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Modern cellular biology faces several major obstacles, such as the determination of the
concentration of active sites corresponding to chemical substances. In recent years, the
popular small-molecule fluorescent probes have completely changed the understanding of
cellular biology through their high sensitivity toward specific substances in various
organisms. Mitochondria and lysosomes are significant organelles in various
organisms, and their interaction is closely related to the development of various
diseases. The investigation of their structure and function has gathered tremendous
attention from biologists. The advanced nanoscopic technologies have replaced the
diffraction-limited conventional imaging techniques and have been developed to
explore the unknown aspects of mitochondria and lysosomes with a sub-diffraction
resolution. Recent progress in this field has yielded several excellent mitochondria- and
lysosome-targeted fluorescent probes, some of which have demonstrated significant
biological applications. Herein, we review studies that have been carried out to date and
suggest future research directions that will harness the considerable potential of
mitochondria- and lysosome-targeted fluorescent probes.
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1 INTRODUCTION

Mitochondria, popularly termed the cellular “powerhouses,” are one of the most significant
constituents of eukaryotic cells. The mitochondria not only plays an important role in adenosine
triphosphate (ATP) production but also performs numerous essential functions within the cells, such
as transmission of information, induction of cell differentiation, growth, and apoptosis
(Vakifahmetoglu-Norberg et al., 2017). Mitochondria have a distinctive double-membrane
structure, playing important roles in their unique and complicated functions. Lysosomes are
“digestion workshops” in cells, participating in the apoptotic process and other types of cell
death (Luzio et al., 2007). They can function alone to participate in normal biological processes
and can also interact with each other to accelerate the transmission of materials and communication
with the external environment, which allows cells to improve their biological functions.

Apart from playing their own distinctive function, mitochondria could interact with lysosomes.
At present, the interactions between mitochondria and lysosomes have been extensively explored,
such as the fusion of the lysosomes with mitochondria during the process of autophagy (Chen et al.,
2019a) and the mitochondrial and lysosomal contact (MLC) (Wong et al., 2019). Their contact
promotes transmission of materials and information. When their contacting function is disrupted,
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the occurrence of human-related diseases, such as Parkinson’s
and lysosomal storage–related diseases, is noted (Wong et al.,
2019). Therefore, the timely monitoring of their dynamic changes
and the estimation of the reactive small-molecule (RSM) levels
are very important for identifying their physiological function
and the pathogenesis of the related diseases. Several RSMs have
been found in the mitochondria and various enzymes exist in the
lysosome, whose dysfunction can participate in the progression of
human-related diseases, such as metabolic diseases, heart failure,
neurodegenerative diseases (Marc et al., 2009), Alzheimer’s
disease (Nixon et al., 2000), and Parkinson disease (Daniel
et al., 2008).

Fluorescence microscopy (FM) is a powerful tool for studying
cellular dynamics, which has been used widely to study the
interaction mechanism between mitochondria and lysosomes
(Chen et al., 2019b; Chen et al., 2020). However, among
imaging organelle interaction, the systematic introduction of
mitochondrial and lysosomal imaging strategy is rare.
Therefore, the present review focuses on some new imaging
strategies of fluorescence probes targeting mitochondria and
lysosomes.

2 FLUORESCENCE PROBES DESIGN
STRATEGIES FOR MITOCHONDRIA
IMAGING
Small-molecule fluorescent probes targeting mitochondria can
enable the imaging of these organelles to detect the dynamic
location and morphological changes of the mitochondria and
observe their physiological process (Wei et al., 2022). The
fluorescent probes used for imaging mitochondria are mainly
divided into the following two types: bearing unique positive
charge and targeting the contents of mitochondria and lysosomes.
Hence, membrane permeable cationic compounds could be enriched
into mitochondria because of their electrophoresis effect. The
commercial probe targeting mitochondria, MitoTracker Green
(MTG) with positive charge, has been widely used to target

mitochondria selectively. In addition, triphenylphosphonium
(TPP) with large hydrophobic radius has also been used as a
targeting group for mitochondria owing to its high membrane
permeability (Figure 1) (Tian et al., 2022).

2.1 Single Functional Fluorescent Probes
Targeting Mitochondria via Positive Charge
Mitochondrial membrane potential is the main component of
proton motion dynamics, which is formed by protons pumped
from the mitochondrial matrix to membrane. The mitochondria
keep the negative transmembrane potential up to −180 mV if the
potential in the cytoplasm is 0 mV (Tian et al., 2022). Based on
these characterizations, positive charge has been widely applied to
target mitochondria.

Recently, Gu et al. have designed a novel photoactivatable bio-
probe, o-TPE-ON+ (Gu et al., 2016), which can indicate the
characterization of spontaneous scintillation without any imaging
buffer or additives. Interestingly, this probe can target the
mitochondria specifically, which is probably owing to the
accumulation of negative charge of mitochondrial outer
membrane. In addition, o-TPE-ON+ has been thought as a
better choice for fluorescence imaging on the basis of its better
cell permeability and outstanding biocompatibility. And the
probe o-TPE-ON+ has tracked the high-resolution nanoscopic
imaging and dynamic changes of the mitochondria (Gu et al.,
2016). Huimin et al. (2022) utilized Cy5 to link with dextran to
target and visualize the mitochondrial changes under dextran,
which realizes the drug-visualized study at the organelle scale.
Saipeng et al. (2015) also designed a mitochondrial fluorescence
probe, NPA-TPP, with a fluorescent group of 1,8-naphthalimide
group and the targeting group of TPP (Figure 2).

2.2 Fluorescent Probes Detecting
Mitochondrial Contents
It has been demonstrated that there are several RSMs in the
mitochondria. The RSMs mainly include reactive oxygen species

FIGURE 1 | The design strategies of fluorescence probes targeting mitochondria.
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(ROS), active nitrogen, metal cations, protons, and anions.
Therefore, to visualize the distribution and action mechanism
of RSMs in the mitochondria, various researchers have designed
and synthesized several small-molecule fluorescent probes that
target specific mitochondrial contents to further study the action
targets and mechanism of drugs, which provides a powerful tool
for the integration of diagnosis and treatment of diseases (Liu
et al., 2021; Huimin et al., 2022).

2.2.1 Application of the Fluorescent Probes in the
Detection of Reactive Oxygen Species inMitochondria
The survival of cells depends largely on mitochondrial function,
which was recognized as an important target for potential drug

development (Bras et al., 2005). In recent years, the mitochondria
has been recognized as an important target of many drugs. It has
been reported that one of the main ways of causing mitochondrial
damage is the abnormal level of intracellular ROS. The ROS includes
peroxides, super oxides, hydroxyl radicals, singlet oxygen, etc.

Among them, peroxynitrite (ONOO−) is a major one because of
its function of signal transduction and antibacterial activities in the
biosystems (Radi, 2013). To detect ONOO− selectively, Liu et al.
(2021) designed a probe L-1, a “landmine,” tomonitor the ONOO−

levels in living cells with higher selectivity. In addition, they
proposed a novel strategy “landmine warfare strategy.”
“Landmine” L-1 without fluorescence was distributed evenly in
the cell matrix and could release fluorophore when “engineer”

FIGURE 2 | The photocyclodehydrogenation process of o-TPE-ON+ (Gu et al., 2016)

FIGURE 3 | The design of L-1 and its response with ONOO− (Liu et al., 2021). (A) Synthetic route of probe L-1. (B) Proposed ONOO− visualization mechanisms for
probe L-1 in living cells. (C) Super-resolution visualization of ONOO− using L-1 in living cells.
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ONOO− was generated in the mitochondria (Figure 3). Under
SIM, it could be found that the “engineer” ONOO− acted alone at
the mitochondrial cristae and emitted fluorescence. The “landmine
warfare strategy” provided a novel designed method for innovative
drugs development of diseases which resulted owing to the
abnormal ONOO− concentration and provided a novel research
direction for other ROSmaterials in the mitochondria. H2O2 is one
of the major forms of ROS, which participates in the process of a
cell’s growth metabolism and energy production (Chen et al., 2014;
Kangnan et al., 2020a). Kangnan et al. (2020b) designed a TP
probe, Pyp-B, to detect the concentration of H2O2 in the
mitochondria. Xiaoyue et al. (2018) developed the near-infrared
fluorescent probe Mito-Cy-Tfs to detect the level of superoxide
anion (O2

•−) and the relationship between O2
•− concentration and

apoptosis during ischemia/reperfusion.

2.2.2 Fluorescent Probe Detection of Metal Cations in
Mitochondria
Metal ions are required for mitochondrial physiology in many
aspects. Copper, iron, manganese, and zinc play an important
role in organ metalloenzymes and metalloproteins (Pierrel et al.,

2007). In biological systems, the zinc ion (Zn2+) mainly
participates in certain life processes, such as DNA synthesis,
enzyme catalysis, and gene transcription. In recent years, a large
number of evidence have proved that Zn2+ is essential to the
autophagy process, and autophagy can promote large changes of
Zn2+. Therefore, the detection of the levels of Zn2+ has become
one of the research hotspots of mitochondrial fluorescent probes.
In recent years, researchers have designed and synthesized
various fluorescent probes for the intracellular detection of
Zn2+ in the cells; however, certain probes cannot target the
mitochondria (Hung et al., 2013; Liuzzi and Yoo, 2013; Ding
and Zhong, 2017). To determine the importance of Zn2+ in
autophagy and signal transformation, Fang’s group developed
a series of probe targeting Zn2+ in many organelles
simultaneously and proposed a novel concept, Zn-STIMO, of
tracking Zn2+ in multiple organelles (Figure 4) (Fang et al., 2021).
They found that mitochondrial autophagy inducer CCCP-
induced mitophagy in HeLa cells is associated with unstable
Zn2+ enhancement. The results showed that SIM technology
would become a reliable tool detecting unstable Zn2+, which
also demonstrated that the organelle identification related with

FIGURE 4 | Schematic illustration of Zn-STIMO, and the design of probe candidate for Zn-STIMO (Fang et al., 2021). (A) The scheme of Zn-STIMO; (B) the
structure of fluorescent probes targeting Zn2+, Naph-BPEA, NapEt-BPEA, and NapBu-BPEA.
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super resolution morphological study would have an amazing
potential in tracking the biological species and events of specific
organelles in organoids. Ning et al. (2016) developed a two-
photon ratio probe (Mito-MPVQ) targeting the mitochondria to
detect Zn2+ levels. Triphenylphosphine was used as the targeting
group of the probe. Following the attachment of a fluorescent
group, this probe was localized in the mitochondria and
improved the two-photon signal detection for Zn2+.

In addition, during these years, previous researchers have
designed and synthesized several fluorescent probes to detect
other metal cations in the mitochondria. For example, Wang et al.
(2018) designed the mitochondria-targeting fluorescent probe
(PyCM-2) and (PyCM-3) to detect Au3+ levels.

2.2.3 Fluorescent Probe Detection of Anions in
Mitochondria
Although the detection of cations in the mitochondria has been
extensively examined, the role of anions is also very important.
Fluorine ions can cause metabolic diseases following their
accumulation in the mitochondria. In 2014, Shiling et al.
designed and synthesized the mitochondrial fluorescent probe

FP, which was used to detect fluorine (Shiling et al., 2014). This
probe was localized in the mitochondria. The fluoride ions could
knock out the silyl protecting group, and subsequently the
phenoxide reacted with the −CN group, which induced
nonfluorescent FP to highly fluorescent YG and emitted
strong green fluorescence (Figure 5). Therefore, FP was used
to detect and image fluorine in the mitochondria and has been
thoroughly examined in the fields of cell biology and medical
science. Xu’ group developed a mitochondrial-targeting
fluorescent probe for the detection of fluorine in viable cells,
which was denoted asMito-FP (Xu et al., 2019). The probe could
be successfully localized in the mitochondria and has been used
for the imaging of fluorine in HeLa cells.

2.2.4 Fluorescent Probes Detecting Mitochondrial
Microenvironment
In addition to the mitochondrial morphology, several
microenvironmental factors are regarded as the significant
factors of the mitochondrial status, such as the mitochondrial
pH value, polarity, and temperature. Normal polarization is
necessary for cellular energy metabolism (Nemoto et al., 2000),

FIGURE 5 | The reaction mechanism and fluorescence imaging of probe FP (Shiling et al., 2014). (A) Proposed reaction mechanism of FP. (B) Fluorescence
imaging of COS-7 and MCF-7 cells incubated with probe FP (2.5 μM) before (a and d) and after (b, c, e, and f) being treated with TBAF, NaF (100 μM).
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and the appropriate pH value could also keep the normal
membrane potential, which forces ATP generation and Ca2+

homeostasis regulation (Crompton and Heid, 1978).
Gaoqing et al. (2020) designed the fluorescent probe HBTMP

to detect the mitochondrial pH value. This probe emitted red
fluorescence in acidic and neutral environments and blue
fluorescence in alkaline environments (Figure 6). Furthermore,
HBTMP exhibited improved photostability and lower
cytotoxicity. The fluorescent image of the viable cells
demonstrated that HBTMP could easily spread in the
mitochondria and detect changes in the pH with high
sensitivity. We concluded that HBTMP could be used to study
the pH changes of the mitochondria in viable cells in a more
efficient way. Li et al. (2019) reported a near-infrared fluorescence
probe of hydroxy-L-lysine in 2019, denoted as HXPI-P. This
probe was used to detect mitochondrial polarity changes through
drug induction and starvation, which contributed to distinguish
the differences in polarity between normal and cancer cells via
ratio fluorescence imaging.

3 FLUORESCENT PROBES DESIGN
STRATEGIES FOR TARGETING THE
LYSOSOMES
Lysosomes are important acidic organelles in eukaryotic cells.
They involve more than 60 hydrolases and proteases and are
considered to be the “digestive organs” of the cells. In addition,
they can also participate in the regulation of the secretory
function of cells. Lysosomes also contain various RSMs that
participate in the corresponding biological reactions, such as
ROS and metal cations. The visualization of RSMs in the
lysosome plays an important role in understanding their
mechanism of action and their therapeutic application in the
treatment of various related diseases (Chen et al., 2021;Wang and
Diao, 2022).

A single functional fluorescent probe targeting lysosomes can
enable imaging the lysosomes to detect their dynamic location
and morphological changes and track their physiological
processes (Qiu et al., 2020). However, the majority of the
available commercial probes targeting lysosomes are amine-
based compounds and exhibit certain limitations, such as
lower specificity of their localization and reducing suitability
for long time detection. To address these problems,
researchers have carried out research on lysosomal probes
(Figure 7).

3.1 Fluorescence Probes Detecting
Reactive Oxygen Species in the Lysosome
In cancer cells, the lysosomal content is high, and oncogene-
driven transformation will alter the lysosomal membrane in
cancer cells, which makes them more sensitive to lysosomal
membrane permeability (LMP) and promotes tumor
progression (Boya and Kroemer, 2008; Kallunki et al., 2013).
Among the various intracellular stimuli (e.g., LMP), the ROS are
the most closely related to lysosomal death (Vila et al., 2011;
Melina-Theoni and Athanasios, 2014). In order to assess the
ROS-related lysosomal cell death in cancer cells, Zhang et al.
(2017) designed and synthesized a near-infrared fluorescent
probe (PSiR) targeting the lysosomes, which could timely
detect the generation of lysosomal ROS in cancer cells
(Figure 8). The experimental results indicated that the probe
exhibited strong resistance to photooxidation, fast reaction, and
high selectivity and sensitivity. The anticancer drug β-lapachone
(β-lap) could stimulate the generation of ROS in lysosomes,
which was accompanied by a dose-dependent fluorescence
enhancement. Due to its sensitivity in detecting ROS in cancer
cells, the probe could distinguish normal cells from cancer cells
according to specific images; it could also distinguish the presence
of cancer cells in healthy tissues (Figure 8C).

The hydroxyl radical (•OH) is one of the most active free
radicals noted in ROS, which can destroy various
biomacromolecules. In order to detect the generation and
function of lysosomal •OH in viable cells, Benitez-Martin et al.
(2018) developed an active probe targeting lysosomes, denoted as
1-Red (“off” state). HOCl is a type of ROS and lysosome is one of
the main sources of HOCl. Therefore, the detection of lysosomal
HOCl plays an important role in studying its biological process. In
2017, Yawei et al. (2017) designed and synthesized a pH-mediated
lysosomal targeted fluorescent probe (Lyso-HOCl). The probe
contained pH-sensitive phenol, which was used as its targeting
group. A similar structure of rhodamine demonstrated a unique
chlorination effect in an acidic environment, which could be used
to specifically detect HOCl. Meng et al. (2019) developed the
fluorescent probe CR-Ly using coumarin as a donor, rhodamine
as the receptor, and morpholine as the lysosomal targeting group.

3.2 Fluorescent Probe Detection of Reactive
Nitrogen Species in the Lysosome
Nitric oxide (NO) plays an important role in the process of cell
catabolism, whose quantity can influence lysosomal function.

FIGURE 6 | The pH sensing mechanism for the probe HBTMP (Gaoqing et al., 2020).
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Abnormal NO can induce the development of cardiovascular and
nervous system diseases. Therefore, the function of NO in
lysosomes remains to be studied, which requires the design
and development of ideal lysosomal targeting fluorescent
probes detecting the change in the concentration of NO. Feng
et al. (2016) synthesized the fluorescent probe LysoNO-Naph to
detect NO in lysosomes on the basis of 1,8-naphthalimide
(Figure 9). The probe was synthesized by using 4-(2-
aminoethyl)-morpholine as a targeting group and
o-phenylene-diamine as the reacting site of NO. And it could
be used for lysosomal imaging. In addition, hemolysin-Naph

exhibited higher selectivity and sensitivity for NO, indicating that
this probe could be used to detect lysosomal NO successfully. In
the same year, Yinhui et al. (2016) designed the pH-activated
fluorescent probeRhod-H-NO for detecting lysosomal NO levels.
When the diameter of the nanoparticles was less than 200 nm,
MSNs could enter into the lysosome, resulting in its successful
tracking and imaging. Therefore, embedding Rhode-H-NO into
the nanopore with MSNs can prevent it from being degraded,
which leads to the accumulation of the probe in the lysosomes
and the detection of NO. Fengyang et al. (2018) designed and
synthesized the novel fluorescent probe MBTD in 2018. MBTD

FIGURE 7 | The design strategies of fluorescence probes targeting lysosomes.

FIGURE 8 | The sensing mechanisms of PSiR for hROS and imaging characterization (Zhang et al., 2017). (A) The sensing mechanisms of PSiR for hROS. (B)
Average fluorescence intensity from images in various cells. (C) Imaging tumor using PSiR in tumor-bearing mouse with HeLa cells.
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could specifically be used to image NO in lysosomes due to its
large stroke shift and stable fluorescence; its D-A-D-structure
probe exhibited improved photostability and higher NO
selectivity.

3.3 Fluorescent Probe Detection of
Reductive Species in Lysosomes
Hydrogen sulfide (H2S) is very important in various physiological
processes. It can regulate cardiovascular and neuronal functions.
H2S can also cause instability of the lysosomal membrane, which
leads to autophagy and cell death. Low molecular weight
mercaptans, such as cysteine (Cys) and glutathione (GSH),
play an important role in the pathogenesis of related human
diseases (Baocun et al., 2010). Therefore, the detection of the

levels of H2S and mercaptans in the cells is very important for the
identification of biological processes and the diagnosis and
treatment of related diseases.

The hydrolysis of various proteins in the lysosome is closely
related to mercaptan (T et al., 2000). In the lysosomes of the liver
cells, Cys is a main stimulant for the degradation of albumin
(Arunachalam et al., 2000). To investigate the function of Cys in
lysosomes, Long et al. synthesized the TP probe MNPO
(Figure 10) (Long et al., 2019). The probe was designed and
synthesized with a naphthalene derivative as the fluorescent
group, morpholine as the lysosomal targeting group, and α,β-
unsaturated ketone as the action site of Cys. The introduction of
the pyridine group into the molecule could improve water
solubility and selectivity of Cys. It was found using specific
experiments that the increase of Cys concentration increased

FIGURE 9 | The reaction process of probe LysoNO-Naph with NO (Feng et al., 2016).

FIGURE 10 | The action mechanism of MNPO with Cys in lysosomes (Long et al., 2019). (A) Proposed response mechanism of MNPO to Cys. (B) Schematic
showing the general design of lysosome-targeting fluorogenic probe MNPO for Cys.
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the fluorescence intensity of the probe at 524 nm. Moreover,
when the concentration range of Cys was 0–10 μM, the
fluorescence intensity indicated a linear relationship with Cys.
Therefore, the probe could be a useful tool to detect the dynamic
changes of Cys in lysosomes. In addition, Tamima et al. (2020)
developed a novel lysosome-targeted fluorescent probe ABXO1
for the detection of the levels of Cys. Interestingly, the probe and
cysteine adduct exhibited optimal two-photon absorption
properties, which could achieve the two-photon imaging of
lysosomal cysteine under excitation at near-infrared wavelengths.

H2S is an antioxidant that participates in various physiological
reactions in the liver, spleen, and kidneys. Traditional lysosomal-
targeting H2S fluorescent probes cannot provide adequate imaging
of the lysosome with an open fluorescent signal; therefore, the design
of fluorescent probes targeting lysosomal andmitochondrial H2S has
high application value. Yong et al. (2016) designed and synthesized
the TP probe TP-PMVC, which could be used to image lysosomal
and mitochondrial H2S by using a dual channel. The probe used
carbazole MVC as a TP platform. Since the pKa of pyridine was 5.0,
it was used as the site of H+ and as the targeting unit of the lysosome.
In addition, indole exhibited potent electrophilicity required for the
generation of H2S. In an acidic environment, pyridine was
protonated to produce red fluorescence for lysosomal imaging.
By using specific experiments, it was shown that the fluorescent
intensity was significantly improved under acidic conditions, while
lysosomes and lysosomal H2S could be detected at 960 nm and
810 nm. In addition, Cai et al. (2018) synthesized the ratio
fluorescent probe SN-N3 for the detection of lysosomal H2S.

3.4 Fluorescent Probes Used for the
Detection of the Metal Cation in Lysosomes
In recent years, a novel function of the lysosomes has been
discovered which is the regulation of the steady state of the
transition metals, such as copper and zinc (Blaby-Haas and
Merchant, 2014). Various enzymes in the body can catalyze
biochemical reactions by using specific transition metals.
Therefore, lysosomes can maintain the metal steady state
in cells by regulating the metal content and controlling its
downstream signaling (Kurz et al., 2011; E. and S., 2014).

Copper is related to the activity of various essential enzymes in the
body.When copper is absent, the activity of the enzymes dependent to
copper will decrease leading to the occurrence of related diseases, such
as Menkes syndrome (Bie et al., 2007; Tümer and Møller, 2010). In
addition, excessive copper can also lead to cellular toxicity, affect lipid
metabolism, and other biological processes, and subsequently lead to
certain related diseases, such as Wilson’s disease (Seth et al., 2004).
Therefore, in recent years, fluorescent probes detecting copper ions
(Cu2+) in lysosomes have become a major focus of research
investigation. In 2015, Mingguang et al. developed a lysosomal
targeted Cu2+ fluorescent probe (Lys-Cu) with dual channel
emission, which used rhodamine as a dye (Mingguang et al.,
2015). The carbonyl oxygen atoms in 1,8-naphthalimide can
combine with metal ions and can be used as a binding unit and a
fluorescent group. During the process of photoinduced electron
transfer, PET is inhibited following the combination of Cu2+ with
1,8-naphthalimide, leading to a significant enhancement of the

fluorescent intensity at 440 nm and 580 nm. In addition, the
probe exhibited lower cytotoxicity and higher affinity and could be
used to image Cu2+ in lysosomes more efficiently. The hydrazone-
containing pyrrole exhibited high affinity for Cu2+ and, in 2018,
synthesized a hydrazone probe from sunitinib (Wu et al., 2018). The
results indicated that when Cu2+ was combined with the probe,
rhodamine was used to induce a ring opening reaction; pyrrole
could then react with rhodamine resulting in the imaging of Cu2+

in lysosomes.
Zinc ions (Zn2+) are important metal ions involved in several

biological reactions. They are closely related to lysosomal
dysfunction and autophagy. The abnormal Zn2+ concentration
levels can result in the development of human diseases, such as
coronary heart disease (Heyu et al., 2021) and allergic inflammation
(Masanobu et al., 2020). Currently, various fluorescent probes have
been developed to detect Zn2+; however, only a few can be used to
detect Zn2+ in lysosomes. In 2015, Hyo-Jun et al. introduced anN,N-
di-(2-pyridyl)ethylenediamine (DPEN) group into the
naphthalimide dye (Hyo-Jun et al., 2016). The oxygen atom in
the carbonyl group of the imide was combined with Zn2+ and with
the nitrogen atom in DPEN, subsequently a two-photon
fluorescence probe was synthesized for the detection of Zn2+ in
the lysosomes (Figure 11). It was found that the probe exhibited an
optimal linear response to Zn2+; the fluorescent intensity of the
probe was low following combination with Zn2+ when pH = 7.4.
When pH = 4.5–5.5, the fluorescent intensity was significantly
enhanced. The high sensitivity and affinity of the probe for Zn2+

was optimal for the detection of the dynamic changes of lysosomal
Zn2+. In addition, Duan et al. designed the fluorescent probe DR,
which was synthesized using N,N-bis(2-pyridylmethyl)
ethylenediamine (BPEN) and morpholine as a ligand (Duan
et al., 2019). When BPEN was connected with the fluorescent
group by benzene on the imide, the probe could achieve high
sensitivity to Zn2+. When the probe was combined with Zn2+,
the fluorescent intensity increased at a pH range of 7.0–10.0 and
was significantly increased when the pH range was 4.0–7.5, which
indicated that the probe could be used to detect Zn2+ in lysosomes.

3.5 Fluorescent Probe Detecting Anions in
Lysosomes
The maintenance of lysosomal pH is achieved by the synergy of
the proton pump and the chloride channel. Moreover, the
chloride (Cl−) ion plays an important role in the development
of brain diseases, such as Alzheimer’s disease (Hui et al., 2017).
Therefore, the development of fluorescent probes that can
specifically detect Cl− in lysosomes has become one of the
major research hotspots in recent years. Sang-Hyun et al.
(2019) developed the fluorescent probe MQAE-MP in 2019 to
specifically detect lysosomal Cl−. It was found by using specific
experiments that the concentration of Cl− in lysosomes was
decreased following treatment with the substances that could
destroy their normal function. The concentration of Cl−

depended on whether MQAE-MP was used or not. Therefore,
due to the targeting effect of the morpholine group, MQAE-MP
was mainly accumulated in lysosomes and could be used to fully
detect the levels of Cl− in these organelles (Figure 12).
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3.6 Fluorescent Probes Targeting pH Value
in the Lysosome
The normal pH of the lysosome is 4.5–5.5, which demonstrates weak
acidity. An abnormal pH value can lead to corresponding changes in
the cell function, and subsequently cause human-related diseases, such
as cardiovascular and neurodegenerative diseases (Onyenwoke and
Brenman, 2015). Therefore, the detection of the changes in lysosomal
pH is important for understanding their biological functions in the
related diseases. In the recent 10 years, various small-molecule

fluorescent probes have been developed to detect the changes in
the lysosomal pH (Wen et al., 2014; Jun et al., 2015; Yongkang et al.,
2016; Ji-Ting et al., 2017). Despite these efforts, considerable work is
required to improve their detection sensitivity. Peng et al. (2019)
developed a two-photon fluorescence probe, which was sensitive to
pH changes, and was denoted as Lyso-MPCB (Figure 13). The probe
was equipped with the lysosome-located group morpholine, and it
could monitor the pH value of the lysosome in real time. Moreover, it
could specifically detect autophagy. Lyso-MPCB exhibited blue
fluorescent emission at basic conditions and could emit green
fluorescence at acidic conditions. The results indicated that the pKa
value of the probe was 4.86, which was suitable for detecting the
normal pH changes of the lysosomes (4.5–5.5). In addition, the ratio
signal of the lysosome was linear with the pH when the range was
4.2–5.6. Therefore, the probe was a powerful tool for monitoring
pH changes in lysosomes.

In addition, Lee et al. (2018) designed and synthesized a
rhodamine pH fluorescent probe, which exhibited improved water
solubility, higher quantum yield, and sensitivity and selectivity. The
probe’s pKa value was 4.10, and therefore it was used to detect the
acidic environment. Gong et al. (2019) designed a fluorescent probe
detecting the pH changes in lysosomes, denoted as Ly-HN2AM,
which used N-aminomorpholine as a closed loop switch and could
react strongly under the range: pH = 4.79–6.07. The probe exhibited
lower cytotoxicity and improved photostability and could be used to
visualize the pH changes in lysosomes under physiological and
pathological conditions. Lingling et al. (2020) synthesized a series
of fluorescent probes in 2020 based on imidazole-benzothiadiazole
compounds to detect the changes in pH of the lysosomes. The probe
MIBTAA could react strongly in an acidic environment and exhibited
higher sensitivity and selectivity for detecting pH changes.

4 DUAL-LABELING PROBES TARGETING
LYSOSOMES AND MITOCHONDRIA

The lysosome is an acidic organelle that can decompose proteins, and
mitochondria is considered the energy source of the cells. The
dynamic changes and biological functions of lysosomes and
mitochondria in viable cells can be detected simultaneously with
fluorescence microscopy.

FIGURE 11 | The fluorescence characteristics of probe (Hyo-Jun et al., 2016). (A) TPM imaging of Zn(ii) ions in live NIH 3T3 cells. (B) The substantial increase in
fluorescence intensity after being uncubated with Zn-Pyrithion in the cells.

FIGURE 12 | The structure and fluorescence characteristic of MQAE-
MP (Sang-Hyun et al., 2019). (A) The chemical structure of MQAE-MP. (B)
The detection of Cl− ions in cells with MQAE-MP.
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The interaction between the mitochondria and lysosomes is an
important biological process in eukaryotic cells.When their interaction
is dysfunctional, certain neurodegenerative diseases develop (Nixon,
2013), such as cancer (Beth, 2007) and Parkinson’s disease (Burbulla
et al., 2017). Therefore, an increased number of studies have visually
assessed the interaction between mitochondria and lysosomes. Qixin
et al. (2020) developed the hemicyanine fluorescent probe Coupa in
2020, which included a specific organelle-targeting ability (Figure 14).
By using the technology of super-resolution illustrated microscopy
(SIM), the Coupa dye could label mitochondria and lysosomes
simultaneously and reveal the interaction between them by
functional fluorescence conversion and co-localization. Staining
with Coupa indicated that the local viscosity was increased, which
was consistent with the biological characteristics of MLC. This may be
the result of protein aggregation in the process of MLC. Therefore, the
probe could be used efficiently to locate and track the interaction of the
lysosomes with mitochondria in viable cells.

The abnormal viscosity of the mitochondria and lysosomes can
lead to their dysfunction and eventually to the development of related
diseases (Lu et al., 2013; Bochao et al., 2019). Wei et al. (2021) had
developed a cyanine compound in 2020 for the detection of medium
viscosity. The probe had near-infrared emission (650 nm) and
improved sensitivity and selectivity. It could simultaneously target
the lysosomes and mitochondria. In addition, this compound could
distinguish normal cells and cancer cells by identifying the changes in
viscosity; it could also detect and image the changes in the
mitochondrial and lysosomal viscosity in HeLa cells.

SO2 is an important gaseous messenger, which plays a
significant role in the induction of apoptosis in lysosomes and
mitochondria. When SO2 exhibits abnormal levels, the
N-acetylneuraminic acid present in lysosomes and
mitochondria will redistribute, which exhibits adverse effects
on the induction of apoptosis (Merkur’eva et al., 1981).
Therefore, it is necessary to develop a fluorescent probe that
can detect SO2 and simultaneously target the lysosomes and
mitochondria. Kong et al. (2019) synthesized the novel
fluorescent probe DML-P in 2019 by using a FRET-based
method, which could simultaneously detect SO2 levels in
lysosomes and mitochondria. The probe was the first double-
targeted fluorescent probe that could simultaneously track SO2 in
mitochondria and lysosomes.DML-P exhibited higher selectivity
and stability. In addition, DML-P could detect cellular
endogenous SO2 both in the single-photon and two-photon
modes, indicating that it could become a powerful tool to
study the action mechanism and relationship of the lysosomes
and mitochondria.

Nitroreductase (NTR) plays an important role in human
health, and the mitochondria and lysosomes are its main
sources (Yang et al., 2018; Klockow et al., 2020). Therefore,
the development of fluorescent probes for the detection of
NTR in mitochondria and lysosomes has become one of the
main research hotspots. Sha et al. (2020) developed a dye with
aromatic azonia and benzo(e)indol anion skeleton in 2020. On
the basis of this dye, the authors of the study synthesized a probe

FIGURE 13 | The action mechanism of Lyso-MPCB to lysosome pH value (Peng et al., 2019)
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containing 2-ethyl-5-nitrofuran or 4-nitrobenzoyl moiety to
detect NTR. The probe emitted in the near infrared. It could
target lysosomes and mitochondria simultaneously and exhibited
higher sensitivity to NTR. This probe could detect and image
lysosomal and mitochondrial NTR in HeLa cells. Therefore, it
became the first fluorescent compound which could
simultaneously detect lysosomal and mitochondrial NTR.

5 CONCLUSION AND OUTLOOK

Small-molecule fluorescent probes located in the mitochondria and
lysosomes have been used to detect and image RSMs in recent years.
This area has become a research hotspot and involves the
identification of fluorescent probes targeting the mitochondria and
lysosomes. These probes exhibit specific targeting capabilities and have
become a popular research tool in the field of biology, pharmacy, and
clinical medicine. Among them, two-photo fluorescent probes have
been widely included in the study of lysosomal and mitochondrial
targeted fluorescent probes due to the advantages of high resolution
and long-time observation.At present, variousfluorescent probes have
been designed and synthesized to simultaneously target the
mitochondria and lysosomes, which provides important tools for
the study of RSMs and their mechanisms of action.

According to the present review, the probes detecting
lysosomal and mitochondrial RSMs fit the following
characteristics: 1) higher selectivity toward certain RSMs
compared with other RSMs noted in the organelles; 2)
higher quantum yield and longer emission wavelength; 3)
higher photostability of product with probe and RSMs; 4)
improved biocompatibility. Currently, the emission
wavelength of the fluorescent group in certain probes
remains short and subject to interference; therefore, the
research and development of fluorescent probes require
further studies to be completed.

At present, various mitochondrial and lysosomal targeted
fluorescent probes have enabled the dynamic monitoring and
imaging of RSMs, and certain probes have been used in the
diagnosis and treatment of human-related diseases, which
will become one of the important research directions in the
future.
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