and right sides. The results

suggested that the size of the bilateral ovale foramina was

symmetric in either PTN patients or healthy individuals.

Di�erences in the morphometry between
the painful and painless sides

The results of comparison of foramen ovale size ipsilateral

and contralateral to the side of symptoms are shown in Figures 3,

4. In the ITN group, the width of ovale foramina on the painful

side was significantly narrower than that of the painless-sided

ovale foramina (p = 0.03), whereas no significant difference

in the area and length was observed. Distinct from the results

of the ITN group, the symptomatic and asymptomatic sides

in the CTN group did not present any statistically significant

differences in all morphometric parameters.

Comparison of parameters between the
three groups

When compared with HCs, the area and width of ovale

foramina on the painful side in ITN and CTN patients were

significantly smaller. However, the difference in the width and

area of ovale foramina between the ITN and CTN groups was

not statistically significant. The mean length of ovale foramina

was similar in the three groups and no significant difference was

observed. Detailed data are present in Figure 5.

Multivariate analysis for morphometric
factors contributing to the development
of PTN

Multivariate logistic regression models were constructed

with factors including age, sex, area, width, and length of

ovale foramina. After adjusting for covariables, it was found
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FIGURE 2

Measurement of the area of the foramen ovale on CT images in di�erent position. (A) The area of the foramen ovale was measured in the

oblique position. (B) The area of the foramen ovale was measured in the axial position. The area measured in the axial position is greater than

that in the oblique position.

TABLE 2 Comparisons of parameters between the left and right sides

in HC, CTN and ITN groups.

Parameter Group Left Right P-value

Area (mm2) HC 24.90 27.28 0.19

CTN 21.47 22.30 0.52

ITN 23.21 21.60 0.44

Width (mm) HC 2.64 2.77 0.39

CTN 2.45 2.45 0.99

ITN 2.49 2.55 0.81

Length (mm) HC 5.27 5.79 0.04*

CTN 5.22 5.36 0.46

ITN 5.10 5.38 0.79

*p < 0.05.

that smaller area and width values of ovale foramina on the

symptomatic side corresponded to more likely chances that the

patient would develop PTN, and this difference was statistically

significant (p = 0.007, p = 0.020). As to the length, there was

no statistically significant difference in the effect on PTN (p =

0.282). The odds ratios (ORs), 95% confidence intervals (95%

CIs), and p-values are shown in Table 3.

Discussion

As a vital anatomical pore canal, the foramen ovale connects

the middle cranial fossa and the inferior temporal fossa (35).

When considering its significance in percutaneous treatments

for PTN, there have been many studies (26, 36). However,

most of the previous studies have only concentrated on the

blocking effect on foramen ovale puncture. Currently, only a

few studies have paid attention to the association between the

size of ovale foramina with PTN, and there have been some

defects in their methods of measurement; therefore, there is

a lack of precise and reliable statistical data. Hence, several

improvements have been made in the methods to ensure the

accuracy of the data that we collected. We used high-resolution

3D CT and adjusted the angle to ensure that the layer that we

measured was the smallest cross-section of the foramen ovale

where the mandibular branch is more likely to be entrapped. In

addition, stricter grouping and inclusion criteria of patients were

set and more samples were included in this research. Via the

abovementioned improvements, we deemed that the data were

relatively representative and trustworthy.

In this study, we first measured and compared the

morphometric characteristics of ovale foramina on the left side

to those on the right side. There was no significant difference

between the left and right sides in both HCs and patients with

PTN. The results suggested that the higher prevalence of the

right side cannot be solely explained by the differences in the

size of the foramen ovale. Previous studies have demonstrated

the same conclusion (26, 37–41).

Furthermore, the morphometric parameters of the ovale

foramina on the painful and painless sides were measured and

compared. According to the measurement results, we found

that the width of the affected side was significantly smaller (p

= 0.03) than that of the unaffected side in the ITN group.

However, there was no significant difference noted in the area

and length. As to the CTN group, the size of ovale foramina on

the painful side was similar highly to that on the painless side,
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FIGURE 3

Morphometric di�erences between the painful side and the

painless side in the ITN group. *p < 0.05.

FIGURE 4

Morphometric di�erences between the painful side and the

painless side in the CTN group.

with no statistically significant difference in the morphometric

characteristics observed. Then we compared the size of ovale

foramina on the painful side in the ITN group to that on the

painless side in the HC group, and the results suggested that

the area and width of the ovale foramina on the symptomatic

side of ITN patients were statistically smaller than those of

HCs. Notably, when compared to the HC group, the CTN

group achieved the same findings as the ITN group. The ovale

foramina on the painful side were statistically narrower than

the ovale foramina on the painless side of HCs. Based on the

above comparison findings, the multivariate regression analysis

was made and the results demonstrated that the area and width

FIGURE 5

Morphometric di�erences in area, width, and length between

the three groups were presented. ns, no significance di�erence;

*p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 3 Odds ratios from logistic regression, adjusted for age and

sex.

Variable Adjusted OR (95% CI) P-value

Area 0.942 (0.903–0.984) 0.007**

Width 0.592 (0.381–0.919) 0.020*

Length 0.858 (0.650–1.134) 0.282

*p < 0.05, **p < 0.01.

of ovale foramina were protective factors that reduced the

incidence of PTN. In other words, individuals with a narrower

foramen ovale are more likely to develop PTN. Taken together,

these results suggested that a narrow foramen ovale may play a

key role in the pathogenic mechanism of PTN. Our conclusions

are partially supported by previous studies (37, 39), but there

are also some observations that are contradict to those (42).

For example, a study performed by Kastamoni et al. (37)

demonstrated that no significant difference was found between

the painful and painless sides of 19 patients with TN. Another

study conducted on 21 patients provided the same conclusion.

This disparity may be explained by the following points: (1) the

sample size of these studies was too small to exhibit significant

differences, (2) the CT images on which they measured the

parameters were random (instead of being the smallest), and

(3) the mandibular branch was not involved in some of the

included patients.

Two different pathogenic mechanisms that may be involved

in the development of PTN caused by a narrow foramen ovale

are proposed in this paper and will be separately discussed

in detail below. Considering the fact that the majority of TN

are unilateral and no statistically significant difference in the
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size of bilateral ovale foramina was noted, a narrow foramen

ovale may not be an independent cause of CTN, although

the painful-sided ovale foramina were smaller than that of

healthy individuals. However, it can be inferred that the onset

of CTN may be ascribed to the trigeminal nerve compressed

by blood vessels and a narrow foramen ovale meanwhile. The

compression formed by a narrow foramen ovale could be

secondary to NVC, which results in a swelling of the mandibular

nerve, therefore making it susceptible to entrapment during

its course through a narrow foramen (43–47). In recent years,

it has been suggested that most individuals with NVC are

asymptomatic and NVC alone may not be sufficient to cause

CTN and elucidate some clinical phenomena in some CTN

patients (48). Part of CTN may develop only in the case of

concurrent compression of the trigeminal nerve by the vessels

and the foramen ovale. The double compression may help

explain some clinical observations: (1) this kind of double-

crushing can show light on why some healthy individuals with

NVC do not develop symptoms while others do; (2) Concerning

the difference in the incidence of each branch of the trigeminal

nerve, it is puzzling why CTN tends to occur in the maxillary

and mandibular branches rather than the ophthalmic branch

(49, 50). In our understanding, the variance may be attributed to

the susceptibility of the maxillary and mandibular nerves to be

compressed by narrow orifices (foramen rotundum and foramen

ovale) in their pathways to the skull; (3) In a proportion of TN

patients (about 28–50%) (51–53), the pain attack intervals can

be followed by continuous or near-continuous background, dull

pain, which is termed CTN with concomitant persistent facial

pain (i.e., atypical TN) (4). This kind of atypical presentation

may be due to the continuous compression by a narrow foramen

ovale. In many retrospective investigations, atypical TN was

found to be associated with poor outcomes after MVD (6, 54,

55). From our point of view, MVD can only relieve vascular

compression of the trigeminal nerve for these atypical patients,

but the compression by a narrow foramen ovale persists, which

is probably the main reason for the low pain relief rate and high

recurrence rate of MVD.

Besides, we propose that a narrow foramen ovale alone may

be an independent and primary cause of a part of patients with

ITN. Unlike CTN patients, ITN patients do not have apparent

morphological changes in the REZ. Hence, we put forward

another hypothesis that the chronic compression by a narrow

foramen ovale leads to focal demyelination of the mandibular

division, thus forming a REZ-like region in the foramen ovale.

Vessels passing through the foramen ovale may be in close

contact with themandibular division in such a confined channel.

In the context of the trigeminal nerve indented by a narrow

foramen ovale, pulsatile compression of demyelinated axons

by adjacent vessels may be the cause of abnormal impulses

in ITN patients, therefore leading to the onset of throbbing

pain. With the deepening recognition of NVC, the conventional

perspective that compression of the trigeminal nerve is restricted

to the central-peripheral myelin transitional zone has been

challenged by accumulating studies (15). It has been suggested

that a vessel that compresses any part of the trigeminal nerve

may have secondary effects on the transitional zone, giving

rise to the occurrence of pain (56, 57). On the one hand,

this mechanism is supported by this research on anatomical

structure and our previous results that the width of affected-

sided ovale foramina was not only statistically smaller than

that of HCs, but also smaller than the unaffected-sided ovale

foramina of ITN patients (58). On the other hand, in terms of

the ultrastructural pathological abnormalities of the trigeminal

nerve, our hypothesis can still be supported by several studies.

Slobodan et al. (59) pointed out that apart from the central

zone of demyelination, the electron microscope examination of

the trigeminal nerve also revealed alterations of the peripheral

myelin and changes of the peripheral axons like atrophy or

hypertrophy, neurofilaments increase and loss of the myelin

occasionally. It is likely that the distal axonal demyelination is

due to compression of the narrow foramen ovale.

The pathomechanisms leading to the development of TN

are not completely understood until now. In recent years, an

increasing number of studies have suggested that TN might be

a channelopathy and that central mechanisms may be closely

involved in its development (60–67). Some new drugs targeting

ion channels are being developed and are already in clinical

trials (68). However, the mainstream perspective is still that the

trigeminal nerve is compressed at REZ by a blood vessel and

the most effective treatment is MVD. In fact, the compression,

which could generate an ectopic action potential from the

compressed site of the axon, may arise from veins, neoplasms,

or Teflon, etc. (34, 69, 70). The discovery of the association

between narrow ovale foramina and the development of PTN

has crucial clinical significance not only in helping understand

the clinical characteristics, but also in helping neurosurgeons

select appropriate surgical treatments for PTN patients. Herein,

we suggest that when considering the likelihood of recurrence

and poor outcomes, MVD alone may not be applicable to

PTN patients with the mandibular nerve potentially being

compressed by a narrow foramen ovale. Namely, if a significantly

narrow foramen ovale was preoperatively noticed on the painful

side on radiographic images, transcutaneous procedures instead

of MVD should be given priority for neurosurgeons to achieve

better clinical outcomes. In addition, for patients with recurrent

PTN after MVD, it may be helpful to measure the dimension

of ovale foramina before deciding on subsequent surgical

treatments. Based on the abovementioned comparative analysis,

we argued that a narrow foramen ovale may play a critical role

in the pathogenesis of PTN, thus potentially being involved in

relapse after MVD.

The research has several limitations. Firstly, it is a

retrospective study in essence. The next step is to carry on

prospective studies to compare the outcomes ofMVD in patients

with narrow ovale foramina vs. patients with normal ovale
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foramina. Secondly, the sample size of ITN patients is too small

for the reason that ITN patients are relatively few. Thirdly, the

absence of histological evidence on the trigeminal nerve at the

narrow foramen ovale is a limitation of our research. Subsequent

studies should focus on changes in the ultrastructure of the distal

mandibular nerve axons and myelin sheaths.
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