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death through cytokine release syndrome. Hence, identification of IL-6 downstream from clinical
patients’ transcriptome is very valid for analyses of its mechanism. However, clinical study is conditional
and time consuming to collect optional size of samples, as patients have the clinical heterogeneity. A pos-
sible solution is to deeply mine the relative existing data. Several transcriptome-based studies on other
diseases or treatments have revealed different genes to be regulated by IL-6. Through our meta-analysis
of these transcriptome datasets, 352 genes were suggested to be regulated by IL-6 in different biological
conditions, some of which were related to virus infection and cardiovascular disease. Among them, 232
genes were not identified by current transcriptome studies from clinical research. ICAM1 and PFKFB3
were the most significantly upregulated genes in our meta-analysis and could be employed as biomarkers
in patients with severe COVID-19. In general, a meta-analysis of transcriptome datasets could be an alter-
native way to analyze the immune response and complications of patients suffering from severe COVID-
19 and other emergency diseases.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.
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1. Introduction

Coronavirus disease 2019 (COVID-19) is wreaking havoc in
healthcare and economic systems worldwide [1]. Analyses of the
mode of action of the pathogen that causes COVID-19, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), are crucial to
develop therapeutics.

Studies have shown that high ratio of COVID-19 patients
develop severe disease and a proportion of such patients die
[1,2]. Cytokine release syndrome (CRS; also known as ‘“cytokine
storm”) can be triggered by various factors, and occurs when large
numbers of white blood cells are activated and release inflamma-
tory cytokines which, in turn, activate yet more white blood cells
[3]. CRS has been suggested to be one of the principal causes for
severe COVID-19, which leads to increased risks in patients with
cardiovascular disease and diabetes mellitus.
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Clinical evidence has revealed interleukin (IL)-6, a major che-
mokine in CRS, to be a critical biomarker and predictor for severe
COVID-19 [4-7]. IL-6 is pleiotropic, and a vital pro-inflammatory
factor that regulates hematopoiesis, respiration, as well as the
response to infection and cancer [8-11]. Hence, studying the key
regulatory genes downstream of IL-6 is important for analyses of
its mechanism of action and the design of drug targets against
SARS-CoV-2.

Analysis of the transcriptome is a high-throughput, molecular-
biological approach to deconstruct the intricate gene-regulation
network. So far, there are studies applied this method to resolve
this problem and identified several differential expressed genes
in COIVID-19 patients [12-16]. However, to study severe COVID-
19 in this way, a series of complex problems must be taken into
consideration to save time and ensure accuracy, such as the
heterogeneity of clinical samples and the difficulty of obtaining
appropriate samples. IL-6 has been shown to be a key biomarker
for severe COVID-19, so there is an alternative method to integrate
the common factors regulated by IL-6 from other diseases or treat-
ment studies.

2001-0370/© 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Summary of transcriptome datasets with IL-6 treatment used in this study. The numbers of experiment and control indicate the replicates in each dataset. All treatment used
exogenous IL-6 except the * and # marked one. *, IL-6 receptor antibody; #, IL-6 level determined in patients. (-1/2/3 in the same Datasets were different treatment experiments).

Datasets Experiment Control Sample Treatment
GSE76340 3 3 Immature dendritic cells TNF-a, IL-1, IL-6, prostaglandin E2 and IFN-y
GSE68942-1 3 3 HK-2 IFN/IL6
GSE68942-2 3 3 HK-2 IFN/TNF/IL6
GSE68941 3 3 HK-2 TNF/IL6
GSE68940 3 3 HK-2 IL6
GSE62941-1 3 3 KPL4 Medi5117
GSE62941-2 3 3 NCI-H1650 Medi5117
GSE62941-3 3 3 DU145 Medi5117
GSE29793 3 3 INA6 withdraw IL6
GSE45466 8 8 Monocyte-derived dendritic cell IL6
GSE12385 18 18 PMBC IL6 level
GSE10685 3 3 Human skeletal muscle IL6

GSE8515 5 5 macrophage IL6

Fig. 1. DEGs in clinical COVID studies and meta-analysis. (A) Venn Diagram of DEGs from five clinical studies. (B) Venn Diagram of DEGs from meta-analysis and five clinical

studies. (C) co-expression network of DEGs.
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Several transcriptome datasets related to IL-6 regulation are
available. Study used Illumina HT12.0 microarrays to ascertain
the differentially expressed genes (DEGs) in dendritic cells upon
treatment with tumor necrosis factor (TNF)-a, IL-1, IL-6, prosta-
glandin E2 or interferon (IFN)-y [17]. Researcher investigated the
transcriptional changes of renal tubular epithelial cells stimulated
by the proinflammatory cytokines IL-6, IFN-y or TNF-o. They
showed that nuclear factor-kappa B (NF-kB), signal transducer
and activator of transcription (STAT)1 and STAT3 were the key
genes influencing gene expression during renal aging [18]. A simi-
lar study on dendritic cells used transcriptome analyses to validate
regulation of STAT3 expression by IL-6 [19]. Study used an anti-
body against the IL-6 receptor to block the IL-6 pathway and inves-
tigated the transcriptome in different tumor cells. They found that
the STAT3 signaling pathway was highly active in most cell lines,
suggesting that IL-6 regulated signaling [20]. Researchers investi-
gated IL-6 regulation by transcriptome analyses on apoptosis of
INA6 cells through the p53/STAT3 pathway [21]. Human
monocyte-derived macrophages have also been studied under IL-
6 stimulation by genome-wide transcriptome analyses [22]. The
transcriptome research mentioned above suggests that IL-6 regula-
tion varies under different conditions. So far, scholars have not
integrated those results to find the common genes involved in IL-
6 regulation to support relevant application in COVID-19.

Meta-analyses are popular methods to statistically integrate
results considering the sample size in each experiment. It has
enabled considerable progress to be made in identifying and repli-
cating common genetic variants associated with susceptibility to

Table 2
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certain diseases. Researchers undertook a meta-analysis to study
infection by the West Nile virus by comparing new listed genes
between samples from infected patients and those from healthy
controls [23]. A meta-analysis can also be very helpful for studying
functional annotation among multi-gene expression. Researchers
employed a meta-analysis to study liver and heart tissues by col-
lecting transcriptome data [24]. Researchers utilized an integrative
meta-analysis of expression data to identify the various genes
expressed [25]. However, they just average the fold change or sta-
tistical possibility from multiple experiments without standard
processes of meta-analysis.

A standard meta-analysis is a statistical procedure for combin-
ing datasets from multiple studies considering the sample size. If
the treatment effect (or effect size) is consistent from one study
to another study, a meta-analysis can be used to identify this com-
mon effect. Due to the differences in the genetic background of
human samples, a meta-analysis is required.

We undertook a standard meta-analysis by collecting transcrip-
tome datasets from IL to 6-treatment experiments. We discovered
that this method can help to identify IL-6-regulated genes in
COVID-19.

2. Materials and methods
2.1. Sample collection and ethical approval

Blood samples from patients with severe COVID-19 admitted to
Ganzhou Fifth People’s Hospital (Chizhu, China) from January 2020

EGR2 and LYPD1 have two-fold-change in more than one experiment dataset. Note LYPD1 were reversely changed in two datasets. The most significantly changed genes were
detected from GSE12385. mean. e indicates mean of experiment samples; mean. ¢, mean of control samples.

gene mean.e sd.e mean.c sd.c p values Fold Datasets
EGR2 379.06 28.19 105.11 6.26 0.0448558 3.61 GSE68941
EGR2 1544.48 1843.89 436.79 590.29 0.0228731 3.54 GSE12385
LYPD1 431.56 40.47 189.09 10.40 0.0490625 2.28 GSE68941
LYPD1 478.13 92.58 1090.46 24.78 0.0478792 0.44 GSE68942-1
MARCO 6527.22 1538.92 3197.50 1411.02 3.39E-07 2.04 GSE12385
C1QA 533.28 231.83 211.11 77.38 6.31E-06 2.53 GSE12385
TMEM51 1531.78 796.52 541.61 177.03 2.03E-05 2.83 GSE12385
ERAP2 8611.11 4251.11 3077.78 2329.74 4.58E-05 2.80 GSE12385
NRCAM 27.57 16.21 55.34 18.70 5.689E-05 0.50 GSE12385
Table 3

The 10 most significantly up- and down-regulated genes in IL-6 treated samples. All parameters were calculated for meta-analysis using Random Effect Model. W, weight; TE,
averaged difference; lower and upper, 95% confidence interval; random, random effective model; Heter, the heterogeneity of data.

Gene Symbol w TE lower upper z random_ pvalue heter_ pvalue
Top 10 most significantly up-regulated genes

ICAM1 0.35 0.89 0.40 1.38 3.55 3.88E-04 0.32
LDLR 0.51 0.70 0.30 1.09 3.45 5.65E-04 0.67
SERPINA1 0.97 0.71 0.29 1.12 3.35 8.02E-04 0.43
SBNO2 0.32 0.64 0.25 1.04 3.20 1.37E-03 0.50
MOSPD2 1.46 0.62 0.24 1.00 3.20 1.39E-03 0.97
PFKFB3 0.12 0.76 0.29 1.24 3.15 1.64E-03 0.34
S0CS3 0.16 1.32 0.48 2.15 3.10 1.94E-03 0.02
SUPT3H 0.09 0.61 0.22 1.00 3.09 1.98E-03 0.81
TGFA 0.50 0.70 0.25 1.14 3.05 2.32E-03 0.37
STOM 0.93 0.58 0.19 0.98 2.92 3.50E-03 0.46
Top 10 most significantly down-regulated genes

DCHS1 1.37 —-0.65 -1.04 -0.26 -3.27 1.08E-03 0.72
SLC24A1 1.09 -0.64 -1.03 -0.25 -3.21 1.35E-03 0.51
NDRG3 1.49 —-0.62 -1.01 -0.24 -3.17 1.53E-03 0.94
TPCN1 0.13 -0.61 -1.00 -0.23 -3.12 1.83E-03 0.50
OSGEPL1 0.85 -0.59 -0.97 -0.21 -3.05 2.29E-03 0.94
TOMM20 1.50 -0.57 -0.94 -0.19 -2.97 2.98E-03 0.92
PREPL 0.67 -0.59 -0.97 -0.20 -2.97 3.00E-03 0.85
LIPA 0.45 —-0.58 -0.96 -0.19 -2.94 3.31E-03 0.71
SLC25A40 1.29 -0.58 -0.96 -0.19 -2.93 3.36E-03 0.69
ISYNA1 0.40 -0.58 -0.96 -0.19 -2.92 3.50E-03 0.64
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Fig. 2. Enrichment analyses (using the GO database) of differentially expressed genes after IL-6 treatment. (A) The most significantly enriched GO terms for upregulated
genes. (B) GO terms for downregulated genes. BP, biological process; CC, cell compartment; MF, molecular function.

were used for analyses. The diagnostic criteria for the selected
cases were based on the COVID-19 Treatment Guide (4th Edition,
2020). Ethical approval of this study was obtained from the Ganz-
hou Fifth People’s Hospital Ethics Committee.

2.2. Collection of microarray data

The keyword we used for searching was “IL-6”, and we limited
the research type to “expression profiling by array”, in the Gene
Expression Omnibus (GEO) database from the National Center for
Biotechnology Information (www.ncbi.nlm.gov/geo/). the results
provide associated with IL-6 treatment genome-wide expression
data are 13 sets of chips.

The inclusion criteria for the dataset were: (i) the dataset must
be genome-wide mRNA-expression chip data supported by the lit-
erature; (ii) the original or standardized dataset must be consid-
ered; (iii) each dataset must include > 3 samples.
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After these searches, we obtained the gene-expression microar-
ray data from the GEO database. Simultaneously, we established a
corresponding control group, from which four independent
microarray datasets with raw data were selected (Table 1).

COVID-19 related Transcriptome Datasets were download from
public website including GSE147507, E-MTAB-8871, CRA002390
and HRA000143.

2.3. Meta-analysis of differential gene expression

R language (R Center for Statistical Computing, Vienna, Austria)
was used to process the data, conduct statistical analyses, and
obtain the path through which the data changed together. A
meta-analysis was conducted on the results with the random-
effects model to obtain the combined differential expression of
genes, statistical tests, and to input the genes into the Database
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Fig. 3. Enrichment analyses (using the KEGG database) of differentially expressed genes after IL-6 treatment. Upregulated genes (A) and downregulated genes (B) were

enriched in different pathways.

for Annotation, Visualization and Integrated Discovery (DAVID)
website to obtain the possible enriched pathway.

2.4. Gene enrichment using the gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG) databases and disease
analysis

In the present study, DEGs were defined through functional
interpretation using DAVID (http://david.abcc.ncifcrf.gov/) [26].
We carried out statistical analyses, with p < 0.05 denoting signifi-
cance. We obtained a gene-symbol list that was uploaded into
DAVID. We also used the GO and KEGG databases. To unify their
format, a functional annotation chart was used for uploading and
analyses. Interactions between disease and chemicals were ana-
lyzed using the Comparative Toxicogenomics Database (CTD)
(ctd.mdibl.org/). The co-expression network were constructed by
STRING database (https://string-db.org/cgi/)

2.5. RNA extraction and quantitative reverse transcription-polymerase
chain reaction (qRT-PCR)

An RNA Isolation kit was applied to extract total RNA according
to manufacturer instructions. A NanoDrop™ ND-1000 spectropho-
tometer (Thermo Fisher Scientific, Wilmington, MA, USA) was used
to determine the quantity and purity of RNA. Expression of compli-
mentary DNA was measured using a Prime Script™ RT kit (TaKaRa
Biotechnology, Otsu, Japan). qPCR was undertaken on a 7900HT
fast RT gqPCR instrument (Applied Biosystems, Foster City, CA,
USA) according to manufacturer instructions. The RNA of actin
was used as an internal loading control.
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3. Results
3.1. Less overlapping in different COVID-19 transcriptome studies

We collected the transcriptional profiles from five COVID-19
clinical studies which used samples including peripheral blood,
PBMC and ronchoalveolar lavage fluid. In totally, <20 COVID-19
patients were enrolled to be studied. Fig. 1A showed that only
one gene TNFSF10 is differential expressed genes (DEG) in all five
studies. Ten DEG were identified in four studies, the most DEGs
are only identified in just one study.

3.2. Summary of IL-6 related datasets

After screening the GEO database, 13 transcriptome datasets
related to IL-6 treatment in Homo sapiens were collected for further
analyses (Table 1). In these datasets: eight involved direct exoge-
nous treatment with IL-6; three involved treatment using mono-
clonal antibody inhibitors of IL-6 receptors: one was divided into
high and low expression of IL-6 according to measurement in
peripheral blood; one involved withdrawal of IL-6 stimulation after
treatment for a period of time. The cells used in the experiments
included HK-2 cells and dendritic cells. The datasets with the lar-
gest number of samples had 18 experimental-group samples and
18 control-group samples. The 13 datasets contained 61 experi-
mental samples and 61 control groups. Because of differences in
the genes in each dataset, finally we integrated the 9121 genes
detected in all 13 datasets for further analyses.

Using the traditional method to analyze transcriptome datasets,
we compared the genes with twofold significant difference. We
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Fig. 4. Enrichment analyses of the disease-associated genes regulated by IL-6. Upregulated genes (A) were enriched in respiratory-tract diseases and cardiovascular diseases.

Downregulated genes (B) were enriched in pathological signs and symptoms.

found that only two genes, EGR2 and LYPD1, had a twofold signif-
icant difference in at least two datasets (Table 2). The trend in
upregulation and downregulation of LYPD1 expression in the two
datasets was contrary. Only EGR2 had the same trend in upregula-
tion and downregulation of expression in the two datasets, and had
statistical significance. There were >9000 genes, most of which had
significant twofold differences in only one dataset (usually
GSE12385).

3.3. IL6 regulated genes identified by meta-analysis

In general, 352 genes were identified using the random-effect
models with p < 0.05 to denote significance. Among these 352
genes, expression of 237 genes was downregulated, whereas that
of 115 genes was upregulated, after IL6 treatment. Table 3 lists
the top-10 genes with the most significant upregulation, among
which ICAM1, LDLR and SERPINA1 had the most significant upregu-
lation, with a p-value of 3.88 x 107, 5.65 x 10~ and 8.02 x 1074,
respectively. Table 3 lists the top-10 genes with the most signifi-
cant downregulated expression, among which DCHS1 had the
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greatest (1.08 x 107>). Among these genes, the adjusted statistical
mean difference was largest for SOCS3 (1.32) (Table 3).

We also checked the overlapping between our results and
COVID-19 clinical studies. As shown in Fig. 1B, 120 DEGs were
identified by both our meta-analysis and other COVID-19 clinical
studies, and 232 DEGs were only found by our method. A co-
expression network was built to show interaction in 352 genes
identified from our studies. Fig. 1C displayed that several co-
expressions are exist among these genes.

3.4. Enrichment analyses using the GO database revealed the biological
function of IL-6-regulated genes

To understand the biological functions of DEGs, we utilized
enrichment analyses using the GO database to classify genes into
three groups: biological process, cell compartment and molecular
function.

The biological processes of the upregulated 115 genes were
enriched mainly in: negative regulation of apoptotic process
(9.61 x 107%), response to drug (9.26 x 10~%), leukocyte migration
(1.29 x 1073) and negative regulation of virtual genome replication
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Fig. 5. Analyses of fold-change in differentially expressed genes identified by the meta-analysis. Random forest map for ICAM1 (A) and LPLR (B) in the meta-analysis. (C)
Traditional analyses of fold-change in a transcriptome dataset shows overlap with genes discovered in the meta-analysis. Green, traditional analyses of fold-change; red,
meta-analysis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(2.43 x 1073). The main cell compartments were located in the
cytosol (5.63 x 107), and cell adherence (3.82 x 1073) was also
important. The main molecular function was single-stranded RNA
binding (2.54 x 1073) (Fig. 2A).

The 237 downregulated genes were enriched in the biological
processes of virtual transcription (227 x 107®), translation
initiation (2.55 x 107%), SRP-dependent co-translational protein
targeting to the membrane (3.52 x 1078), and nuclear tran-
scribed mRNA catabolic process, nonsense mediated calcium
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(4.05 x 1077). The molecular function was the structural condition
of ribosomes (7.14 x 107°) (Fig. 2B).

3.5. Analyses of the KEGG database suggested IL-6-regulated genes to
be involved in typical pathways

Analyses of pathway enrichment were done using the KEGG
database for IL-6-regulated genes. The biological processes of the
upregulated 115 genes were enriched mainly in the TNF signaling
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Fig. 6. Increased expression of ICAM1 and PFKFB3 in patients with severe COVID-19.
Relative expression of ICAM1 and PFKFB3 determined by qRT-PCR in patients with
severe COVID-19 and in healthy controls. *p < 0.001.

pathway (2.83 x 107°), NF-kB signaling pathway (6.02 x 1073),
influenza A (1.52 x 1072) and rheumatoid arthritis (3.77 x 1072)
(Fig. 3A). The 237 downregulated genes were enriched in the ribo-
some (1.18 x 107°®), dopaminergic synapse (2.47 x 1072) and
adrenergic signaling in cardiomyocytes (3.28 x 1072) (Fig. 3B).

3.6. IL-6-regulated genes were associated with several diseases

Enrichment analyses were also carried out for associated dis-
eases according to the CTD [27]. Fig. 4A displays the top-20 most
significantly enriched diseases for upregulated genes, including
pathological processes (8.50 x 1072%), neoplasms (6.53 x 10718),
skin and connective tissue diseases (1.11 x 107'), immune-
system diseases (4.35 x 107'%), cardiovascular diseases
(4.98 x 1071%), respiratory diseases (2.71 x 107'*), male urogenital
diseases (3.45 x 107'%) and lung diseases (7.55 x 1071°),

Fig. 4B shows the top-9 the most significantly enriched diseases
for downregulated genes, including pathological conditions, signs
and symptoms (2.64 x 107'9), congenital, hereditary, and neonatal
diseases and abnormalities (4.06 x 107'°) and nervous-system dis-
eases (6.88 x 107).

3.7. DEGs with fold-change

According to the results of the meta-analysis of ICAM1 and LDLR
(the two genes with the most significant changes in expression),
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using the random-effects model, the combined average difference
(95% confidence interval (CI) was 1.02 (0.43-2.47) and 0.18
(0.02-0.38), respectively. However, in E-GEOD-68941 alone, the
mean fold-change of ICAM1 in the experimental group was more
than twofold compared with that in the control group, but LDLR
did not have a greater-than-twofold change in any dataset
(Fig. 5A, B). In total, 315 genes had a greater-than-twofold change
in at least one dataset (Fig. 4C). Only 17 genes overlapped with the
DEGs in the meta-analysis, including ICAM1, PFKFB3, NAMPT and
LIMAT1 (Fig. 5C).

3.8. ICAM1 and PFKFB3 expression was induced in patients with severe
COVID-19

RNA expression of [CAM1 and PFKFB3 in the blood plasma of
patients with severe COVID-19 and healthy controls was measured
by qRT-PCR. Expression of ICAM1 and PFKFB3 was significantly
induced in severe-COVID-19 patients compared with that in
healthy controls (Fig. 6).

4. Chemical-gene interactions interfere with IL-6 regulation

CTD Database could predict the interaction between gene and
chemicals which are potential drug for disease. The evidence of
interaction between chemicals and genes, such as direct protein
binding or inhibition of protein activity, was collected from the
CTD. Fourteen genes and 111 chemicals had an interaction. Several
chemicals could interact with multiple genes. Copper interacted
with five genes: ICAM1, LIMA1, CFB, SOX9 and ZHX3 (Table 4).
Resveratrol interacted with NAMPT, SPHK1, PML and SOX9 (Table 4).

5. Discussion

Aim of this study is to understand the molecular and cellular
processes involved in severe COVID-19. Considering the impor-
tance of IL-6 in COVID-19, it is rational to identify the genes and
pathways regulated by IL-6. Multiple publicly available transcrip-
tome datasets underwent meta-analysis for the transcriptome
characteristics of IL-6 treatment. Using this strategy, we identified
the DEGs in different types of samples, and described their biolog-
ical functions, pathways (using GO and KEGG databases) and the
diseases they were associated with.

Collection of transcriptome information under IL-6 treatment
revealed that virtually no gene had repeatable twofold changes
in expression. This finding may have been because different data-
sets had different treatment methods for IL-6, or because use of
different cell types/tissues led to different gene responses. Never-
theless, DEGs with a significant difference in expression were iden-
tified by our meta-analysis. The same response was found for
genes from different cell types and under different treatment con-

Table 4

Chemical-gene interactions.
Chemical Name Chemical ID Gene Symbol Interaction Actions PubMedIDs
Copper D003300 ICAM1 decreases:reaction|increases:expression 12633744
Copper D003300 LIMA1 affects:binding|increases:expression 20971185
Copper D003300 CFB affects:binding 23896426
Copper D003300 SOX9 affects:binding|decreases:expression 20971185
Copper D003300 ZHX3 affects:binding|increases:expression 24690739
Resveratrol D000077185 NAMPT decreases:reaction|increases:activity 24603648
Resveratrol D000077185 SPHK1 affects:localization|decreases:activity 26045781
Resveratrol D000077185 PML affects:binding|decreases:reaction|increases:reaction 19631782
Resveratrol D000077185 SOX9 affects:binding|affects:response to substance 24962570
Enzyme Inhibitors D004791 LIMA1 decreases:activity|increases:O-linked glycosylation 23301498
Enzyme Inhibitors D004791 PML decreases:activity|increases:O-linked glycosylation 23301498
Enzyme Inhibitors D004791 RPL7 decreases:activity|increases:O-linked glycosylation 23301498
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ditions, suggesting that these genes were likely to be key genes for
IL-6 regulation in various conditions.

Meta-analysis re-evaluated the statistics by considering the
sample size of each experiment. Based on this, we found that
DEG has more statistical repeatability in different conditions and
a large number of cases. Compared with the published clinical
transcriptional profiling studies of COVID-19, these studies used
only a few cases, and the samples were different tissues. In the
results of these studies, the number of repeated DEG was relatively
small (Fig. 1). This suggests that our method has potential advan-
tage than clinical research to save time and increase the accuracy.

Our meta-analysis disclosed some significant differences in
gene expression after IL-6 treatment (Table 3). Many of the genes
we found to be upregulated by IL-6 are supported by experimental
evidence. Among them, ICAM1 (a well-known gene involved in
viral infection and cardiovascular disease) expression has been
demonstrated to be consistent with IL-6 expression in mouse
macrophages [28,29]. Some treatments, such as Phoenix 20 and
soluble matrine 2, can induce the co-expression of ICAM1 and IL-
6 [30,31]. In human astrocytes, IL-6 can upregulate SBNO2 expres-
sion [32]. IL-6 can induce PFKFB3 expression [33] through the
STAT3 signaling pathway. TGFA expression has a positive correla-
tion with IL-6 expression [32]. However, expression of some genes
showed the opposite trend in other experiments. In some studies,
IL-6 expression was found to be negatively correlated with SER-
PINA1 expression [34]. In other studies, expression of IL-6 and SER-
PINA1 was increased with disease progression [35,36]. SOCS3
expression has been shown to be negatively correlated with IL-6
expression [37-40]. A negative correlation between expression of
TPCN1 and TOMM20 and IL-6 expression has been documented
[40,41]. However, contrary to our findings, studies showed that
expression of IL-6 and LIPA decreased in the treatment of some dis-
eases [42]. High expression of IL-6 has been noted in critically ill
patients with COVID-19, and IL-6 expression could be used to
assess risk. Our meta-analysis showed that expression of ICAM1
and PFKFB3 was increased in COVID-19 patients. These genes could
be used as biomarkers in COVID-19.

We found expression of ICAM1 and PFKFB3 to be enriched in
virus-related regulatory pathways, the NF-kB signaling pathway,
and apoptosis-related pathways (Figs. 2, 3). As an important cyto-
kine in the immune system, IL-6 has been shown to be closely
related to the pathways mentioned above in several studies.
Through analyses of the KEGG database, we found expression of
PRKCA, SCN1B, PLCB4, CAMK2G, CREB3L1 and PPP1CC (which are
negatively regulated by IL-6) to be enriched in adrenergic signaling
in cardiomyocytes. Only a few studies have found that IL-6 regu-
lates the response to adrenaline stimulation through the
mitogen-activated protein kinase (MAPK) pathway in mouse car-
diomyocytes [43]. ICAM]1 is a critical player in heart diseases. Evi-
dence suggests that inhibition of ICAM1 expression could be
novel treatment for hypertrophic heart diseases [44]. In the current
outbreak of COVID-19: (i) the CRS caused by IL-6 has been an
important cause of death; (ii) patients with heart disease or dia-
betes mellitus have a high prevalence of death. PFKFB3 has been
suggested to have a critical role in diabetes mellitus [45]. We iden-
tified PFKFB3 to be enriched in the present study.

We conducted a more extensive study (through the CTD) on the
relationship between disease and the genes found to be regulated
by IL-6 in our meta-analysis. The IL-6 regulatory genes were clo-
sely associated with vascular diseases, cardiovascular diseases, res-
piratory diseases, and diabetes mellitus. Digestive-system releases,
hypersensitivity, male urogenital releases, and nervous-system
diseases were also enriched by genes regulated by IL-6, so we could
consider a combination of these diseases in the CRS elicited by IL-6.
Finally, we collected drug information related to IL-6 regulatory
genes from the CTD database and found that resveratrol interacted
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with four key genes. This finding could aid development of treat-
ment to counteract CRS during COVID-19.
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