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Abstract: Protein A has long been used in different research fields due to its ability to specifically
recognize immunoglobulins (Ig). The protein derived from Staphylococcus aureus binds Ig through
the Fc region of the antibody, showing its strongest binding in immunoglobulin G (IgG), making it the
most used protein in its purification and detection. The research presented here integrates, for the first
time, protein A to a silicon surface patterned with gold nanoparticles for the oriented binding of IgG.
The signal detection is conveyed through a metal enhanced fluorescence (MEF) system. Orienting
immunoglobulins allows the exposition of the fragment antigen-binding (Fab) region for the binding
to its antigen, substantially increasing the binding capacity per antibody immobilized. Antibodies
orientation is of crucial importance in many diagnostics devices, particularly when either component
is in limited quantities.

Keywords: IgG; metal enhanced fluorescence; plasmonic surface; surface functionalization; biosensor

1. Introduction

In the past 20 years the interest in combining bio recognition elements to sensors
platforms and assays has risen exponentially [1]. The need for an accurate and specific
recognition of target molecules in complex matrixes has led to a significant demand growth
in the development of accurate detection platforms.

Antibodies represent, even at the present day, the most used affinity reagents for
a variety of different applications [2]. With a global research market size estimated at
3.4 billion in 2019 and a forecast revenue in 2027 of USD 5.6 billion [3] they have effectively
revolutionized the area of therapeutics, diagnostics, separation, and purification science [4].

Antibodies structurally are molecules with a symmetric core composed of two identical
light chains and two identical heavy chains [5]. Both the light chains and heavy chains
contain a series of repeating homologous structural units that fold independently in a
globular motif that is called an Ig domain. These macromolecular proteins of 150 kDa have
two fragment antigen binding (Fab) domains where their cognate antigens bind with high
selectivity and specificity. In addition, Igs display two fragment crystallizable (Fc) regions
(Figure 1) that are the primary recognition site for e.g., cell surface receptors of effector
cells, immune proteins, and other antibodies. These molecules can be divided into distinct
classes and subclasses on the basis of differences in the structure of their heavy chain C
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regions. The classes of antibody molecules are also called isotypes and are named IgA, IgD,
IgE, IgG, and IgM. In humans, IgA and IgG isotypes can be further subdivided into closely
related subclasses, or subtypes, called IgA1 and IgA2 and IgG1, IgG2, IgG3, and IgG4.
Among the five different classes of antibodies, IgGs are the most abundant Ab (human
concentration 13.5 mg/mL) [5] and are also the second longest circulating protein in the
blood stream [6].
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Figure 1. Schematic diagram of a secreted IgG molecule. The antigen-binding sites are formed
by the juxtaposition of V L and V H domains. The heavy chain C regions end in tail pieces. The
locations of complement- and Fc receptor–binding sites within the heavy chain regions. Reprinted
with permission from Ref. [5]. Copyright 2017 Elsevier.

IgGs have been applied in the therapeutics industry for many diseases, including
autoimmune diseases, cancer, septicemia, and to neutralize various viral infections [7]. At
the time of this article, 100 monoclonal antibody products had been approved by the FDA
for therapeutical use [8].

Over the years ELISA has significantly improved in its specificity and sensitivity,
reaching pM concentrations [9,10], and since their first diagnostic application in 1971, the
range of platforms in which they are used has largely expanded. Antibody applications
range from attaching them to fluorescent [11,12], gold, or magnetic beads [13–17], to many
activated surfaces, gold, glass, carbon [18–21].

For most of these applications, the receptor antibody must be immobilized to a solid
support. Over the years, many strategies have been explored, the most representative of
each class are briefly highlighted in the following section.

The easiest way to immobilize antibodies is by passive adsorption, where no previous
modification of either the antibody or the surface is needed, however, due to the non-
covalent immobilization, relying on hydrophobic, van der Waals, and pi-pi interactions,
antibodies can easily leach out during the washing steps effectively reducing the amount
of antibody available for the binding [22]. In addition, a precise control over the orientation
of antibodies is hardly achievable (Figure 2).

A more robust strategy is to covalently immobilize the antibodies on a plate using
free amino and carboxyl groups naturally present in the antibody, and apply a standard
EDC/NHS chemistry. This approach solves the issue relative to the antibody leach, how-
ever, due to the equal distribution of those groups on the whole protein, the problem
relative to the random orientation still remains [4].

Many other strategies have been tried such as tagging the Fc region of the antibody
with biotin and immobilizing on the plate streptavidin, taking advantage of the strongest
known binding interaction in nature (biotin-streptavidin binding affinity kd = ~fM) [23–25],
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or utilizing a well-known polyhistidine tag (His-tag), having affinity for metal ions (Ni2+,
Co2+, Cu2+) [26]. Although the methods described will all orient the immobilization of IgG,
they also present known problems as the necessity of labelling antibodies and the relative
low affinity of the binding His-tag/metal ions (kd = ~µM).

The authors intend to briefly explore the last strategy, which is the chosen one for the
research presented in this paper. It involves utilizing a class of proteins known for their
ability to bind antibodies. Protein A and protein G are derived from Staphylococcus aureus
and Streptococcus aureus and by far the most used for this purpose. These proteins are
known for possessing different domains specific for the Fc region of mammalian Igs. They
have different binding proprieties and they are able to bind to distinct classes of Igs.
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Figure 2. Two main approaches to antibody immobilization. (A) Random, and (B) site-directed
antibody immobilization. Reprinted with permission from Ref. [27]. Copyright 2013 Elsevier.

The binding is a non-covalent interaction, but there is no need for tagging the antibody
of interest, which is a great advantage particularly when very limited amounts are available.
The table (Table 1) reported below summarizes some of the advantages and disadvantages
of the methods mentioned, adapted from Makaraviciute et al. [27].

Table 1. Comparison of different site-directed and random antibody immobilization techniques, table adapted from
Makaraviciute et al. Reprinted with permission from Ref. [27]. Copyright 2013 Elsevier.

Immobilization Format Methodology Advantages Disadvantages

Random
Covalent attachment
via amine coupling
Physiosorption

In some cases shows good
sensitivity [28,29]
Surface regeneration for
multiple analyses after covalent
attachment [30]

Lower sensitivity in comparison to
site-directed immobilization
methods [31]
In case of physiosorption
denaturation of proteins, very low
stability and random protein
orientation [32,33]

Via His-tag
Expression of
recombinant antibody
with His-tag

- Oriented binding through
His-tag/metal ions
interaction

- Labelling of the antibody
required

- Low affinity (Kd = 10−6 M)
- Competition with metal

endogenous proteins [34]
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Table 1. Cont.

Immobilization Format Methodology Advantages Disadvantages

Via biotinylated antibody Site specific
biotinylation

- Oriented binding through
the strongest known
non-covalent interaction
(Kd = 10−15 M) [23,35]

- Rapid bond, not affected
by extremes of pH,
temperature, or organic
solvents [35]

- Labelling of the antibodies
required

- High background signal due
to the presence of endogenous
biotin in tissues [36]

- Need for blocking
endogenous biotin

Via an oxidized
oligosaccharide moiety

Chemical or enzymatic
oxidation of an
oligosaccharide moiety
and coupling to amine
or hydrazine
terminated supports

- Improvement in
sensitivity in comparison
to random immobilization
[30,37]

- No direct modification of
amino acids [37,38]

- Surface regeneration for
multiple analyses [30]

- Different reactions conditions,
such as temperature, pH, and
periodate concentration,
might strongly affect
oxidation and can yield
inconsistent results [39]

- Antibody structure damage
during oxidation especially
for certain mABs [40]

Via antibody fragments

Chemical reduction or
genetic engineering
based disruption of
disulfide bridges and
immobilization via
sulfhydryl groups

- Improvement in
sensitivity in comparison
to random immobilization
[41,42]

- Affinity towards antigen is
adjustable of recombinant
Fab’ [43]

- Surface regeneration for
multiple analyses [44]

- Steric hindrance possibility
because of a very compact
layer [45,46]

- Chemical reduction resulting
in the potential loss of
biological activity of Ab
fragments, especially in the
case of mAbs (monoclonal
antibodies) [47–49]

- Low stability of genetically
engineered fragments [50]

- Possible Ab denaturation
upon direct contact with gold
[51]

- Which is likely to cause non-
specific binding [52]

Site-directed Via Fc binding
proteins

Affinity interactions
with a preformed layer
of proteins specific to
the Fc regions of Ab,
e.g., proteins A, G,
A/G, L, anti-Fc,
recombinant proteins

- Improvement in
sensitivity in comparison
to random immobilization
[31,53]

- Does not require antibody
modification [54,55]

- Surface regeneration for
multiple analyses if
cross-linking is used
[30,45]

- Single use if non-cross linked
[30,44]

- Cross-linking might reduce
sensitivity [53,56]

- Protein G is reported to be
prone to non-specific
interactions [57]

- Specific to certain classes of
antibodies only [57]

The work presented in this research utilizes protein A-mediated binding for the
oriented immobilization of IgG for the detection of fluorescent tubulin, confirming the
data present in the literature. Protein A is covalently immobilized on the surface of gold
clusters embedded in a silicon surface. The signal detection is conveyed through a metal
enhanced fluorescence (MEF) system. Orienting immunoglobulins allows the exposition
of the fragment antigen-binding (Fab) region for the binding to its antigen, substantially
increasing the binding capacity per antibody immobilized.
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2. Materials and Methods
2.1. Fabrication of Plasmonic Nanoparticles Clusters

P type (100) were used, and silicon wafers with a resistivity of 10 Ω/cm were used
as a substrate. The wafers were thoroughly cleaned with acetone, spin coated with the
positive photo-resist S1813 (from Rohm and Haas, Philadelphia, PA, USA) at 4000 rpm
for 60 s to achieve a thickness of 1 µm. Optical lithography (Karl Suss Mask Aligner MA
45, Suss MicroTec GA, Garching, Germany) was used to transfer in the resist a pattern of
micro-holes with a size of d = 10 µm and center-center distance of δ = 30 µm. For the
lithography, UV radiation with power density P = 2.5 mW/cm2 was used for 30 s. After
development in MF322 for 60 s, gold nanoparticles were deposited in the holes using site
selective electroless deposition setting the process parameters as in reference (E. Battista
et al., Metal enhanced fluorescence on super-hydrophobic clusters of gold nanoparticles.
Microelectronic Engineering 175, 7–11, 2017). The residual resist was then removed from
the sample surface with acetone, and the entire device was rinsed with DI water and dried
under nitrogen flux.

2.2. Scanning Electron Microscopy (SEM) Images of Samples

Morphological characterization of nanoscale samples has been carried out by scanning
electron microscopy (SEM). SEM images of the samples were captured using a Sigma
300VP (Zeiss, Germany) system. During the acquisitions, an accelerating voltage of 3 kV
was used. More than 20 SEM images were acquired for each sample morphology.

2.3. Atomic Force Microscopy (AFM) Images of Samples

Samples of the SERS nano-islands were characterized by atomic force microscopy
(combined Raman-AFM Witec alpha300 RA, Ulm, Germany). Images of 5 µm × 5 µm nano
island areas were acquired in an intermittent, noncontact mode. Room temperature was
held as fixed for all the acquisitions. Ultra-sharp silicon tips (FM-AC, 2.8 N/m Witec, Ulm,
Germany) with a curvature radius at the tip less than 5 nm were used. The final images
were averaged over multiple measurements, each of them performed at a scanning rate of
1 Hz. The images had a resolution of 256 × 256 points per line and were corrected using
the Witec Project 2.10® software. The characteristic power spectrum (PS) and then the
fractal dimension were derived for all the substrates.

2.4. Functionalization of Gold Nanoparticles Clusters

The SERS substrates were sequentially functionalized by three different species: 1.
mercaptoundecanoic acid (MUDA), 2. protein A from Staphylococcus aureus, both pur-
chased from Merk, and 3. an antibody (Rabbit anti-tubulin, ABD Serotec or CD4 (VIT4)
-FITC mouse anti human (Ab) from Miltenyi Biotec, in results section the antibody used in
the specific experiment will be explicated). MUDA, [10 mM] in EtOH, was added to the
AuNP islands, where it was spontaneously adsorbed through the thiol groups (-SH) which
self-assembled on gold surface releasing hydrogen (A. Majzik et al. [58]). Furthermore,
the chemistry of ethyl-3-[dimethylaminopropyl] carbodiimide hydrochloride (EDC) and
N-hydroxy-succinimide (NHS) was employed to activate the surface, improving the cova-
lent attachment of biomolecules relative to the next step. EDC (0.4 M) and NHS (0.1 M)
solutions in PBS were mixed in 1:1 volume ratio, 25 µL was added dropwise and left to react
on the chip for 7 min and then rinsed with PBS 1X. At this point two different samples were
prepared: (a) chips without protein A, as control, and (b) chips with protein A and both
were used to link antibodies. Total of 25 µL drop of protein A was deposited on the chip
type b at a concentration of 0.2–1 mg/mL in PBS and left to react for 1 hr. After washing
with PBS, a 25 µL drop of antibody (Ab) (Rabbit anti-tubulin, ABD Serotec) (1 mg/mL)
was deposited on chips, both type a and b, and incubated for 1 h. Before analysis, chips
were washed with PBS.



Nanomaterials 2021, 11, 2620 6 of 16

2.5. Raman Spectroscopy Analysis of Samples

Raman spectra of the gold nanoparticles after each step of functionalization and after
the secondary antibody (antiAb) (goat anti-Rabbit IgG-HRP sc-2004 J3108. Santa Cruz
Biotechnology. Concentration 200 µg/0.5 mL) trapping, were collected by a Renishaw
InVia Microscope with a 1024 CCD detector, an excitation wavelength of 633 nm and a
50× objective lens. Mapping Raman measurements were carried out by a laser power of
around 350 µW and a step size of 1 µm in the x- and y- axis directions. All map spectra were
baseline-subtracted and analyzed using the free software package Raman Tool Set (freely
available at http://ramantoolset.sourceforge.net accessed on 2 October 2019) [59]. Raman
spectra of each single molecules in solution (as utilized during the sensing platform build-
ing) were collected by the drop deposition method, in the same measurement conditions of
the functionalized AuNP, to constitute a small library for verifying the functionalization.

2.6. Acquiring Fluorescence Images of Samples

Solutions of FITC fluorescent molecules (antibodies or antigens as specified in Results
section) were deposited on the chips by the drop method and left to react for 1 h. Washed
samples were analyzed using Nikon, ECLIPSE Ti fluorescent microscope (Nikon Instru-
ments Inc., Melville, NY, USA), with an excitation length of λex = 488 nm, which gives the
functionalized gold islands green fluorescence.

2.7. Fluorescence Testing on Antibody Immobilization

Antibody CD4 (VIT4)—FTIC mouse snit-human, Miltenyi Biotec, was immobilized on
substrate with and without protA to compare the immobilization ability of the two kinds of
configurations. The solutions used for functionalization were analyzed after the immobiliza-
tion process by a VICTOR3 Multilabel Plate Reader (PerkinElmer, Inc., Waltham, MA, USA),
which quantify the fluorescence intensity (FI) in solution. A calibration curve was realized
to quantify the antibody remained in solution. At the same time, the devices with the
immobilized antibody were analyzed by the fluorescent microscopy.

3. Results
3.1. Clusters of Plasmonic Gold Nanoparticles

Using the procedures described in the Methods of the paper, clusters of gold nanopar-
ticle on substrates of silicon were fabricated. Scanning electron microscopy (SEM) mi-
crographs of the samples were taken to assess repeatability and reproducibility of the
fabrication method. SEM images with low magnification factor from 500× to 5000×
(Figure 3a–c) illustrate that the clusters of gold nanoparticles extend over areas of several
hundred µm with no interstitial or vacancy defects in the patterns that are predominantly
regular in this dimensional interval. The clusters of gold nanoparticles have a diameter of
approximately 10 µm and are deposited in a lattice with hexagonal crystalline structure
and spacing between elements of 20 µm. SEM images of the samples taken at higher mag-
nification (Figure 3d,e) show that, in each cluster, gold nanoparticles are densely packed,
exhibiting an imperfect rhombohedric shape and a size that ranges from about 50 nm to
nearly 200 nm for the larger structures (Figure 3f). The extent of this scale interval suggests
that particles in the cluster may have a dendritic structure, with smaller particles more
numerous than larger particles and the same geometrical motifs occurring periodically at
different length scales.

3.2. Atomic Force Microscopy

To verify this hypothesis (Methods), atomic force microscopy (AFM) images of the
sample surface were acquired (Figure 4). The relief density plot and the 3D plot of the
AFM scan are reported in Figure 4a,b. AFM images show that the height profile of the
particles falls in the 0− 60 nm interval, with fewer sample points reaching the 80− 120 nm
limit. We found the power spectrum density (Q) associated to these profiles using the
methods reported by F. Gentile et al. [60]. The power spectrum density illustrates how

http://ramantoolset.sourceforge.net
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the information content of an image changes as a function of scale. Then, Q was used
to calculate the fractal dimension of the sample surface as D f ∼ 2.2 (Figure 4c). The
fractal dimension is a non-dimensional number comprising between 2 and 3 that indicates
how much of the surface detail is conserved across different scales. The value of fractal
dimension of D f ∼ 2.2 that we have found for this sample surface indicates that the
clusters of gold nanoparticles have a complexity higher than that associated to a Euclidean
surface, with = 2.
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SERS (surface enhanced Raman scattering) and MEF (metal enhanced fluorescence)
effects are largely influenced by particle shape and size, and by the constituting material
of the nanostructured surface. As regarding particle size, a number of studies reported in
literature have illustrated that SERS and MEF devices perform efficiently in the 10–140 nm
dimensional range, and reach an optimum for a size of approximately 50 to 60 nm [61–65].
Notably, the gold nanostructures that we have used for this study have a size that falls
in this interval. While this work was not focused on optimizing performance, and was
more an exercise on existence of proof, in a more sophisticated evolution of the device that
will be developed over time we will harness the nanofabrication techniques to produce
nanoparticles with a tight control over their shape and size. This will enable us to optimize
the enhancement of the sensor device.

3.3. Fluorescence Analysis for MEF Effect Evaluation

Drops at different dilutions (2 mg/mL ÷ 100 fg/mL) of antibody Ab FITC were de-
posited on the AuNP array platform and observed, after drop drying, under the fluorescent
microscope. The lower visible concentration was around 100 fg/mL. Fluorescence is signi-
ficative on the coffee ring generated by the drop drying (Figure 5b), furthermore in this
area the enhancement ability of the gold nanograins (AuNPs) is evident, in particular on
the AuNPs islands’ edges. Intensity of the fluorescent signal is increased by an average of
around 48%. In Figure 5 two representative areas around AuNPs islands were zoomed: the
MEF effect is particularly present on the edges of the metallic islands the intensity value of
fluorescence was calculated along the yellow line plot in each zoom area.
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Figure 5. Fluorescent image of washed a Ab FITC drop [1 µg/mL] (a) and the lowest concentration recorded [100 fg/mL]
(b). The zoom areas around the AuNPs islands highlight the MEF effect, evidenced by the intensity value of fluorescence,
calculated along the yellow line plot in each zoom.

In addition, 1 µg/mL of FITC-Ab was used to verify the influence of the metal
enhanced fluorescence effect (MEF) given by the AuNPs. As shown in Figure 5a, the
fluorescence recorded in the AuNPs is significantly higher than the one recorded at the
same concentration in the absence of AuNPs resulting in a up to 500% increase in signal
recorded.
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3.4. Characterization of the Functionalized Plasmonic Gold Nanoparticles

Raman spectroscopy on AuNPs’ islands allowed to evaluate the AntiAB entrapping
ability. The collected Raman maps were analyzed revealing intensity at points 1178 cm−1

and 1434 cm−1 (Figure 6a,b), respectively the histidine and tyrosine signals and the CH2
bending peak [66].
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Figure 6. (a) Optical image of AuNP array template, analyzed by Raman spectroscopy. (b) Raman spectra collected during
a mapping analysis. The averaged spectrum (black) evidence the two significative peaks at points 1178 cm−1 (the histidine
and tyrosine signal) and 1434 cm−1 (CH2 bending peak). (c) Map of distribution of the Raman intensity for the 1178 cm−1

peak. (d) Raman spectra of the different functionalization steps.

Figure 6c shows the distribution of the Raman intensity for the 1178 cm−1 peak, but
the same results were obtained for the 1434 cm−1 point (data not reported), evidencing a
homogeneous distribution of the secondary antibody on the AuNPs, while no signal was
from the surrounding area.

How the functionalization occurs, step by step, until the building of the final arrayed
sensing platform was also followed by the Raman analyses. As detailed in Methods, the
SERS active-regions of AuNPs’ islands were first activated by a SAM (self-assembled
monolayer) technique, when MUDA molecules are spontaneously adsorbed on gold by
the SH groups. The other terminal group of MUDA is a COOH- moiety which, helped by
EDC/NHS complex, works as anchor to link protein-type molecules. Protein A engages
the carboxylic group promoting the following antibodies binding in the correct orientation.

Raman spectra of the different functionalization steps (Figure 6d) evidence an initially
increments of the typical proteins’ signals in the passage between MUDA and protein A
functionalization: the peak of amide I around 1630 cm−1 is present as a shoulder assigned
to the C=O stretching of the carbonyl groups, also presents in the MUDA molecules,
nevertheless the peak at ~1335 cm−1, attributable to NH bending and C–N stretching mode
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of amide III, is proportionally increased with respect to the total spectrum after protein A
functionalization as well as the backbone skeletal stretch signal at ~1170 cm−1 [67].

The antibody-protein A interaction does not give a prominent difference in Raman
fingerprint. What it is observable, instead, is a global decrease or the Raman intensity, due
to the incremented distance between the added molecules and the SERS substrate [68].

Moreover, tryptophan in proteins, peak at ~1550 cm−1, is one of the amino acid more
influenced by proteins’ aggregation or conformational changes due to external stimuli. The
linkage between protein A and the antibody is precisely highlighted by the increment of
the 1550 cm−1 peak, recognizing changes in both secondary and tertiary structure of the
antibody [67].

When the interaction with the secondary antibody occurs, the total signal continues to
decrease and only the, already known, 1434 cm−1 (CH2 bending) peak and the histidine
and tyrosine signal at 1178 cm−1 become more prominent [66].

After overnight incubation in MUDA, protein A (protA) was covalently immobilized
on the functionalized gold clusters through standard EDC/NHS covalent immobilization
(Figure 7a–d). Although many techniques are known in the literature for the functionaliza-
tion of gold surfaces, such as the use of dry NHS [69] or through avidin conjugation [70],
in this work, MUDA-mediated functionalization was used to allow COOH groups to be
deposited on the gold surface and subsequently immobilize proteins through EDC/NHS
chemistry; established immobilization procedure for biological elements [71] Protein A
is known for binding IgG through its Fc region, it was therefore used by the authors to
vehicle the oriented immobilization of IgG.
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In order to verify the oriented binding, an anti-tubulin binding antigen was used as
model antibody (Ab) and fluorescent tubulin (antigen) was used for visualizing the correct
immobilization. If IgG is correctly oriented on the surface through the binding with protein
A, it would expose the Fab region and make it accessible for the binding to its antigen
(tubulin), effectively increasing its binding capacity.

ProtA functionalized surface was incubated with anti-tubulin to allow the binding,
and after PBS washes, fluorescent tubulin was added, followed by final washes to remove
the excess of un-bound tubulin. Fluorescence was recorded (Figure 7e–g).

To assess the orientation, the experiment was conducted in parallel to a surface
functionalized with anti-tubulin Ab covalently immobilized on the gold clusters in the
absence of protein A, followed by the addition of fluorescent tubulin.

Figure 8 shows the platform with fluorescent recorded in the presence of protein
A compared to the platform with the same concentration anti-tubulin covalently and
randomly immobilized on the surface (Figure 8). Based on the recorded fluorescence, it is
observable how the surface where the binding is vehicled by protA there is an increment
of fluorescent recorded of 59 percentage, indicating a better exposure of the antibody fab
region to its antigen.
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Figure 8. Fluorescence recorded without protA, and therefore with anti-tubulin randomly immobilized binding fluorescent
tubulin (a left), compared to the surface with protA orienting anti-tubulin binding (a right). The images recorded show an
increase in fluorescence recorded of 59% in the surface with the presence of protA. Fluorescent IgG randomly immobilized
(b left) compared to fluorescent IgG bound by protA, higher fluorescence recorded when IgG is randomly immobilized,
resulting in higher concentration immobilized. Graph (c) show the counts of fluorescent points in relation to their intensity
for the a line images. The percentage of immobilized IgG is showed on Graph (d) where the immobilized antibody was
calculated by an FI test on the solution used for antibody immobilization.

In addition, the amount of antibody randomly immobilized and bound to protA was
quantified using a fluorescent antibody as model in fluorescence intensity (FI) assay.

Figure 8, FI line, shows how even though the same concentration of antibody was
originally used in the functionalization, covalently immobilizing it allows the immobiliza-
tion of a greater amount of it (higher fluorescence recorded). Nevertheless, the amount of
tubulin bound, results in higher presence of protein A. The two results combined show how
even with higher concentration of Ab immobilized, the orientation is the most important
factor to consider.
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4. Discussion

In this article, we present a specific method to obtain a functionalized surface for
immunodetection to overcome challenges of low-abundance biomarker and for improving
signal to noise for a visible detection that is more successful [72].

The outcome in the use of protein A for a correct spatial disposition of the antibody
delegated to target detection is not only improving the performance of the assay, but also
reducing the abundance of antibody solution to sacrifice. This result is explained by the
role of protein A. In fact, its binding with the tail (Fc region) of the antibody makes all its
ligand-sites (Fab region) spatially available to bind the target. On the contrary, the absence
of protein A determines a random disposition of the antibodies on the surface. This no
orientated disposition of antibody resulted in a performance of linking of around 70% from
the starting solution used in the functionalization. When protein A is previously linked
on the surface, to functionalize the same area, less than 60% of the starting solution was
used for the immobilization of the antibody. Moreover, the detection power is amplified
by the right orientation of the all-ligand sites and, adding the enhancing effect of the
metallic nanostructures, a total increment of fluorescence of 59% is reached with respect
to the same area randomly functionalized. This molecular construct, combined with the
MEF structures achieves a strong signal intensity and conveys high-quality detection, for
the consistency of the data and providing performance equal to or better than traditional
analytical approaches as immunoassays ELISAs-like (enzyme-linked immunosorbent assay)
and IHC (Immunohistochemistry) [73,74].

Several different formats are used in ELISAs, but they all fall into either direct, indirect
or sandwich capture and detection methods. The antigen is then detected either directly
(labeled primary antibody) or indirectly (such as labeled secondary antibody). The most
used ELISA format is sandwich ELISA assay, where the specific antibody (capturing
antibody) is immobilized on the surface of the plate to bind the target analyte and either
an antibody directly binding the analyte (primary antibody) is tagged with an enzyme
producing colorimetric signal or a fluorescent tag. Alternatively, to the specific primary
untagged antibody a tagged antibody binding the primary antibody (secondary antibody)
is added, generating the signal. Due to the high versatility and the lack of need for tagging
the primary antibody, this last type is the most commonly used assay in diagnostics) [73,74].

In surface presented in this research, target detection is competitive with both tra-
ditional methods, as it demonstrates a good target detection performance even at low
concentrations, competitive with ELISA assays, and at the same time qualifies the detection
through imaging given by the fluorescent signal, similarly to qualitative colorimetric data
resulting by applying IHC assay. Furthermore, the fluorescent signal generated by the
surface represents an intrinsic test of verification and validation of the specificity of binding
between target and antibody, suggesting also the widest dynamic range of functionalized
gold nanoparticles necessary to detect it [75].

Adding a deep learning machine to a device built with this protocol highlights the
limitations of the traditional marker detection system, opening up the delivery of low abun-
dance markers, and making them available in complex matrices for combined quantitative
and qualitative evaluation [76].

5. Conclusions

Separation by immunoaffinity and diagnostics are the two main fields of application
of antibodies [77].

The main component in clinical disease diagnostics are antibody-based immunoas-
says. Most of the point-of-care used in personalized monitoring of chronic degenerative
diseases is mainly based on the use of antibodies directed against the biomarker of interest.
Moreover, the fabrication and demand for specific point-of-care for specific diseases with
epidemiological impact, is growing rapidly in the international Healthcare market [78].

For this reason, identifying of low abundance biomarkers in complex matrices by
combining quantitative data with qualitative ones is now an imperative requirement. In
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addition, peripheral blood or other body fluids sampled in a non-invasive way are the most
investigated biological matrices. The surface presented here, fulfils the two requirements,
quantization of low target concentrations and qualitative demonstration of its detection.
With these assumptions, the surface created here represents the basis for making lab-on-
chips with a high degree of operational performance, robustness, specificity, and sensitivity
useful for visible discrimination of the target in any type of complex matrices.
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