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Pattern II and pattern III MS are entities
distinct from pattern I MS: evidence from
cerebrospinal fluid analysis
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Abstract

Background: The diagnosis of multiple sclerosis (MS) is currently based solely on clinical and magnetic resonance
imaging features. However, histopathological studies have revealed four different patterns of lesion pathology in
patients diagnosed with MS, suggesting that MS may be a pathologically heterogeneous syndrome rather than a
single disease entity.

Objective: The aim of this study was to investigate whether patients with pattern I MS differ from patients with
pattern II or III MS with regard to cerebrospinal fluid (CSF) findings, especially with reference to intrathecal IgG
synthesis, which is found in most patients with MS but is frequently missing in MS mimics such as aquaporin-4-IgG-
positive neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein-IgG-positive
encephalomyelitis.

Methods: Findings from 68 lumbar punctures in patients who underwent brain biopsy as part of their diagnostic
work-up and who could be unequivocally classified as having pattern I, pattern II or pattern III MS were analysed
retrospectively.

Results: Oligoclonal bands (OCBs) were present in 88.2% of samples from pattern I MS patients but in only 27% of
samples from patients with pattern II or pattern III MS (P < 0.00004); moreover, OCBs were present only transiently in
some of the latter patients. A polyspecific intrathecal IgG response to measles, rubella and/or varicella zoster virus (so-called
MRZ reaction) was previously reported in 60–80% of MS patients, but was absent in all pattern II or III MS patients tested
(P < 0.00001 vs. previous cohorts). In contrast, the albumin CSF/serum ratio (QAlb), a marker of blood–CSF barrier function,
was more frequently elevated in samples from pattern II and III MS patients (P < 0.002). Accordingly, QAlb values and
albumin and total protein levels were higher in pattern II and III MS samples than in pattern I MS samples (P < 0.005,
P < 0.009 and P < 0.006, respectively).

Conclusions: Patients with pattern II or pattern III MS differ significantly from patients with pattern I MS as well as from
previous, histologically non-classified MS cohorts with regard to both intrathecal IgG synthesis and blood–CSF barrier
function. Our findings strongly corroborate the notion that pattern II and pattern III MS are entities distinct from
pattern I MS.
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Background
Histopathological studies have demonstrated at least
three different lesion patterns in early disease stages
from patients diagnosed with multiple sclerosis (MS),
termed patterns I, II and III [1, 2]. Pattern I lesions show
T cell and macrophage infiltration. Pattern II is defined
by additional antibody and complement deposition,
suggesting a contribution of humoral mechanisms to
disease pathology. Pattern III is characterized by distal
oligodendrogliopathy with dysregulated myelin protein
expression and oligodendrocyte apoptosis, but still
occurs on an inflammatory background. A fourth pat-
tern, defined by oligodendrocyte degeneration in the
periplaque white matter, has been described in few
autopsy cases of primary-progressive MS, but is rare.
These findings raise the possibility that MS, a diagnosis
currently based mainly on phenotypical, namely clinical
and radiological features [3], may in fact be a pathologic-
ally heterogeneous syndrome rather than a single disease
entity. Importantly, two recent studies demonstrated
intraindividual homogeneity and persistence of pattern I,
II and III lesions over time [4, 5], further corroborating
the notion that lesion pathology may rather define
pathogenetically distinct entities than reflect stage-
dependent processes in the development of lesions.
Intrathecal IgG synthesis, as detected qualitatively by

isoelectric focusing (IEF) of cerebrospinal fluid (CSF)
and serum or quantitatively by calculation of the
immunoglobulin CSF/serum ratio (QIgG), is present in
90–98% of MS patients, usually remains detectable over
the entire course of disease and is considered a diagnos-
tic mainstay in MS [6–9].
In this study, we retrospectively compared the CSF

profiles of patients who underwent brain biopsy as part
of their diagnostic work-up and who could be unequivo-
cally classified as having pattern I, pattern II or pattern
III lesions, respectively.

Methods
Patients
Results from 68 routine lumbar punctures in 33 patients
with histopathologically confirmed MS (16 × pattern II, 7
× pattern III, 10 × pattern I [1, 2]) were analysed for OCB
frequency and OCB patterns; CSF and serum IgG, IgM
and IgA; CSF and serum albumin; IgG, IgM and IgA CSF/
serum ratios (QIgG, QIgM, QIgA); albumin CSF/serum
ratio (QAlb); intrathecal IgG response to measles (M), ru-
bella (R) and varicella zoster (Z) (MRZ reaction [MRZR])
[10–14]; CSF total protein (TP) and CSF L-lactate levels;
and CSF white cell counts and white cell differentiation.
All patients had undergone brain biopsy as part of their
diagnostic work-up. All biopsies were histopathologically
classified at the Department of Neuropathology, Univer-
sity of Göttingen, Germany (WB, IM, FK), as previously

described [1, 2]. All patients were classified based on brain
lesions; none was classified based on brainstem, spinal
cord or optic nerve lesions. All had early active disease
and none had primary-progressive disease or pattern IV
lesions. The median age at the time of first lumbar punc-
ture was 36 years (range 13–63). The sex ratio (m:f) was
1:1.75. All patients were of Caucasian origin. Available
serum samples were retrospectively tested for aquaporin 4
(AQP4)-IgG and myelin oligodendrocyte glycoprotein
(MOG)-IgG using a cell-based assay (CBA) employing for-
malin HEK293 cells transfected with full-length human
M1-AQP4 and M23-AQP4 [15, 16] or full-length human
MOG [17, 18], respectively. All analyses were done retro-
spectively, in no case were brain, blood or CSF specimens
obtained for the present study. AQP4-IgG and MOG-IgG
testing and retrospective analysis of the patients’ CSF re-
sults was performed in an anonymized fashion.

Evaluation of the humoral immune response
Oligoclonal IgG bands (OCBs) were evaluated according
to an international consensus [9]: IEF pattern 1 = no
OCBs in CSF or serum; IEF pattern 2 = CSF-restricted
OCBs; IEF pattern 3 = CSF-restricted OCBs and
additional identical bands in CSF and serum (combin-
ation of patterns 2 and 4); IEF pattern 4 = identical
OCBs in CSF and serum (‘mirror pattern’); and IEF
pattern 5 = monoclonal bands in CSF and serum. Only
IEF patterns 2 and 3 indicate intrathecal IgG synthesis.
Quantitative expressions of the intrathecal humoral
immune response were based on calculation of the CSF/
serum ratios for IgG (QIgG), IgM (QIgM) and IgA
(QIgA) with QIg = IgCSF[mg/L]/Igserum[g/L]. The upper
limits of the respective reference ranges, Qlim(IgG),
Qlim(IgM) and Qlim(IgA), were calculated against QAlb
according to Reiber’s revised hyperbolic functions [10].
Values for QIg > Qlim(Ig) were considered to indicate
intrathecal immunoglobulin synthesis [10]. The fraction
(in %) of intrathecally produced Ig (IgIF) and the
absolute amount of locally, i.e. intrathecally, produced Ig
(IgGloc) were calculated according to the following
formulas: IgIF[%] = [QIg − Qlim(Ig)] × Igserum × 100 and
Igloc[mg/L] = [QIg − Qlim(Ig)] × Igserum, respectively [10].
Antibody indices (AI) were calculated according to
Reiber’s formula: AI = Qspec/QIgG, or AI = Qspec/Qlim(IgG)
if (Qlim > QIgG), with Qspec = IgGspec(CSF)/IgGspec(serum).
Taking into account the relatively small sample size of the
pattern I MS subgroup, we also compared the results for
pattern II and pattern III MS with data from ‘classical’ land-
mark studies on OCB and MRZR findings in (histologically
non-classified) MS [14, 19].

Evaluation of blood-CSF barrier function
The CSF/serum albumin quotient, QAlb = AlbCSF[mg/L]/
Albserum[g/L], was used to assess the blood–CSF barrier
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function. As the upper reference limit of QAlb is age
dependent, Qlim(Alb) was calculated as 4 + (a/15), with a
representing the patient’s age, according to Reiber et al.
[20]. Dysfunction of the blood–CSF barrier was defined as
QAlb > Qlim(Alb).

Cytological examination, total CSF protein and L-lactate
A white cell count >5/μL was classified as ‘increased’. An
age-dependent upper reference range for CSF L-lactate
was applied (0–15 years of age, 1.8 mmol/L; 16–50 years,
2.1 mmol/L; >50 years, 2.6 mmol/L [21, 22]). As upper
reference limit for total CSF protein, 450 mg/L was used.

Statistics
Fisher’s exact test and Mann–Whitney U test were used
to detect differences between groups. Spearman’s rho
was calculated to test for correlations. P values <0.05
were considered statistically significant. Due to the
exploratory nature of this study, no corrections for mul-
tiple comparisons were performed. Reiber diagrams were
generated using the Protein Statistics in CSF analysis
V3.0 software (Comed, Soest, Germany). The study was
approved by the institutional review boards of the Uni-
versity of Göttingen and the University of Heidelberg.
All CSF parameters evaluated in this study are routinely
tested in Germany as part of the diagnostic workup of
patients with suspected MS in Germany and are recom-
mended by the guidelines of the German Society of
Neurology and by the guidelines of the Germany Society
of CSF Analysis and Clinical Neurochemistry [21].

Results
Epidemiology and autoantibody status
Epidemiological data for all subgroups are given in Table 1.
All serum samples available for retrospective testing
(n = 13) were negative for AQP4-IgG and MOG-IgG [18].

Oligoclonal bands
CSF-restricted OCB were found in 15/17 (88.2%) samples
from patients with pattern I MS, but were negative in 27/37
(73%) of samples from patients with pattern II or pattern III
MS (P < 0.00004) (Fig. 1). Overall, only 7/22 (31.8%) pattern
II and III patients, but 8/10 (80%) pattern I MS patients,

had OCB at least once (P < 0.021). Moreover, OCBs were
only transiently positive in 2 of the 7 only OCB-positive
pattern II and III patients (patient 1, pattern II: lumbar
puncture (LP) #1 positive, LP #2 negative; patient 2,
pattern III: LP #1 positive, LP #2 negative). If only persist-
ing OCB are taken into account, only 22.7% (5/22)
patients with pattern II or III MS were positive for OCB
(P < 0.006) (Table 2). Of note, QIgG was negative at the
time of OCB determination in the two cases with transient
OCB, indicating very low levels of intrathecal IgG
synthesis in these patients. Identical OCB in serum and
CSF without additional CSF-restricted bands (the
so-called mirror pattern or IEF pattern 4), suggesting
possible systemic inflammation, were found in a
single patient with pattern II MS but were absent in
all other patients. IEF pattern 5, indicating monoclo-
nal gammopathy, was present in a single pattern II
MS patient (still detectable in a second sample taken
24 months later) and transiently in one pattern III
patient (negative follow-up sample obtained 36 days
later). Comparison of the pattern II or pattern III MS
patients’ data with data from a reference paper on
CSF in MS [19] confirmed the marked difference in
OCB frequency (P < 0.000001) (see Table 9 for
details).

IgG, IgM and IgA CSF/serum ratios
While 7/17 (41.2) samples from patients with pattern I
MS showed elevated QIgG levels, only 5/41 (12.2) of
samples from patients with pattern II or pattern III MS
did so (P < 0.021) (Table 2). Intrathecal production of
IgM as indicated by elevated QIgM was rare and was
found both in patients with pattern I MS (3/9; 33.3%)
and in patients with pattern II MS (3/12; 25%). QIgA
levels were elevated in a few pattern I patients (2/8;
25%), in a single pattern II patient and in none of the
pattern III patients (1/17; 5.9%). Data on both the
fractions and the absolute amounts of intrathecally
produced IgG, IgM and IgA can be found in Tables 2
and 3. Plots of QIgG, QIgA and QIgM, respectively,
against QAlb as a measure of blood–CSF barrier
function are shown in Fig. 2.

Table 1 Epidemiological findings

Units Pattern I MS Patterns II + III MS Pattern II MS Pattern III MS AQP4-Ab+ NMO [48]

Patients N 10 23 16 7 89

Samples N 19 49 30 19 211

Age at first LP Years 30 (13–47) 36 (20–63) 35 (20–51) 38 (26–63) 39.5 (14–79)

Sex ratio m:f 1:1 1:2.3 1:2.2 1:2.5 1:12.1

LP lumbar puncture, m male, f female
Results in AQP4-IgG-positive NMO as observed in a previous study [48] are given in the last column for comparison. Note the marked difference in the sex ratios
between pattern II MS and NMO. Years are given as median and range
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Immunoglobulin class patterns
Intrathecal Ig production, if present, was restricted to
one immunoglobulin class in most cases (cf. Table 4 for
details). A two-class immune reaction, defined as intra-
thecal production of either IgG and IgM, or IgM and
IgA, or IgG and IgA, was present in only four samples
(Table 4). None of the samples showed a three-class
immune response, defined as combined elevation of
QIgG, QIgM and QIgA. Of note, three pattern II
patients showed an isolated IgM reaction at least once
(patient 1, intrathecal IgM, IgG and IgA fractions, 83, 47
and 0%, respectively, at first lumbar puncture; 73, 0 and
0% 10 days later; and 71, 0 and 0% 14 days later; patient
2, 37, 0 and 0%; patient 3, 17, 0 and 0% at first puncture,
no intrathecal IgM, IgG and IgA synthesis at repeat
puncture at day 34 and day 815).

MRZ reaction
A positive MRZR, as defined by at least two positive
IgG-AIs, which has been reported in the literature to be
present in around 70% of patients with MS [10–14, 23],
was absent in all samples from patients with pattern II
or pattern III MS examined (P < 0.000002 compared to
unselected MS patients [23]). Only two patients with
pattern I MS had been tested for MRZR (positive in 1/2,
50%), precluding statistical comparisons. A positive AI
against at least one of the three constituents (measles
virus, rubella virus, varicella zoster virus), which has
been reported in the literature to be present in 89%
(158/177) [19] to 94% (94/100) [14] of patients with MS,
was absent in 91% (10/11) of samples from pattern II
and III patients (P < 0.000001 vs. references [19] and
[14]). MRZR was re-tested in two patients (one with
pattern II and one with pattern III MS) later in the
disease course and remained negative in both cases.
Only a single patient with pattern III MS had a posi-
tive AI for measles virus; however, a follow-up exam-
ination 1 month later was negative. See Table 5 for
details.

Blood–CSF barrier integrity
A disrupted blood–CSF barrier function was found in
only 4/17 (23.5) of samples from patients with pattern I

MS but in 30/43 (69.8) of samples from patients with
pattern II or pattern III MS (P < 0.002). Accordingly,
median QAlb values and median albumin CSF concen-
trations were higher in pattern II or III samples than in
pattern I samples (P < 0.005 for QAlb, P < 0.009 for CSF
albumin). See Table 6 for details.

Cellular immune response
CSF pleocytosis was slightly less frequent in pattern II
MS samples (6/26; 23.1%) than in pattern I (5/13; 38.5%)
and pattern III (10/14; 71.4%) samples (P < 0.02). How-
ever, median CSF white cell count (WCC) were low in
all three subgroups, with only 3/49 (6.1%) of samples
showing cell counts >40 cells/μL (see Table 7 for details).
In patients with pleocytosis, CSF white cells included
lymphocytes in all samples examined and monocytes in
most, with no significant differences between the groups.
Neutrophil granulocytes were present only in five sam-
ples from patients with pleocytosis, and the levels were
very low (1 × pattern I MS: 7 cells/μL, 5% neutrophils; 1
× pattern II MS: 6 cells/μL, 3% neutrophils; 3 × pattern
III MS: 17, 13 and 7 cells/μL, 1–3% neutrophils) and
possibly related to slight blood contamination in one
case (722 erythrocytes/μL). Eosinophils were present in
only two patients with pleocytosis (1 × pattern II MS: 69
cells/μL, 13% eosinophils, absent both in a previous
sample and in a follow-up sample, AQP4-IgG: negative;
1 × pattern III MS: 7 cells/μL, 5% eosinophils; no
erythrocytes in both cases). Sixty-two percent (13/21) of
pattern II/III MS samples without pleocytosis showed an
elevated QAlb and, thus, an albuminocytological dis-
sociation, but only 12.5% (1/8) of pattern I MS samples
(P < 0.04; see Table 7 for details).

Total CSF protein
Total protein (TP) in the CSF was more frequently
elevated in samples from patients with pattern II or III
MS samples (29/43; 67.4%) than in pattern I MS (3/15;
20%) (P < 0.003). Accordingly, median TP CSF levels
were higher in pattern II or III MS samples (median
550 mg/dl, range 168–1930) than in pattern I MS sam-
ples (median 375, range 187–750) (P < 0.006), with the
highest levels detected in pattern III samples (median

Fig. 1 Frequency of CSF-restricted oligoclonal bands (OCBs) results from 54 LPs in patients with pattern I MS compared to patients with pattern II
or pattern III MS. Note that OCBs were present only transiently in 2/7 OCB-positive pattern II/III patients
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640, range 260–1277). TP CSF levels >750 mg/dl
were present in 8/43 (18.6%) samples from patients
with pattern II or III MS, but were not detected in
any of the pattern I MS patients. As expected, TP
CSF and QAlb were strongly correlated both in the
total cohort and within each of the three subgroups
(P < 0.0001).

CSF L-lactate
A trend towards higher median L-lactate level was
noted in pattern II and III MS (1.9 mmol/L, range
0.8–3.3) compared with pattern I MS (1.3 mmol/L,
range 1.1–2.35). Similarly, a higher proportion of
patients with pattern II or III MS than patients with
pattern I MS had elevated L-lactate levels at least
once, but the difference was not statistically signifi-
cant. See Table 8 for details.

Abnormal vs. normal results
Overall, 65/68 (95.6%) LPs showed some abnormality
(either intrathecal IgG, IgM or IgA synthesis; disturbed
blood–CSF barrier function; or elevated WCC, TP or L-
lactate levels); the only three samples with normal
results were all from patients with pattern II MS.
A summary of the statistically significant differences

between groups can be found in Table 9.

Discussion
In this study, we systematically analysed the results from
68 lumbar punctures in patients who were histopatho-
logically diagnosed with pattern I, pattern II or pattern
III MS according to previously published criteria [2].
The most striking finding was the lack of intrathecal IgG
synthesis in the vast majority of samples from pattern II
or pattern III MS patients. Intrathecal IgG synthesis is
considered a diagnostic mainstay of MS. While previous

Fig. 2 CSF/serum quotient diagrams for IgG, IgM and IgA (‘Reibergrams’). Individual CSF/serum ratios of IgG, IgA and IgM are plotted against CSF/serum
albumin ratios. Values above the upper hyperbolic discrimination line, Qlim, indicate intrathecal synthesis of the respective immunoglobulin (Ig) class.
Individual intrathecal fractions, IgIF, can be directly read by interpolation from the percentiles above Qlim (median values are given in Tables 2 and 3).
Vertical dashed lines indicate the median Qlim(Alb). IgG/A/M immunoglobulin G/A/M, QIgG/A/M CSF/serum IgG/A/M ratios, QAlb CSF/serum albumin ratio
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studies reported a frequency of OCB in MS of 90–98%
in European patients, 73% of samples from pattern II or
pattern III MS patients, including all pattern III patients,
were negative in the present European cohort. Moreover,
OCBs were positive only transiently in the only two pa-
tients with non-pattern I lesions and follow-up data.
Transient OCBs have been reported in other neuroin-
flammatory diseases such as neuromyelitis optica
(NMO), acute disseminated encephalomyelitis or CNS
infection, whereas OCBs are thought to persist over the
entire disease course of MS [24, 25]. Similarly, the poly-
specific, intrathecal antiviral IgG response as defined by
at least two elevated CSF/serum antibody indices to mea-
sles, rubella and/or (so-called MRZ reaction) varicella
zoster virus, which is seen in around 70% of patients with
MS (and considered to represent non-specific bystander
B-cell activation) [10–14, 23], was missing in all patients
with pattern II or III lesions tested. Some 91% of the pat-
tern II and III MS samples did not even show a monospe-
cific IgG response to one of the constituents of the

MRZR; in contrast, a reaction to at least one of the three
viral agents has been found in 89–94% of MS patients [14,
19]. Together, this strongly suggests that patients with pat-
tern II and pattern III lesions are immunopathophysiologi-
cally distinct from patients with ‘pattern I MS’ as well as
from previous MS cohorts [8, 10, 19].
This notion is further supported by the finding of

additional, significant differences in CSF profiles be-
tween patients with pattern I lesions and patients with
pattern II or III lesions. The latter group significantly
more frequently had signs of compromised blood–CSF
barrier function, had significantly higher CSF albumin
concentrations and significantly higher and more fre-
quently elevated CSF total protein levels (Tables 6 and 9;
Fig. 3). In addition, an albuminocytological dissociation
was more commonly seen in patients with type II or III
lesions.
Although intraindividual persistence of a single lesion

type over time has been shown in a larger cohort of
biopsied patients [4, 5], there is an ongoing discussion

Table 4 Immunoglobulin class response patterns

Units Pattern I MS Pattern II + III MS Pattern II MS Pattern III MS AQP4-IgG+ NMO [48]

Three-class reaction Samples 0/16 (0) 0/32 (0) 0/21 (0) 0/11 (0) 0/87 (0%)

Two-class reaction Samples 2/16 (12.5) 2/32 (6.3) 2/21 (9.5) 0/11 (0) 5/87 (5.7%)

IgG + IgM Samples 1 1 1 0 1/87 (1.1%)

IgG + IgA Samples 1 1 1 0 1/87 (1.1%)

IgM + IgA Samples 0 0 0 0 3/87 (3.4%)

One-class reaction Samples 5/16 (31.3) 6/32 (18.8) 6/21 (28.6) 0/11 (0) 13/87 (14.9%)

Only IgG Samples 4 2 2 0 5/87 (5.7%)

Only IgM Samples 1 4 4 0 7/87 (8%)

Only IgA Samples 0 0 0 0 1/87 (1.1%)

Concentrations, ratios and fractions are reported as medians; range and total sample numbers examined are given in brackets
QIgG/A/M=CSF/serum IgG/A/M ratios

Table 5 Frequency of intrathecal IgG synthesis to infectious agents

Units MS, according to
literature [14]

Pattern
I MS

Pattern II
+ III MS

Pattern
II MS

Pattern
III MS

AQP4-IgG+ NMO
[13, 23, 43, 55, 56]

MOG-IgG+
EM [35]

MRZ reaction (≥2 AIs >1.5) Patients 72/100 (72) 1/2 (50) 0/10 (0) 0/7 (0) 0/3 (0) 1/42 (2.4) 0/11 (0)

Samples 72/100 (72) 1/2 (50) 0/12 (0) 0/8 (0) 0/4 (0) 1/42 (2.4) 0/11 (0)

M and/or R and/or Z >1.5 Samples 158/177 (89) 1/2 (50) 1/11 (9.1) 0/8 (0) 1/3 (33.3) n.d. n.d.

Measles virus AI >1.5 Samples 138/177 (78) 1/2 (50) 1/10 (10) 0/8 (0) 1/4 (25) 1/42 (2.4) 0/11 (0)

Rubella virus AI >1.5 Samples 106/177 (60) 1/2 (50) 0/9 (0) 0/8 (0) 0/4 (0) 0/42 (0) 0/11 (0)

Zoster virus AI >1.5 Samples 97/177 (55) 0/2 (0) 0/9 (0) 0/8 (0) 0/4 (0) 1/42 (2.4) 0/11 (0)

Herpes simplex virus AI >1.5 Samples 26/94 (28) n.d. 0/4 (0) 0/4 (0) 0/1 (0) n.d. n.d.

Epstein–Barr virus AI >1.5 Samples n.d. 0/2 (0) 0/2 (0) n.d. n.d. n.d. 0/2 (0)

Borrelia burgdorferi AI >1.5 Samples 0/1 (0) 0/3 (0) 0/6 (0) 0/2 (0) n.d. 0/1 (0) 0/3 (0)

Toxoplasma gondii AI >1.5 Samples n.d. 0/1 (0) 0/1 (0) n.d. n.d. n.d. 0/1 (0)

TPHA AI >1.5 Samples n.d. 0/1 (0) 0/1 (0) n.d. n.d. n.d. 0/1 (0)

n.a. not applicable AI antibody index, M measles virus, R rubella virus, TPHA Treponema pallidum haemagglutination assay, Z varicella zoster virus
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on whether the various histopathological lesion patterns
identified in MS really represent different entities or
rather different stages of the same disease. Given that
OCBs are a constant feature in MS, which once acquired
does not normally vanish [24, 25] (except in rare
patients treated with natalizumab [26, 27], a drug not
used in any of our patients), the lack of OCB positivity
or persistence in most pattern II and III patients
provides particularly strong evidence in favour of the
former hypothesis.
The term ‘multiple sclerosis’ refers to a clinicoradiolo-

gically defined syndrome. There is currently no proof
that all patients presenting with acute CNS demyelin-
ation and dissemination in time and space share the
same underlying pathogenesis. Instead, several lines of
evidence suggest that the current ‘phenotypic’ definition
of MS may cover more than one disease: (i) pathological
studies have demonstrated histopathological heterogeneity
among patients with MS [1, 4, 5]; (ii) clinical studies have
shown differences in clinical presentation (‘spinal MS’),
course (primary progressive MS without relapses vs.
relapsing-remitting MS), severity and prognosis (‘benign
MS’); (iii) MRI studies have suggested different lesion

types in MS; and (iv) treatment trials have found ‘non-
responders’, i.e. patients in whom drugs shown to be
effective in the majority of patients with MS were of no
benefit. In accordance with that hypothesis, numerous
patients previously diagnosed as having variants of MS or
‘opticospinal MS’ based on the current clinicoradiological
consensus criteria were found over the past decade to
have newly discovered humorally mediated diseases,
pathophysiologically distinct from MS, that are now termed
AQP4-IgG-positive ‘neuromyelitis optica spectrum’ dis-
order (NMOSD) [28–33] and MOG-IgG-positive enceph-
alomyelitis (EM) [17, 34–42]. Of note, many of
patients with AQP4-IgG-positive NMO or MOG-IgG-
positive EM had previously been wrongly diagnosed
with MS due to a significant overlap in clinical presentation
and clinical criteria and, in consequence, had been wrongly
treated with drugs approved for MS but not for NMO
or MOG-EM [17, 34–36, 43–47]. In a large European
cohort, more than 40% of AQP4-IgG-positive patients
with NMOSD had been previously misdiagnosed with
MS [43]. Similarly, McDonald’s clinicoradiological cri-
teria or Barkhofs’s radiological for MS were met by
33 and 15%, respectively, of all MOG-IgG-positive

Table 6 Blood–CSF barrier function and albumin levels

Units Pattern I MS Pattern II + III MS Pattern II MS Pattern III MS AQP4-IgG+ NMO [48]

QAlb > Qlim(Alb) Patients 4/10 (40) 15/22 (68.2) 9/15 (60) 6/7 (85.7) n.d.

QAlb > Qlim(Alb) Samples 4/17 (23.5) 30/43 (69.8) 16/26 (61.5) 14/17 (82.4) 75/147 (51%)

QAlb, all LPs – 4.81 (3.01–10.8; 17) 8.39 (2.1–33.9; 42) 7.3 (2.1–33.9; 25) 9 (3.3–20.7; 17) 7 (2.3–57.1; 137)

QAlb, QAlb pos. – 8.53 (6.3–10.8; 4) 9.8 (6.4–33.9; 29) 9 (6.4–33.9; 15) 10.25 (6.8––20.7; 14) 11.8 (5.63–57.14; 70)

Albumin CSF, all LPs mg/L 204 (95–517; 17) 331 (81.2–726; 41) 255.5 (81.2–599; 24) 368 (137–726; 17) 284 (83.6–1890; 139)

Albumin CSF, QAlb pos. mg/L 366 (251–517; 4) 371.5 (227–726; 28) 312 (227–599; 14) 431 (282–726; 14) 437 (219–1890)

Albumin serum, all LPs g/L 40.6 (29.3–49.5; 17) 40 (22.6–51.8; 41) 39.85 (22.6–51.4; 24) 41.2 (32.7–51.8; 17) 40.7 (19.7–67.9; 133)

Albumin serum, QAlb pos. g/L 43.15 (37.7–47.9; 4) 39.5 (22.6–50.9; 27) 35.55 (22.6–46.8; 14) 39.9 (32.7–50.9; 13) 39 (19.7–55.9)

Combined intrathecal IgG synthesis and disturbed blood–CSF barrier function

Patients, at least once N (%) 3/10 (30) 4/20 (20) 3/13 (23.1) 1/7 (14.3) n.d.

All LPs N (%) 3/17 (17.6) 5/43 (11.6) 4/26 (15.4) 1/17 (5.9) 13/74 (17.6%)

n.d. no data
QAlb = CSF/serum albumin ratio. Concentrations and ratios are reported as medians; range and total sample numbers examined are given in brackets

Table 7 CSF white cell counts

Units Pattern I MS Pattern II + III MS Pattern II MS Pattern III MS AQP4-IgG+ NMO [48]

Pleocytosis Samples 5/13 (38.5) 16/40 (40) 6/26 (23.1) 10/14 (71.4) 98/194 (50.5)

WCC, all LPs Cells/μL 5 (1–23; 13) 3 (0–267; 40) 2 (0–267; 26) 8.5 (3–24; 14) 6 (0–380; 182)

WCC, if elevated Cells/μL 11 (6–23; 5) 14.5 (6–267; 16) 40 (6–267; 6) 10.5 (7–24; 10) 19 (6–380; 98)

WCC, >40 cells/μL Samples 0/13 (0) 3/36 (8.3) 3/22 (13.6) 0/14 (0) 28/194 (14.4)

WCC, >40 cells/μL Cells/μL n.a. 69 (55–267; 3) 69 (55–267; 3) n.a. 94 (43–380; 28)

Albuminocytological
dissociation

Samples 1/8 (12.5) 13/21 (61.9) 10/18 (55.6) 3/3 (100) 27/75 (33.3)

n.a. not applicable
WCC = white cell count
WCC in the various groups are reported as medians; range and total sample numbers examined are given in brackets
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patients in a recent study [35]. Wrong diagnosis and,
accordingly, false treatment for MS may have caused
disease exacerbation and worse outcome in some of
those patients, underlining the clinical importance of
studies investigating potential heterogeneity in MS [45–47].
AQP4-IgG-positive NMO lesions, MOG-IgG-positive

EM lesions and pattern II MS lesions share important
histopathological similarities in that all three are charac-
terized by antibody and complement deposits. It is
therefore of particular note that many of the CSF find-
ings from patients with pattern II lesions were more
similar to what has been reported in AQP4-IgG-
positive NMO [43, 48, 49] and MOG-IgG-positive EM
[17, 34–36] than to what was found in patients with
pattern I lesions in our study (Tables 1, 2, 3, 4, 5, 6, 7, and 8).
However, the majority of patients with pattern II and
pattern III lesions are negative for AQP4-IgG and
MOG-IgG, as were all 10 patients with pattern II or
III lesions and available serum samples in the present
study [18, 50, 51], suggesting a potential role of other,
so far unknown autoantibodies in this condition. In
contrast, the CSF findings associated with pattern I
lesions were much more in line with what one would
expect in patients with typical MS.
Of interest, AQP4-IgG-positive NMO is characterized

by a marked female predominance (male to female ratio
~1:10–12) [43]; in contrast, the male to female ratio was
1:2.2 in the pattern II patients and thus more similar to
what has been reported in MS and in MOG-IgG-
positive EM [35].
In Germany, ≥95% of all MS patients are positive for

CSF-restricted OCB [8, 10, 19]. The fact that most pattern
II and III patients had no CSF-restricted OCB in our study
therefore implies that pattern II and III MS cannot ac-
count for the majority of patients with MS. With most
pattern II and III patients belonging to the small subgroup

of <5% of OCB-negative MS cases, pattern II MS and
pattern III MS are probably rare conditions.
This seems to be in contrast to histopathological

studies that reported a lower proportion of pattern I
cases. However, there are several reasons why pattern II
and III cases may be overrepresented in neuropatho-
logical cohorts:

(a)As OCBs are considered a hallmark of MS, it seems
reasonable to conceive that patients with clinical and
radiological findings suggestive of MS but no OCB
are more likely to undergo brain biopsy or autopsy
than those with OCB. The lack of intrathecal IgG
synthesis in patients with pattern II or pattern III
lesions may thus result in overrepresentation of
pattern II and pattern III patients in
histopathological studies.

(b)Tumefactive lesions are more commonly found in
pattern II and III patients and certainly tend to
prompt biopsies and autopsies more often than
conventional lesions. Similarly, most pattern II and
III patients in autopsy studies had died from highly
active disease (in particular, patients with pattern III
lesions, who often had died from fulminant disease
within a few months from onset). However, fulminant
and highly active disease definitely also tend to
prompt biopsy and autopsy. This may again result
in an overrepresentation of pattern II/III patients
in biopsy/autopsy studies.

(c)Some patients with pattern II lesions are positive for
MOG-IgG [4, 18, 52]. MOG encephalomyelitis shows
a strong clinical and paraclinical overlap with MS but
also significant differences such as ADEM-like presen-
tation, longitudinally extensive and bilateral ON,
longitudinally extensive myelitis [17, 34–36]. Again,
such ‘MS-atypical’ presentations may tend to prompt

Table 8 CSF total protein and CSF L-lactate

Units Pattern I MS Pattern II + III MS Pattern II MS Pattern III MS AQP4-IgG+ NMO [48]

CSF TP elevated Patients 3/9 (33.3) 14/20 (70) 8/13 (61.5) 6/7 (85.7) n.d.

CSF TP elevated Samples 3/15 (20) 29/43 (67.4) 15/26 (57.7) 14/17 (82.4) 80/152 (52.6)

CSF TP, all LPs mg/L 375 (187–750; 15) 550 (168–1930; 43) 501 (168–1930; 26) 640 (260–1277; 17) 473 (198–3620; 147)

CSF TP, if elevated mg/L 724 (532–750; 3) 622 (470–1930; 29) 571 (471–1930; 15) 693 (470–1277; 14) 780 (45.4–3620; 68)

CSF TP, >750 mg/L mg/L 0/15 (0) 8/43 (18.6) 4/26 (15.4) 4/17 (23.5) 41/147 (28)

CSF lactate elevated Patients 2/8 (25) 6/14 (42.9) 5/11 (45.5) 1/3 (33.3) n.d.

CSF lactate elevated Samples 2/9 (22.2) 7/28 (25) 6/20 (30) 1/8 (12.5) 27/83 (32.5)

CSF lactate, all LPs mmol/L 1.3 (1.1–2.35; 11) 1.9 (0.8–3.3; 28) 1.85 (0.8–3.3; 20) 1.9 (1.36–2.9; 8) 1.97 (0.87–6.8; 80)

CSF lactate, if elevated mmol/L 2.175 (2–2.35; 2) 2.5 (2.2–3.3; 7) 2.4 (2.2–3.3; 6) 2.9 (2.9–2.9; 1) 2.9 (2.1–6.8; 27)

CSF lactate, >3 mmol/L mmol/L 0/11 (0) 1/28 (3.6) 1/20 (5) 0/8 (0) 27/80 (33.8)

n.d. no data
Concentrations are reported as medians; range and total sample numbers examined are given in brackets
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Table 9 Summary of differences in CSF parameters between various MS subgroups as observed in the present study

Parameter Diagnostic groups Results P values

CSF-restricted OCB, all LPs Pattern I 15/17 (88.2) P < 0.00004

Patterns II + III 10/37 (27)

Reiber et al. [19] 262/267 (98) P < 0.000001

Patterns II + III 10/37 (27)

Pattern I 15/17 (88.2) P < 0.0001

Pattern II 9/25 (36)

Pattern III 1/12 (8.3)

CSF-restricted OCB, patients Pattern I 8/10 (80) P < 0.03

Patterns II + III 7/22 (31.8)

Reiber et al. [19] 262/267 (98) P < 0.000001

Patterns II + III 7/22 (31.8)

CSF-restricted OCB, patients, w/o transient OCBs Pattern I 8/10 (80) P < 0.006

Patterns II + III 5/22 (22.7)

Reiber et al. [19] 262/267 (98) P < 0.00001

Patterns II + III 5/22 (22.7)

MRZ reaction (≥2 AIs >1.5), all LPs Jarius et al. [23] 397/546 (69) P < 0.000001

Patterns II + III 0/12 (0)

M and/or R and/or Z >1.5, all LPs Reiber et al. [19] 158/177 (89) P < 0.000001

Patterns II + III 0/12 (0)

QIgG > Qlim(lgG), all LPs Pattern I 7/17 (41.2) P < 0.03

Patterns II + III 5/41 (12.2)

QAlb > Qlim(Alb), all LPs Pattern I 4/17 (23.5) P < 0.002

Patterns II + III 30/43 (69.8)

Pattern I 4/17 (23.5) P = 0.002

Pattern II 16/26 (61.5)

Pattern III 14/17 (82.4)

QAlb, all LPs Pattern I 4.81 (3.01–10.8; 17) P < 0.005

Patterns II + III 8.39 (2.1–33.9; 42)

Albumin CSF, all LPs Pattern I 204 (95–517; 17) P < 0.009

Patterns II + III 331 (81.2–726; 41)

Total CSF protein elevated, all LPs Pattern I 3/15 (20) P < 0.003

Patterns II + III 29/43 (67.4)

Total CSF protein, all LPs Pattern I 375 (187–750; 15) P < 0.007

Patterns II + III 550 (168–1930; 43)

Albuminocytological dissociation, all LPs Pattern I 1/8 (12.5) P < 0.04

Patterns II + III 13/21 (61.9)
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biopsy or autopsy and, thus, artificially increase the
proportion of pattern II cases in biopsy/autopsy
studies.

Our results indicate that the proportion of patients
with type II and type III lesions may be particularly high
among OCB-negative patients diagnosed with MS.
While only 2–10% of patients with MS are negative for
OCB according to the literature, this subset is not small
in absolute numbers, given the high prevalence of MS in
some Western populations (e.g. ~2.3 million patients
worldwide; ~140,000 patients in Germany). Given that
fact and considering that differences in pathophysiology
may well translate into different treatment requirements,
as already shown in AQP4-IgG-positive NMO [47] and
suggested for MOG-IgG-positive EM [34, 35], studies
aiming at enhancing our understanding of the immuno-
pathophysiology of pattern II and III lesions seem highly
warranted.
Importantly, the frequency of OCB has been reported

to increase with latitude [53, 54]. Whether this implies a
higher proportion of patients with ‘pattern I’ lesions at
higher latitudes is currently unknown but deserves to be
addressed in future studies.
We acknowledge that our study has both strengths and

limitations. While we count the high number of CSF
samples included (n = 68) and the high number of CSF
parameters analysed among the strengths of our study, the
retrospective and exploratory study design is a potential
limitation. However, prospective studies would be ex-
tremely difficult or even impossible to perform given that
brain biopsies are only very rarely performed in patients
with MS and that lumbar puncture is not anymore re-
quired to make the diagnosis of MS according to the
current international diagnostic criteria [3].

Conclusions
In summary, the present study provides additional,
strong evidence for pattern I MS on the one hand and
pattern II MS and pattern III MS on the other hand
being distinct entities by demonstrating significant dif-
ferences in CSF findings between patients with pattern
I lesions and patients with pattern II or pattern III le-
sions, especially with regard to intrathecal IgG synthe-
sis. Of particular note, the CSF profiles present in the
pattern II/III subgroup were more similar to those re-
ported in AQP4-IgG-positive NMO and MOG-IgG-
positive EM than to those classically considered typical
for MS. Further studies are now warranted to confirm
our findings in larger, international cohorts. Such stud-
ies need to take into account the recently reported in-
crease in frequency of CSF oligoclonal banding in MS
with latitude [53, 54].

Fig. 3 Albumin CSF/serum ratios, CSF albumin concentrations, and
CSF total protein concentrations. QAlb CSF/serum albumin ratio

Jarius et al. Journal of Neuroinflammation  (2017) 14:171 Page 12 of 14



Abbreviations
AQP4: Aquaporin-4; CNS: Central nervous system; CSF: Cerebrospinal fluid;
EM: Encephalomyelitis; IgA: Immunoglobulin A; IgG: Immunoglobulin G;
IgM: Immunoglobulin M; MOG: Myelin oligodendrocyte glycoprotein;
MRZR: Measles, rubella, zoster reaction; MS: Multiple sclerosis; NMO: Neuromyelitis
optica; NMOSD: NMO spectrum disorder; OCBs: Oligoclonal bands; QAlb: Albumin
CSF/serum ratio; QIgG/A/M: IgG/A/M CSF/serum ratio; TP: Total protein;
TPHA: Treponema pallidum haemagglutination assay; WCC: White cell count

Acknowledgements
This work was supported by research grants from the Dietmar Hopp Stiftung
to BW, from Merck Serono to BW, from the German Federal Ministry of
Education and research-funded Competence Network Multiple Sclerosis
(KKNMS) to BW, WB and IM, and by a research fellowship from the European
Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to SJ.
The authors are thankful to Mrs. Anna Eschlbeck and to the Nikon Imaging
Center for the excellent technical assistance. We acknowledge the financial
support by Deutsche Forschungsgemeinschaft and Ruprecht-Karls-Universität
Heidelberg within the funding programme Open Access Publishing.

Funding
The work of BW was supported by research grants from the Dietmar Hopp
Stiftung and from Merck Serono. The work of BW, WB and IM was supported
by the German Federal Ministry of Education and Research (BMBF/KKNMS,
Competence Network Multiple Sclerosis). The work of SJ was supported by a
research grant from the European Committee for Treatment and Research in
Multiple Sclerosis (ECTRIMS).

Availability of data and materials
The datasets generated during and/or analysed during the current study are not
publicly available due to local data protection requirements but are available from
the corresponding author on reasonable request in an anonymized fashion.

Authors’ contributions
SJ conceived and designed the study, analysed the CSF data and wrote the
manuscript. WB, FK and IM provided the histopathological data. WB, FK, IM,
BW, FP and KR provided CSF and clinical data. All authors were involved in
revising the manuscript for intellectual content. All authors read and
approved the final draft before submission.

Ethics approval and consent to participate
The study was approved by the institutional review board of the University
of Göttingen, and the patients gave written informed consent.

Consent for publication
Not applicable.

Competing interests
BW has received research grants, speaking fees and travel grants from Merck
Serono, Biogen, Teva, Novartis, Sanofi Genzyme, Bayer Healthcare, Biotest and the
Dietmar Hopp Foundation. KR has received research support from Novartis as well
as speaking fees and travel grants from Guthy Jackson Charitable Foundation,
Bayer Healthcare, Biogen Idec, Merck Serono, Sanofi Genzyme, Teva, Roche, and
Novartis, none of which is related to the present study. FrP has received research
support from Bayer, Novartis, Biogen Idec, Teva, Sanofi-Aventis/Genzyme, Merck
Serono, Alexion, Chugai, Arthur Arnstein Stifung Berlin, Guthy Jackson Charitable
Foundation and the US National Multiple Sclerosis Society; has received travel
funding and/or speaker honoraria from Bayer, Novartis, Biogen Idec, Teva, Sanofi
Aventis/Genzyme and Merck Serono; and has consulted for Sanofi Genzyme,
Biogen Idec, and MedImmune; none of which is related to the present paper. The
other authors report no competing interests. WB has received honoraria for
lectures by Bayer Vital, Biogen, Merck Serono, Teva, Genzyme, Roche and Novartis.
He is a member of scientific advisory boards for Teva, Biogen, Novartis and
Genzyme. WB receives research support from Teva, Biogen, Genzyme and Novartis.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Molecular Neuroimmunology Group, Department of Neurology, University
of Heidelberg, Heidelberg, Germany. 2Department of Neuropathology,
University of Göttingen, Göttingen, Germany. 3Department of Neurology,
Charité University Medicine Berlin, Berlin, Germany. 4NeuroCure Clinical
Research Center and Clinical and Experimental Multiple Sclerosis Research
Center, Berlin, Germany.

Received: 1 February 2017 Accepted: 26 July 2017

References
1. Lucchinetti CF, Bruck W, Lassmann H. Evidence for pathogenic

heterogeneity in multiple sclerosis. Ann Neurol. 2004;56:308.
2. Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H.

Heterogeneity of multiple sclerosis lesions: implications for the
pathogenesis of demyelination. Ann Neurol. 2000;47:707–17.

3. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K,
Havrdova E, Hutchinson M, Kappos L, et al. Diagnostic criteria for multiple
sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

4. Konig FB, Wildemann B, Nessler S, Zhou D, Hemmer B, Metz I, Hartung HP,
Kieseier BC, Bruck W. Persistence of immunopathological and radiological
traits in multiple sclerosis. Arch Neurol. 2008;65:1527–32.

5. Metz I, Weigand SD, Popescu BF, Frischer JM, Parisi JE, Guo Y, Lassmann H,
Bruck W, Lucchinetti CF. Pathologic heterogeneity persists in early active
multiple sclerosis lesions. Ann Neurol. 2014;75:728–38.

6. Tumani H, Deisenhammer F, Giovannoni G, Gold R, Hartung HP, Hemmer B,
Hohlfeld R, Otto M, Stangel M, Wildemann B, Zettl UK. Revised McDonald
criteria: the persisting importance of cerebrospinal fluid analysis. Ann
Neurol. 2011;70:520. author reply 521

7. Franciotta D, Columba-Cabezas S, Andreoni L, Ravaglia S, Jarius S,
Romagnolo S, Tavazzi E, Bergamaschi R, Zardini E, Aloisi F, Marchioni E.
Oligoclonal IgG band patterns in inflammatory demyelinating human and
mouse diseases. J Neuroimmunol. 2008;200:125–8.

8. Reiber H, Teut M, Pohl D, Rostasy KM, Hanefeld F. Paediatric and adult multiple
sclerosis: age-related differences and time course of the neuroimmunological
response in cerebrospinal fluid. Mult Scler. 2009;15:1466–80.

9. Andersson M, Alvarez-Cermeno J, Bernardi G, Cogato I, Fredman P,
Frederiksen J, Fredrikson S, Gallo P, Grimaldi LM, Gronning M, et al.
Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report.
J Neurol Neurosurg Psychiatry. 1994;57:897–902.

10. Reiber H. Cerebrospinal fluid—physiology, analysis and interpretation of protein
patterns for diagnosis of neurological diseases. Mult Scler. 1998;4:99–107.

11. Jarius S, Eichhorn P, Jacobi C, Wildemann B, Wick M, Voltz R. The intrathecal,
polyspecific antiviral immune response: specific for MS or a general marker
of CNS autoimmunity? J Neurol Sci. 2009;280:98–100.

12. Jarius S, Eichhorn P, Wildemann B, Wick M. Usefulness of antibody index
assessment in cerebrospinal fluid from patients negative for total-IgG
oligoclonal bands. Fluids Barriers CNS. 2012;9:14.

13. Jarius S, Franciotta D, Bergamaschi R, Rauer S, Wandinger KP, Petereit HF,
Maurer M, Tumani H, Vincent A, Eichhorn P, et al. Polyspecific, antiviral
immune response distinguishes multiple sclerosis and neuromyelitis optica.
J Neurol Neurosurg Psychiatry. 2008;79:1134–6.

14. Felgenhauer K, Reiber H. The diagnostic significance of antibody specificity
indices in multiple sclerosis and herpes virus induced diseases of the
nervous system. Clin Investig. 1992;70:28–37.

15. Jarius S, Probst C, Borowski K, Franciotta D, Wildemann B, Stoecker W,
Wandinger KP. Standardized method for the detection of antibodies to
aquaporin-4 based on a highly sensitive immunofluorescence assay
employing recombinant target antigen. J Neurol Sci. 2010;291:52–6.

16. Jarius S, Paul F, Fechner K, Ruprecht K, Kleiter I, Franciotta D, Ringelstein M,
Pache F, Aktas O, Wildemann B. Aquaporin-4 antibody testing: direct
comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus
M23-AQP4-DNA-transfected cells as antigenic substrate. J
Neuroinflammation. 2014;11:129.

17. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F,
Stich O, Beume LA, Hummert MW, et al. MOG-IgG in NMO and related
disorders: a multicenter study of 50 patients. Part 1: frequency, syndrome
specificity, influence of disease activity, long-term course, association with
AQP4-IgG, and origin. J Neuroinflammation. 2016;13:279.

Jarius et al. Journal of Neuroinflammation  (2017) 14:171 Page 13 of 14



18. Jarius S, Metz I, Konig FB, Ruprecht K, Reindl M, Paul F, Bruck W, Wildemann
B. Screening for MOG-IgG and 27 other anti-glial and anti-neuronal
autoantibodies in ‘pattern II multiple sclerosis’ and brain biopsy findings in a
MOG-IgG-positive case. Mult Scler. 2016;22:1541–9.

19. Reiber H, Ungefehr S, Jacobi C. The intrathecal, polyspecific and oligoclonal
immune response in multiple sclerosis. Mult Scler. 1998;4:111–7.

20. Reiber H. Flow rate of cerebrospinal fluid (CSF)—a concept common to
normal blood-CSF barrier function and to dysfunction in neurological
diseases. J Neurol Sci. 1994;122:189–203.

21. Petereit HF, Sindern E, Wick M. CSF diagnostics. Guidelines and catalogue of
methods of the German Society for Cerebrospinal Fluid Diagnostics and
Clinical Neurochemistry. Heidelberg: Springer; 2007.

22. Wildemann B, Oschmann P, Reiber H. Laboratory diagnosis in neurology.
Stuttgart, New York: Thieme; 2011.

23. Jarius S, Eichhorn P, Franciotta D, Petereit HF, Akman-Demir G, Wick M,
Wildemann B. The MRZ reaction as a highly specific marker of multiple sclerosis:
re-evaluation and structured review of the literature. J Neurol. 2017;264:453–66.

24. Walsh MJ, Tourtellotte WW. Temporal invariance and clonal uniformity of
brain and cerebrospinal IgG, IgA, and IgM in multiple sclerosis. J Exp Med.
1986;163:41–53.

25. Petereit HF, Reske D. Expansion of antibody reactivity in the cerebrospinal
fluid of multiple sclerosis patients—follow-up and clinical implications.
Cerebrospinal Fluid Res. 2005;2:3.

26. von Glehn F, Farias AS, de Oliveira AC, Damasceno A, Longhini AL, Oliveira
EC, Damasceno BP, Santos LM, Brandao CO. Disappearance of cerebrospinal
fluid oligoclonal bands after natalizumab treatment of multiple sclerosis
patients. Mult Scler. 2012;18:1038–41.

27. Harrer A, Tumani H, Niendorf S, Lauda F, Geis C, Weishaupt A, Kleinschnitz
C, Rauer S, Kuhle J, Stangel M, et al. Cerebrospinal fluid parameters of B cell-
related activity in patients with active disease during natalizumab therapy.
Mult Scler. 2013;19:1209–12.

28. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of
optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp
Med. 2005;202:473–7.

29. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K,
Nakashima I, Weinshenker BG. A serum autoantibody marker of neuromyelitis
optica: distinction from multiple sclerosis. Lancet. 2004;364:2106–12.

30. Levy M, Wildemann B, Jarius S, Orellano B, Sasidharan S, Weber MS, Stuve O.
Immunopathogenesis of neuromyelitis optica. Adv Immunol. 2014;121:213–42.

31. Jarius S, Paul F, Franciotta D, Waters P, Zipp F, Hohlfeld R, Vincent A,
Wildemann B. Mechanisms of disease: aquaporin-4 antibodies in
neuromyelitis optica. Nat Clin Pract Neurol. 2008;4:202–14.

32. Jarius S, Wildemann B. AQP4 antibodies in neuromyelitis optica: diagnostic
and pathogenetic relevance. Nat Rev Neurol. 2010;6:383–92.

33. Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features,
immunopathogenesis and treatment. Clin Exp Immunol. 2014;176:149–64.

34. Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, Hummert MW,
Trebst C, Pache F, Winkelmann A, et al. MOG-IgG in NMO and related disorders: a
multicenter study of 50 patients. Part 3: brainstem involvement—frequency,
presentation and outcome. J Neuroinflammation. 2016;13:281.

35. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F,
Stich O, Beume LA, Hummert MW, et al. MOG-IgG in NMO and related
disorders: a multicenter study of 50 patients. Part 2: epidemiology, clinical
presentation, radiological and laboratory features, treatment responses, and
long-term outcome. J Neuroinflammation. 2016;13:280.

36. Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC,
Bellmann-Strobl J, Jarius S, Wildemann B, Reindl M, et al. MOG-IgG in NMO
and related disorders: a multicenter study of 50 patients. Part 4: afferent
visual system damage after optic neuritis in MOG-IgG-seropositive versus
AQP4-IgG-seropositive patients. J Neuroinflammation. 2016;13:282.

37. Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, Lutterotti A,
Jarius S, Di Pauli F, Kuenz B, et al. Complement activating antibodies to
myelin oligodendrocyte glycoprotein in neuromyelitis optica and related
disorders. J Neuroinflammation. 2011;8:184.

38. Jarius S, Wildemann B. The history of neuromyelitis optica. J
Neuroinflammation. 2013;10:8.

39. Brain WR. Critical review: disseminated sclerosis. QJM. 1930;23:343–91.
40. Weinshenker BG, Wingerchuk DM, Nakashima I, Fujihara K, Lennon VA.

OSMS is NMO, but not MS: proven clinically and pathologically. Lancet
Neurol. 2006;5:110–1.

41. Zamvil SS, Slavin AJ. Does MOG Ig-positive AQP4-seronegative opticospinal
inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol
Neuroimmunol Neuroinflamm. 2015;2:e62.

42. Reindl M, Jarius S, Rostasy K, Berger T. Myelin oligodendrocyte glycoprotein
antibodies: How clinically useful are they? Curr Opin Neurol. 2017;30(3):295–301.

43. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, Kleiter
I, Kleinschnitz C, Berthele A, Brettschneider J, et al. Contrasting disease
patterns in seropositive and seronegative neuromyelitis optica: a
multicentre study of 175 patients. J Neuroinflammation. 2012;9:14.

44. Wildemann B, Jarius S, Schwarz A, Diem R, Viehöver A, Hähnel S, Reindl M,
Korporal-Kuhnke M. Failure of alemtuzumab therapy to control MOG
encephalomyelitis. Neurology. 2017;89(2):207–9.

45. Palace J, Leite MI, Nairne A, Vincent A. Interferon Beta treatment in
neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers.
Arch Neurol. 2010;67:1016–7.

46. Uzawa A, Mori M, Hayakawa S, Masuda S, Kuwabara S. Different responses
to interferon beta-1b treatment in patients with neuromyelitis optica and
multiple sclerosis. Eur J Neurol. 2010;17:672–6.

47. Trebst C, Jarius S, Berthele A, Paul F, Schippling S, Wildemann B, Borisow N,
Kleiter I, Aktas O, Kumpfel T. Update on the diagnosis and treatment of
neuromyelitis optica: recommendations of the Neuromyelitis Optica study
group (NEMOS). J Neurol. 2013;261:1–16.

48. Jarius S, Paul F, Franciotta D, Ruprecht K, Ringelstein M, Bergamaschi R,
Rommer P, Kleiter I, Stich O, Reuss R, et al. Cerebrospinal fluid findings in
aquaporin-4 antibody positive neuromyelitis optica: results from 211 lumbar
punctures. J Neurol Sci. 2011;306:82–90.

49. Jarius S, Franciotta D, Paul F, Ruprecht K, Bergamaschi R, Rommer PS, Reuss R,
Probst C, Kristoferitsch W, Wandinger KP, Wildemann B. Cerebrospinal fluid
antibodies to aquaporin-4 in neuromyelitis optica and related disorders:
frequency, origin, and diagnostic relevance. J Neuroinflammation. 2010;7:52.

50. Kale N, Pittock SJ, Lennon VA, Thomsen K, Roemer S, McKeon A, Lucchinetti
CF. Humoral pattern II multiple sclerosis pathology not associated with
neuromyelitis Optica IgG. Arch Neurol. 2009;66:1298–9.

51. Hahn S, Trendelenburg G, Scharf M, Denno Y, Brakopp S, Teegen B, Probst
C, Wandinger KP, Buttmann M, Haarmann A, Szabados F, Vom Dahl M,
Kümpfel T, Eichhorn P, Gold H, Paul F, Jarius S, Melzer N, Stöcker W,
Komorowski L. Identification of the flotillin-1/2 heterocomplex as a target of
autoantibodies in bona fide multiple sclerosis. J Neuroinflammation. 2017;
14(1):123.

52. Spadaro M, Gerdes LA, Mayer MC, Ertl-Wagner B, Laurent S, Krumbholz M,
Breithaupt C, Högen T, Straube A, Giese A, et al. Histopathology and clinical
course of MOG-antibody-associated encephalomyelitis. Ann Clin Transl Neurol.
2015;2(3):295-301.

53. Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid
oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a
meta-analysis of prevalence, prognosis and effect of latitude. J Neurol
Neurosurg Psychiatry. 2013;84:909–14.

54. Lechner-Scott J, Spencer B, de Malmanche T, Attia J, Fitzgerald M, Trojano
M, Grand'Maison F, Gomez JA, Izquierdo G, Duquette P, et al. The frequency
of CSF oligoclonal banding in multiple sclerosis increases with latitude. Mult
Scler. 2012;18:974–82.

55. Pohl D, Rostasy K, Jacobi C, Lange P, Nau R, Krone B, Hanefeld F. Intrathecal
antibody production against Epstein-Barr and other neurotropic viruses in
pediatric and adult onset multiple sclerosis. J Neurol. 2010;257:212–6.

56. Brecht I, Weissbrich B, Braun J, Toyka KV, Weishaupt A, Buttmann M.
Intrathecal, polyspecific antiviral immune response in oligoclonal band
negative multiple sclerosis. PLoS One. 2012;7:e40431.

Jarius et al. Journal of Neuroinflammation  (2017) 14:171 Page 14 of 14


	Abstract
	Background
	Objective
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients
	Evaluation of the humoral immune response
	Evaluation of blood-CSF barrier function
	Cytological examination, total CSF protein and l-lactate
	Statistics

	Results
	Epidemiology and autoantibody status
	Oligoclonal bands
	IgG, IgM and IgA CSF/serum ratios
	Immunoglobulin class patterns
	MRZ reaction
	Blood–CSF barrier integrity
	Cellular immune response
	Total CSF protein
	CSF l-lactate
	Abnormal vs. normal results

	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

