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Heterogeneity among individual patients presents a fundamental challenge to effective 
treatment, since a treatment protocol working for a portion of the population often fails 
in others. We hypothesize that a computational pipeline integrating mathematical modeling 
and machine learning could be used to address this fundamental challenge and facilitate 
the optimization of individualized treatment protocols. We tested our hypothesis with the 
neuroendocrine systems controlled by the hypothalamic–pituitary–adrenal (HPA) axis. 
With a synergistic combination of mathematical modeling and machine learning (ML), this 
integrated computational pipeline could indeed efficiently reveal optimal treatment targets 
that significantly contribute to the effective treatment of heterogeneous individuals. What 
is more, the integrated pipeline also suggested quantitative information on how these key 
targets should be perturbed. Based on such ML revealed hints, mathematical modeling 
could be used to rationally design novel protocols and test their performances. We believe 
that this integrated computational pipeline, properly applied in combination with other 
computational, experimental and clinical research tools, can be used to design novel and 
improved treatment against a broad range of complex diseases.

Keywords: neuroendocrine dysfunction, stress, depression, machine learning, computational psychiatry, 
computational modeling, post-traumatic stress disorder

INTRODUCTION

Proper response to stress signal is essential to maintain the physiological and psychological 
health. Upon the stimulation by stress signals, the corticotropin-releasing hormone (CRH) is 
released from the hypothalamus and results in the release of adrenocorticotropic hormone (ACTH). 
Through the circulation system, ACTH then travels to the adrenal glands, binds to ACTH 
receptors, and stimulates the secretion of corticosteroids such as cortisol. Cortisol then stimulates 
the increases of glucose concentration in the blood to provide energy to cope with the stresses. 
The proper functioning of this hypothalamic–pituitary–adrenal (HPA) axis is important for 
physiological response to stress (Tsigos and Chrousos, 2002; Dunlop and Wong, 2019); while 
the dysregulation of the HPA axis is closely associated with stress order, such as post trauma 
stress disorder (PTSD) and depression (Bisson et  al., 2015; Yehuda et  al., 2015; Shalev et  al., 
2017). If the dysregulated dynamics of the HPA axis is reversed and the normal dynamics and 
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function of the HPA axis were restored, it might help with 
treating stress disorders (Ronaldson et  al., 2018; Menke, 2019).

However, the effective restoration of HPA function is challenged 
by the heterogenous dynamics of the dysregulated axis in patients 
with stress disorders. For example, in patients with PTSD, both 
lower cortisol levels and higher cortisol have been reported. In 
patients with other stress disorders, the cortisol levels are also 
reported to be bimodal (Yehuda et al., 1995; Gold and Chrousos, 
2002; Bremner et  al., 2007; Meewisse et  al., 2007).

To cope with this challenge of heterogeneity and facilitate 
the optimization of treatment protocols that can effectively 
restore HPA axis dynamics, we  explored the potential of an 
integrated computational pipeline that combines mathematical 
modeling and machine learning. The computational model 
incorporates several feedbacks controlling the HPA axis, with 
which we  can computationally scanned the effects of potential 
targets. Machine learning analysis of the random scanning 
results then revealed the effective targets and how these targets 
should be  perturbed. These ML derived insights aided us to 
design novel, optimized treatment protocols, which could 
be  further tested with mathematical models.

Our analysis demonstrated a “proof of concept” that an 
integration of mathematical modeling and machine learning 
can be  used to efficiently explore a heterogeneous patient 
population and facilitate the design of optimized treatment 
protocols. In the discussion, we  have also commented on the 
strength and limitation of this computational pipeline and 
envisioned how it could be  used together with other tools to 
improve clinical treatments of complex diseases.

MATERIALS AND METHODS

Time Series Simulation
Simulations were carried out using the ordinary differential 
equations built following the standard formula. All parameter 
values were randomly selected from uniform distributions of 
broad ranges. Time series simulations were performed using 
XPPaut,1 the simulated data were then plotted using Matlab.2 
The detailed simulation protocols for each figure was described 
along with the figure.

Classification Tree Analysis
Tree models were run using the model parameters in addition 
to the steady state values for model components. Trees were 
computed in R3 using the rpart2 algorithm.

Random Forest Analysis
Random Forest analysis was carried out with the value change 
of parameters as input features and the outcome (effective or 
non-effective) as prediction targets. The analysis was performed 
using the standard package in R (see footnote 3). Permutation 
feature importance were scaled to the maximum (100%) and plotted.

1 http://www.math.pitt.edu/~bard/xpp/xpp.html
2 https://www.mathworks.com
3 https://www.r-project.org/

Implementation of Treatments
All treatments were implemented as transient changes of the 
model parameters. In the random against random targets, a 
random target parameter is chosen and then either increased 
or decreased by a value between zero and 10. In the targeted 
treatments, the parameters with the top rank were decreased.

Selection of Parameter Ranges
If the ranges of parameter changes were too small (i.e., 5 or 
10%), the small changes of parameters result in mostly 
homogeneous behaviors and the sampling of heterogeneous 
response was computationally inefficient. With trails and errors 
in preliminary exploration, we  chose all parameters randomly 
from uniform distributions that ranged 10-fold up and down 
their basal values (10–1,000%) to sample heterogenous responses 
efficiently. Since the patient behavior of interest were already 
covered by the current ranges, the ranges of the parameter 
changes were not further expanded.

RESULTS

A Mathematical Model Integrated One 
Negative Feedback and Two Positive 
Feedbacks Controlling the HPA Axis
The HPA axis is characterized by a negative feedback: after 
the increase of the stress signal results in the sequential release 
of corticotropin-releasing hormone (CRH), adrenocorticotropic 
hormone (ACTH), and cortisol, the activated glucocorticoid 
receptors then represses both CRH and ACTH. This negative 
feedback has been implemented in previous mathematical 
models (Gudmand-Hoeyer et al., 2014; Bangsgaard and Ottesen, 
2017; Stanojević et  al., 2018a).

In addition, the glucocorticoid receptor is characterized by 
a positive feedback that potentially results in bistable switching 
(Sriram et  al., 2012). Meanwhile, Kim et  al. (2016) proposed 
the positive feedback regulating corticotropin-releasing hormone 
(CRH) could also result in switch like behavior.

Our current mathematical model has integrated the above 
mentioned negative and positive feedbacks to generate complex 
and heterogeneous dynamics, which serve as ideal tests to examine 
whether our analysis pipeline works. Since both the machine 
learning tools and modeling tools in our pipeline are applicable 
to systems with additional components, we  expect that our 
analysis pipeline will be  able to continue to provide useful and 
realistic insights even if the model of the HPA axis is expanded 
to incorporates more regulatory details than these three feedbacks.

Facilitating the Exploration of Heterogeneity 
With a Standard Model Formula
The heterogeneity of different individuals could be implemented 
with different model structures, different model parameter 
values, or both. However, it would be computational expensive 
to explore the heterogeneity by composing a different set of 
mathematical equations for every single individual. In order 
to facilitate the exploration of heterogeneity and reduce the 
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computational expense of the computational pipeline, we  have 
adopted a standard formula to describe the model structure. 
In this way, we  can simply change the parameter values to 
explore the heterogeneity between individuals.

In this standard formula, the dynamics of each model 

component (x) is described as: dX
dt

F Xi
i i i= −( )t , with 

F
e
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=
+ −
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j
i
j

j= +∑0
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In which, τi describes the time scale of the component 
change, Fi describes the steady state level of the component, 
and Wi descries the net regulation received by the component.

In this formula, a positive Ri
j  specifies an activating effect, 

while a negative Ri
j  specifies an inhibitory one. Ri0  sums 

effects that origin from all other components not explicitly 

incorporated in the model, and this parameter can be replaced 
with additional regulatory terms when the model is expanded. 
Additional elaboration of this approach and its dynamical 
properties are available in the literature (Mjolsness et  al., 
1991; Tyson and Novak, 2010) and our previous publication 
(Ballweg et  al., 2018).

By changing the values of the regulatory parameters (Rs), 
we could conveniently explore the nature (activation or inhibition) 
as well as the strength of the interactions between the model 
components. The model simulations then allowed us to explore 
the dynamical properties of the HPA axis that resulted from the 
different interactions. The parameters explored in this work and 
the interaction they regulated have been illustrated in Figure  1, 
the regulatory roles of the parameters are described in Table  1. 
The ordinary differential equations and the initial values of the 
model parameters are recorded in the Supplementary Table  1.

FIGURE 1 | The structure of the current model. An elevation of the stress signal results in the sequential release of CRH, ACTH, and Cortisol. Cortisol activates GR, 
which then inhibits both CRH and ACTH, forming the negative feedback. Two positive feedback loops regulate CRH and GR. The black arrows indicate activation, 
and the red lines with dot heads indicate inhibition. The regulatory parameters (capital R) and the time series parameters (lower case ts) are labeled near the 
reactions they control. The subscripts describe the identities of the regulated components, and the superscripts describe the regulating components (0 if not 
specified). The full names of the components, as well as the modeling justifications, are elaborated in the text.
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Fractional Development of Stress 
Disorders Within Heterogeneous 
Individuals
With the standard model formula, we then mimicked a population 
of heterogeneous individuals by assigning random values to 
the control parameters. The dynamical simulations of the models 
represented the dynamical responses of these individuals to 
stress signals.

A transient elevation of the stress signal (Figure  2A) 
was applied to every individual within the heterogeneous 
population. In response to this increase of the stress signal, 
the cortisol levels were transiently elevated in almost all 
individuals. For the control population, the cortisol levels 
returned to base line after the stress signal decreased 
(Figure  2B), representing the return to the physiological 
homeostasis. On the other hand, the cortisol levels sustained 
at either lower or higher levels represented patients with 
stress disorders (Figures  2C,D).

An analysis with the classification and regression tree (CART) 
provided an overview of features (including both model 
component and parameters) characterizing these three different 
populations (Figure  2E). The high cortisol patients are 
characterized by high levels of CRH and ACTH, which makes 
mechanistic sense since CRH and ACTH promote cortisol 
release in the HPA axis. The lower cortisol patients, on the 
other hand, are characterized by low ACTH and high level 
of GR. The high level of GR in these patients repress their 
cortisol release.

The simulated dynamics indicates that the systems changes 
might be  sustained even after the decrease of stress signal, 
which is a hallmark of post trauma stress disorder (PTSD). 
Upon the exposure to transient traumatic events, the symptoms 
in PTSD patients could sustain for a long time. Many military 
personnel suffer from stress disorder years after departing from 
the battle field (O'Toole et  al., 2009; Marmar et  al., 2015; 
Armenta et  al., 2018).

Our simulations used a strong stress signal, which was 
necessary to trigger cortisol disorders. If the stress signal 
were reduced, less simulated individuals developed cortisol 
disorder. Meanwhile, even for the strong stress signal used 
in our simulation, no all the affected individuals developed 
cortisol disorder. Rather, a large portion of the stimulated 
individuals (>50%) could recover their physiological cortisol 
levels after the stress disappears. The low percentage of stress 
disorder development was also reported in the literature. The 
World Health Organization World Mental Health Surveys 
reported a cross-national lifetime prevalence rate of 3.9% 
(Koenen et  al., 2017); while a National Epidemiologic Survey 
reported a lifetime prevalence rate of 6.1% in the United States 
(Goldstein et  al., 2016).

Our simulations indicated that the heterogeneous levels 
of cortisol, either lower or higher, might naturally emerge 
after heterogenous individuals were stimulated with stress 
signal. The heterogenous cortisol levels in the patient 
populations were consistent to the literature reports (Yehuda 
et  al., 1995; Gold and Chrousos, 2002; Bremner et  al., 2007; 
Meewisse et  al., 2007). The heterogeneous levels of cortisol 
made sense when we examined the structure of the mathematical 
model. The level of cortisol was regulated by a combination 
of two positive feedbacks and one negative feedbacks. The 
positive feedbacks allowed the model to have the potential 
to generate different attracting stable steady states, which 
potentially could explain the distinction between the higher 
cortisol population, the lower cortisol population, and 
the control.

Meanwhile, the negative feedback had the potential to generate 
sustained oscillations (one example illustrated in Figure  2D). 
The regulation and dysregulation of the oscillatory dynamics 
of cortisol might also play a role in the response to stress 
stimulation (Kalafatakis et  al., 2018; Stanojević et  al., 2018b; 
Lightman et  al., 2020).

With the intervened positive and negative feedbacks, the 
current model has been able to mimic the complex, heterogeneous 
dynamics of different individuals who develop stress disorder, 
hence we proceed to use the current model to test our integrated 
computational pipeline.

Random Scanning of Treatment Targets
We first selected around 30,000 patients with lower pathological 
cortisol and subjected them to for potential treatments that 
were applied on the control parameters. Since we  lacked both 
qualitative information (what targets should be  targeted) as 
well as quantitative information (to what levels should the 
targets be  changed), we  randomly selected an individual 
parameter target and changed its level randomly and transiently 
(details in Materials and Methods). Five representative 
trajectories of effective treatments were illustrated in Figure 3A. 
These five individuals started with normal, physiological levels 
of cortisol. After transient stimulation by the stress signal 
(applied around time 20), their cortisol levels were decreased 
to lower, pathological levels. After the effective treatments, 
their cortisol levels were restored to normal, physiological  ones. 

TABLE 1 | The matrix of model parameters.

Regulator 8 Regulatory parameters

Stress signal RSS
CRH

CRH RCRH
CRH RCRH

ACTH

ACTH RACTH
COR

Cortisol RCOR
GR

GR RGR
CRH RGR

ACTH RGR
GR

Component CRH ACTH Cortisol GR

8 Component specific parameters

Background
0RCRH

0RACTH
0RCOR

0RGR

Time scale tsCRH tsACTH tsCOR tsGR
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On the contrary, the cortisol levels were not restored in five 
individuals representing patients receiving ineffective treatments 
(Figure  3B).

Such bimodal responses were also observed in around 30,000 
individuals whose pathological cortisol levels were higher than 
their physiological ones. In five representing individuals whose 

A B

C

E

D

FIGURE 2 | Sampling the heterogenous response triggered by stress signal. Identical model structure and different values of all parameters are used to 
simulate the heterogenous response to stress signal. In response to a transient elevation of the stress signal (around time 20, A), the cortisol levels in the 
control population (B) returned to normal levels after transient elevation, representing the healthy population who do not develop neuron endocrine 
disorder after stress. On the contrary, the levels of cortisol decreased and were sustained lower in patient populations who were characterized by lower 
pathological levels of cortisol (C). The cortisol levels were elevated and remained higher in patients whose pathological cortisol levels were higher after 
stress (D). (E) Classification Tree. The different colors of different nodes indicate the types of dominant populations: red nodes indicates that most 
individual in the node had higher cortisol after stress; green nodes indicates that most individuals were characterized by lower levels of cortisol; blue 
nodes indicate the ones with most individuals from the control population. In the top node, individuals from these three populations were of identical 
number, and the node is labeled red.
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cortisol levels were sustained higher after the transient stress 
signal, effective treatment restored their cortisol levels to 
physiological ones (Figure 3C). On the other hand, the cortisol 
levels remained higher after ineffective treatments (Figure 3D).

Treatments against random targets were effective in small 
portions of the patients but ineffective in the majorities of 
the treated individuals. For our pipeline, even the ineffective 
treatments provided important information on how the system 
responded to perturbations. Hence, proceeded to apply machine 
learning analysis on the simulation data that included both 
effective and ineffective treatments. In the future, we  envision 
that our pipeline could potentially be  applied to the clinical 
data that combined effective and ineffective treatments, to 
improve the design of clinical trials and treatment protocols.

Improving the Treatment Protocols
The individual responses to random treatments were binary 
(Effective vs. Non-Effective), and such binary data were fed 
into the Random Forest (RF) analysis. RF identified the most 
influential factors that distinguished the effective treatments 
from the non-effective ones. By computing the consequential 
error resulted from permuting features, the RF analysis also 
ranked the relative importance of all potential the targets.

The RF analysis revealed that for individuals whose 
pathological cortisol levels were lower, the changes of RGR0  
and RGRGR  were most important for effective treatments 

(Figure  4A). Furthermore, the analysis with decision tree 
provided quantitative information on how the targets should 
be  changed (Figure  4B). In the treatments that sufficiently 
decreased the level of RGRGR , most of them would be  effective 
(node on the bottom left in Figure  4B); similarly, most of 
the treatments that decreased the level of RGR0  were also 
effective (2nd node from left on the bottom of Figure  4B).

These RF identified targets, RGR0  and RGRGR , make mechanistic 
sense in the context of the model structure. A positive feedback 
controlling GR might result in pathological steady state with 
lower cortisol levels. Hence, it is reasonable to expect that the 
pathological states could be  reverted by targeting the key 
parameters that control the positive feedback. On the basis of 
these qualitative and quantitative information, we  designed 
targets treatments against the top targets, RGR0  or RGRGR . 
Simulation showed that transient decrease of these two targets 
were able to effectively treat patients whose pathological cortisol 
levels were lower. These patients were characterized with lower 
levels of cortisol after their stimulation by transient stress signal 
(applied around time 20). Then, their cortisol levels were 
restored by the transient decrease of RGR0  or RGRGR  applied 
around time 60 (Figures  4C,D).

Similarly, RF analysis indicated that RCRH0  and RCRHCRH  were 
the top targets in patients whose pathological cortisol levels 
were higher (Figure  5A). The decision tree analysis suggested 
that these two targets should be decreased in effective treatments 
(Figure 5B), and rationally designed treatments based on such 

A B

C D

FIGURE 3 | Sampling effective and non-effective treatments. In this random scanning, one parameter is randomly perturbed around time 40. The effective 
treatments, which restored the cortisol distorted by the stress signal, were shown in panels (A,C). On the other hand, the non-effective treatments, which failed to 
restore the cortisol levels, were shown in panels (B,D).
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information could effectively restore the levels in these patients. 
After stimulation by transient stress signal (applied around 
time 20), cortisol levels were sustained higher in these individual 
patients. Then, RCRH0  and RCRHCRH  were transiently decreased 
around time 60, the cortisol levels were decreased and remained 
low (Figures  5C,D).

It was encouraging that the treatments effects were sustained 
even though the treatments against these highly ranked targets 
were only transient. In clinical terms, this means that it would 
be  possible to fully cure the patients suffering stress disorder 
if the correct targets were identified and perturbed.

Hence, starting with scanning treatments against random 
targets, machine learning analysis with the scanning results 
could lead us to rationally design novel and improved treatments. 
What is more, since the machine learning analysis revealed 
more than one target that could contribute to the effective 
treatments, it would be  plausible to design multiple effective 
treatments and select the practical ones based on 
clinical constrains.

DISCUSSION

Heterogeneity within individual patients underlies partial 
responses to treatment and calls for the design of personalized 

and optimized treatment protocols. In this work, we  have 
demonstrated the performance of a computational pipeline that 
integrated mathematical modeling and machine learning. The 
pipeline was able to address this fundamental challenge of 
heterogeneity: starting with little qualitative clue (target 
identification) and quantitative clue (perturbation strength), the 
pipeline was able to deliver rational designs of effective treatment 
plans that clearly answered “what to targets?” and “how much 
to change?”

With such “proof of principle,” we  hope that the 
computational pipeline could be  integrated into clinical 
practice to design novel and more effective treatments for 
complex diseases. We  envision that after clinical data were 
fed into this analysis pipeline, it would lead to insights that 
are clinically applicable.

Two theoretical approaches, one driven by data and the 
other based on mechanism, have been widely applied in the 
field of systems biology and quantitative systems pharmacology. 
In this work, we  have illustrated that these two approaches 
could be  integrated together to achieve synergistic effects 
(Figure  6): the machine learning methods could be  used to 
efficiently extract insights from heterogeneous behaviors, while 
the mechanistical models could be  used to design mechanistic 
and dynamical protocols that are directly translatable on the 
basis of the machine learning revealed insight.

A B

C D

FIGURE 4 | Machine learning analysis revealed that the key parameters controlling the GR positive feedback were associated with effective treatments for patients 
with lower cortisol levels. (A). Random forest analysis ranked the targets based on their association with the effective treatments in patients whose pathological 
cortisol levels were lower. (B). Decision tree analysis indicated that these parameters were decreased in effective treatments. (C,D) Time series simulations illustrated 

how the decrease of 0RGR  or RGR
GR  restored the cortisol levels in patients with lower pathological cortisol levels.
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The machine learning methods could help modeling to 
be  more efficient. It would be  computationally expensive to 
carry out a comprehensive scanning with all possible targets 

and all possible perturbation values, in comparison, a random 
scanning followed by machine learning analysis in our work 
was able to efficiently yield hints on some top ranked targets 
and how they should be  perturbed. Meanwhile, modeling puts 
the insights extracted with machine learning back into the 
mechanistic context and could help designing novel protocols 
directly translatable to clinical practice.

Consistent with its purpose of showing a “proof of principle,” 
the current model has represented the heterogeneous patient 
populations only with the qualitative changes (either lower or 
higher) of their cortisol levels. As the next step, it would 
be  beneficial to fit the model parameters with cortisol levels 
observed in individual patients (Bangsgaard and Ottesen, 2017), 
so that the heterogeneous models could represent individual 
patients in quantitative details.

With the continuous contribution from the communities 
of systems biology and quantitative systems pharmacology, 
we  expect the simplified model would be  expanded to more 
realistic, multi-scale ones that include more biochemical, 
genetic, epigenetic, molecular, cellular, and neurological details. 
This process would be  time and effort consuming; however, 
the overall process could be  facilitated by taking advantage 
of the existing models that have been developed to describe 
HPA axis and its role in stress orders. For example, our 
current work has been benefiting from the modeling works 

A B

C D

FIGURE 5 | Machine learning analysis revealed that parameters controlling the CRH positive feedback were associated with effective treatments for patients with 
higher cortisol levels. (A) Random forest analysis ranked the targets based on their association with the effective treatments in patients whose pathological cortisol 
levels were higher. (B) Decision tree analysis indicated that these key parameters should be decreased for the treatments to be effective. (C,D) Time series 

simulations illustrated how the decrease of 
0RCRH  or RCRH

CRH  restored the cortisol levels in patients who had higher levels of cortisol after stress stimulation.

FIGURE 6 | The integration between machine learning and mathematical 
modeling might result in synergistic effect. ML methods can facilitate the 
analysis of both real data and simulated data generated by mathematical 
models; while mathematical models can test hypothesis provided by ML 
models and reveal mechanistic insights.
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or Sriram et  al. (2012) and Kim et  al. (2016). We  envision 
the further expansion of the current model will also be  able 
to utilize many other modeling works in the field of 
computational psychiatry, such as the PKA-PP2A model of 
fear conditioning (Yang et  al., 2010), the model for protein 
kinase M feedback (Ogasawara and Kawato, 2010), and the 
modeling work on the positive feedback loop controlling 
brain-derived neurotrophic factor (BDNF; Bambah-Mukku 
et al., 2014; Zhang et al., 2016). The incorporate of additional 
regulatory pathways might result in the co-existence of even 
more attractors, which would further increase the heterogeneous 
subtypes of stress disorder patients. Combination of different 
machine learning algorithms, including those used here, 
promises to facilitate the analysis of these additional subtypes.

In addition, we  expect that the expanded models of stress 
disorders will also integrate multi-scale neural circuits within 
the corresponding regions of the brain (Smith, 2005), the 
pharmacokinetics of various drugs such as the selective serotonin 
reuptake inhibitors sertraline (Zoloft) and paroxetine (Paxil; 
Alhadab and Brundage, 2020; Heydorn, 1999), as well as the 
pharmacodynamic effect of these drugs such as the serotonin 
production and regulation (Best et  al., 2010).

Though it is going to be time consuming and effort consuming 
to develop such realistic models with elaborated biological and 
pharmaceutical control details, we  expect that the effort will 
eventually pay off and the realistic models will make contributions 
of clinical significance. For example, the realistic models may 
be  able to guide us to further understand the genetic and 
biochemical basis of different patients whose cortisol levels 
are either lower or higher when developing depression; these 
models may point out to optimized targets for patients who 
are not responding to the currently available treatments; also, 
comprehensive models will have the potential to aid us to 
examine whether novel treatments would result in undesired 
side effects or toxicities in healthy, control populations.

Computational psychiatry promises to address some of the 
hard challenges faced by psychobiological researchers, and 
encouraging results have been accumulating along this direction 
(Ferrante and Gordon, 2021; Huys et  al., 2021). From a 
methodological perspective, we  have tested an integrated 
computational pipeline (ICP) that combines computational 
modeling and machine learning and shown “proof of principle” 
that this pipeline could be  used to aid with the design of 

novel treatment protocols which can effectively restore 
neuroendocrine dysregulation in a population of heterogeneous 
individuals. We expect that the further expansion of the model 
as well as this pipeline would be able to deliver more clinically 
useful insights for psychological disorders.

What is more, this computational framework of integrated 
modeling and machine learning can be readily applied to other 
research areas beyond neuroendocrine and psychological 
disorders. The field of computational medicine and quantitative 
systems pharmacology have already started to integrate 
complimentary tools to achieve greater benefits (Hutchinson 
et al., 2019; Zhang et al., 2019; Benzekry, 2020), and we believe 
that the broader application of our pipeline will contribute to 
the design of novel and effective treatments for a board range 
of complex diseases.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can 
be  directed to the corresponding author.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work 
and has approved it for publication.

FUNDING

The work was supported by grant 1016183 ARMY W911NF-
20-1-0192 to TZ.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.6565 
08/full#supplementary-material

Supplementary Table 1 | The ordinary differential equations and basal values of 
the model parameters.

 

REFERENCES

Alhadab, A. A., and Brundage, R. C. (2020). Physiologically-based 
pharmacokinetic model of sertraline in human to predict clinical relevance 
of concentrations at target tissues. Clin. Pharmacol. Ther. 108, 136–144. 
doi: 10.1002/cpt.1824

Armenta, R. F., Rush, T., LeardMann, C. A., Millegan, J., Cooper, A., Hoge, C. W., 
et al. (2018). Factors associated with persistent posttraumatic stress disorder 
among U.S. military service members and veterans. BMC Psychiatry 18:48. 
doi: 10.1186/s12888-018-1590-5

Ballweg, R., Lee, S., Han, X., Maini, P. K., Byrne, H., Hong, C. I., et al. 
(2018). Unraveling the control of cell cycle periods during intestinal stem 
cell differentiation. Biophys. J. 115, 2250–2258. doi: 10.1016/j.bpj.2018.10.025

Bambah-Mukku, D., Travaglia, A., Chen, D. Y., Pollonini, G., and Alberini, C. M. 
(2014). A positive autoregulatory BDNF feedback loop via C/EBPbeta mediates 
hippocampal memory consolidation. J. Neurosci. 34, 12547–12559. doi: 
10.1523/JNEUROSCI.0324-14.2014

Bangsgaard, E. O., and Ottesen, J. T. (2017). Patient specific modeling of the 
HPA axis related to clinical diagnosis of depression. Math. Biosci. 287, 
24–35. doi: 10.1016/j.mbs.2016.10.007

Benzekry, S. (2020). Artificial intelligence and mechanistic modeling for clinical 
decision making in oncology. Clin. Pharmacol. Ther. 108, 471–486. doi: 10.1002/
cpt.1951

Best, J., Nijhout, H. F., and Reed, M. (2010). Serotonin synthesis, release and 
reuptake in terminals: a mathematical model. Theor. Biol. Med. Model. 7:34. 
doi: 10.1186/1742-4682-7-34

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/articles/10.3389/fgene.2021.656508/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.656508/full#supplementary-material
https://doi.org/10.1002/cpt.1824
https://doi.org/10.1186/s12888-018-1590-5
https://doi.org/10.1016/j.bpj.2018.10.025
https://doi.org/10.1523/JNEUROSCI.0324-14.2014
https://doi.org/10.1016/j.mbs.2016.10.007
https://doi.org/10.1002/cpt.1951
https://doi.org/10.1002/cpt.1951
https://doi.org/10.1186/1742-4682-7-34


Zhang A Modeling and Machine Learning Pipeline

Frontiers in Genetics | www.frontiersin.org 10 September 2021 | Volume 12 | Article 656508

Bisson, J. I., Cosgrove, S., Lewis, C., and Robert, N. P. (2015). Post-traumatic 
stress disorder. BMJ 351:h6161. doi: 10.1136/bmj.h6161

Bremner, D., Vermetten, E., and Kelley, M. E. (2007). Cortisol, 
dehydroepiandrosterone, and estradiol measured over 24 hours in women 
with childhood sexual abuse-related posttraumatic stress disorder. J. Nerv. 
Ment. Dis. 195, 919–927. doi: 10.1097/NMD.0b013e3181594ca0

Dunlop, B. W., and Wong, A. (2019). The hypothalamic-pituitary-adrenal axis 
in PTSD: pathophysiology and treatment interventions. Prog. Neuro-
Psychopharmacol. Biol. Psychiatry 89, 361–379. doi: 10.1016/j.pnpbp.2018.10.010

Ferrante, M., and Gordon, J. A. (2021). Computational phenotyping and 
longitudinal dynamics to inform clinical decision-making in psychiatry. 
Neuropsychopharmacology 46, 243–244. doi: 10.1038/s41386-020-00852-z

Gold, P. W., and Chrousos, G. P. (2002). Organization of the stress system 
and its dysregulation in melancholic and atypical depression: high vs low 
CRH/NE states. Mol. Psychiatry 7, 254–275. doi: 10.1038/sj.mp.4001032

Goldstein, R. B., Smith, S. M., Chou, S. P., Saha, T. D., Jung, J., Zhang, H., 
et al. (2016). The epidemiology of DSM-5 posttraumatic stress disorder in 
the United States: results from the National Epidemiologic Survey on Alcohol 
and Related Conditions-III. Soc. Psychiatry Psychiatr. Epidemiol. 51, 1137–1148. 
doi: 10.1007/s00127-016-1208-5

Gudmand-Hoeyer, J., Timmermann, S., and Ottesen, J. T. (2014). Patient-specific 
modeling of the neuroendocrine HPA-axis and its relation to depression: 
Ultradian and circadian oscillations. Math. Biosci. 257, 23–32. doi: 10.1016/j.
mbs.2014.07.013

Heydorn, W. E. (1999). Paroxetine: a review of its pharmacology, pharmacokinetics 
and utility in the treatment of a variety of psychiatric disorders. Expert 
Opin. Investig. Drugs 8, 417–441. doi: 10.1517/13543784.8.4.417

Hutchinson, L., Steiert, B., Soubret, A., Wagg, J., Phipps, A., Peck, R., et al. 
(2019). Models and machines: how deep learning will take clinical pharmacology 
to the next level. CPT Pharmacometrics Syst. Pharmacol. 8, 131–134. doi: 
10.1002/psp4.12377

Huys, Q. J. M., Browning, M., Paulus, M. P., and Frank, M. J. (2021). Advances 
in the computational understanding of mental illness. Neuropsychopharmacology 
46, 3–19. doi: 10.1038/s41386-020-0746-4

Kalafatakis, K., Russell, G. M., Harmer, C. J., Munafo, M. R., Marchant, N., 
Wilson, A., et al. (2018). Ultradian rhythmicity of plasma cortisol is necessary 
for normal emotional and cognitive responses in man. Proc. Natl. Acad. 
Sci. U. S. A. 115, E4091–E4100. doi: 10.1073/pnas.1714239115

Kim, L. U., D'Orsogna, M. R., and Chou, T. (2016). Onset, timing, and exposure 
therapy of stress disorders: mechanistic insight from a mathematical model 
of oscillating neuroendocrine dynamics. Biol. Direct 11:13. doi: 10.1186/
s13062-016-0117-6

Koenen, K. C., Ratanatharathorn, A., Ng, L., McLaughlin, K. A., Bromet, E. J., 
Stein, D. J., et al. (2017). Posttraumatic stress disorder in the world mental 
health surveys. Psychol. Med. 47, 2260–2274. doi: 10.1017/S0033291717000708

Lightman, S. L., Birnie, M. T., and Conway-Campbell, B. L. (2020). Dynamics 
of ACTH and cortisol secretion and implications for disease. Endocr. Rev. 
41, 470–490. doi: 10.1210/endrev/bnaa002

Marmar, C. R., Schlenger, W., Henn-Haase, C., Qian, M., Purchia, E., Li, M., 
et al. (2015). Course of posttraumatic stress disorder 40 years after the 
Vietnam war: findings from the National Vietnam Veterans Longitudinal 
Study. JAMA Psychiat. 72, 875–881. doi: 10.1001/jamapsychiatry.2015.0803

Meewisse, M. L., Reitsma, J. B., de Vries, G. J., Gersons, B. P., and Olff, M. 
(2007). Cortisol and post-traumatic stress disorder in adults: systematic 
review and meta-analysis. Br. J. Psychiatry 191, 387–392. doi: 10.1192/bjp.
bp.106.024877

Menke, A. (2019). Is the HPA axis as target for depression outdated, or is 
there a new hope? Front. Psych. 10:101. doi: 10.3389/fpsyt.2019.00101

Mjolsness, E., Sharp, D. H., and Reinitz, J. (1991). A connectionist model of 
development. J. Theor. Biol. 152, 429–453. doi: 10.1016/S0022-5193(05)80391-1

Ogasawara, H., and Kawato, M. (2010). The protein kinase Mzeta network as 
a bistable switch to store neuronal memory. BMC Syst. Biol. 4:181. doi: 
10.1186/1752-0509-4-181

O'Toole, B. I., Catts, S. V., Outram, S., Pierse, K. R., and Cockburn, J. 
(2009). The physical and mental health of Australian Vietnam veterans 

3 decades after the war and its relation to military service, combat, and 
post-traumatic stress disorder. Am. J. Epidemiol. 170, 318–330. doi: 10.1093/
aje/kwp146

Ronaldson, A., Carvalho, L. A., Kostich, K., Lazzarino, A. I., Urbanova, L., 
and Steptoe, A. (2018). The effects of six-day SSRI administration on diurnal 
cortisol secretion in healthy volunteers. Psychopharmacology 235, 3415–3422. 
doi: 10.1007/s00213-018-5050-1

Shalev, A., Liberzon, I., and Marmar, C. (2017). Post-traumatic stress disorder. 
N. Engl. J. Med. 376, 2459–2469. doi: 10.1056/NEJMra1612499

Smith, M. E. (2005). Bilateral hippocampal volume reduction in adults with 
post-traumatic stress disorder: a meta-analysis of structural MRI studies. 
Hippocampus 15, 798–807. doi: 10.1002/hipo.20102

Sriram, K., Rodriguez-Fernandez, M., and Doyle, F. J. 3rd (2012). Modeling 
cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression, 
and post-traumatic stress disorder (PTSD) in humans. PLoS Comput. Biol. 
8:e1002379. doi: 10.1371/journal.pcbi.1002379

Stanojević, A., Marković, V. M., Čupić, Ž., Kolar-Anić, L., and Vukojević, V. 
(2018a). Advances in mathematical modelling of the hypothalamic–pituitary–
adrenal (HPA) axis dynamics and the neuroendocrine response to stress. 
Curr. Opin. Chem. Eng. 21, 84–95. doi: 10.1016/j.coche.2018.04.003

Stanojević, A., Marković, V. M., Maćešić, S., Kolar-Anić, L., and Vukojević, V. 
(2018b). Kinetic modelling of testosterone-related differences in the 
hypothalamic–pituitary–adrenal axis response to stress. React. Kinet. Mech. 
Catal. 123, 17–30. doi: 10.1007/s11144-017-1315-7

Tsigos, C., and Chrousos, G. P. (2002). Hypothalamic-pituitary-adrenal axis, 
neuroendocrine factors and stress. J. Psychosom. Res. 53, 865–871. doi: 
10.1016/S0022-3999(02)00429-4

Tyson, J.J., and Novak, B. (2010). Functional motifs in biochemical reaction networks. 
Annu. Rev. Phys. Chem. 61, 219–240, doi: 10.1146/annurev.physchem.012809

Yang, R., Sriram, K., and Doyle, F. J. (2010). “Control circuitry for fear 
conditioning associated with post-traumatic stress disorder (PTSD).” in 49th 
IEEE Conference on Decision and Control (CDC); December 15–17, 2010; 
Atlanta, GA, USA (IEEE), 2541–2546.

Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., 
Nievergelt, C. M., et al. (2015). Post-traumatic stress disorder. Nat. Rev. 
Dis. Primers. 1:15057. doi: 10.1038/nrdp.2015.57

Yehuda, R., Kahana, B., Binder-Brynes, K., Southwick, S. M., Mason, J. W., 
and Giller, E. L. (1995). Low urinary cortisol excretion in holocaust survivors 
with posttraumatic stress disorder. Am. J. Psychiatry 152, 982–986. doi: 
10.1176/ajp.152.7.982

Zhang, Y., Huynh, J. M., Liu, G. S., Ballweg, R., Aryeh, K. S., Paek, A. L., 
et al. (2019). Designing combination therapies with modeling chaperoned 
machine learning. PLoS Comput. Biol. 15:e1007158. doi: 10.1371/journal.
pcbi.1007158

Zhang, Y., Smolen, P., Alberini, C. M., Baxter, D. A., and Byrne, J. H. (2016). 
Computational model of a positive BDNF feedback loop in hippocampal 
neurons following inhibitory avoidance training. Learn. Mem. 23, 714–722. 
doi: 10.1101/lm.042044.116

Conflict of Interest: The author declares that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2021 Zhang. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License (CC BY). The use, distribution or 
reproduction in other forums is permitted, provided the original author(s) and the 
copyright owner(s) are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://doi.org/10.1136/bmj.h6161
https://doi.org/10.1097/NMD.0b013e3181594ca0
https://doi.org/10.1016/j.pnpbp.2018.10.010
https://doi.org/10.1038/s41386-020-00852-z
https://doi.org/10.1038/sj.mp.4001032
https://doi.org/10.1007/s00127-016-1208-5
https://doi.org/10.1016/j.mbs.2014.07.013
https://doi.org/10.1016/j.mbs.2014.07.013
https://doi.org/10.1517/13543784.8.4.417
https://doi.org/10.1002/psp4.12377
https://doi.org/10.1038/s41386-020-0746-4
https://doi.org/10.1073/pnas.1714239115
https://doi.org/10.1186/s13062-016-0117-6
https://doi.org/10.1186/s13062-016-0117-6
https://doi.org/10.1017/S0033291717000708
https://doi.org/10.1210/endrev/bnaa002
https://doi.org/10.1001/jamapsychiatry.2015.0803
https://doi.org/10.1192/bjp.bp.106.024877
https://doi.org/10.1192/bjp.bp.106.024877
https://doi.org/10.3389/fpsyt.2019.00101
https://doi.org/10.1016/S0022-5193(05)80391-1
https://doi.org/10.1186/1752-0509-4-181
https://doi.org/10.1093/aje/kwp146
https://doi.org/10.1093/aje/kwp146
https://doi.org/10.1007/s00213-018-5050-1
https://doi.org/10.1056/NEJMra1612499
https://doi.org/10.1002/hipo.20102
https://doi.org/10.1371/journal.pcbi.1002379
https://doi.org/10.1016/j.coche.2018.04.003
https://doi.org/10.1007/s11144-017-1315-7
https://doi.org/10.1016/S0022-3999(02)00429-4
https://doi.org/10.1146/annurev.physchem.012809
https://doi.org/10.1038/nrdp.2015.57
https://doi.org/10.1176/ajp.152.7.982
https://doi.org/10.1371/journal.pcbi.1007158
https://doi.org/10.1371/journal.pcbi.1007158
https://doi.org/10.1101/lm.042044.116
http://creativecommons.org/licenses/by/4.0/

	A Modeling and Machine Learning Pipeline to Rationally Design Treatments to Restore Neuroendocrine Disorders in Heterogeneous Individuals
	Introduction
	Materials and Methods
	Time Series Simulation
	Classification Tree Analysis
	Random Forest Analysis
	Implementation of Treatments
	Selection of Parameter Ranges

	Results
	A Mathematical Model Integrated One Negative Feedback and Two Positive Feedbacks Controlling the HPA Axis
	Facilitating the Exploration of Heterogeneity With a Standard Model Formula
	Fractional Development of Stress Disorders Within Heterogeneous Individuals
	Random Scanning of Treatment Targets
	Improving the Treatment Protocols

	Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material

	References

