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Abstract: In this paper, we propose a global navigation function applied to model predictive control
(MPC) for autonomous mobile robots, with application to warehouse automation. The approach
considers static and dynamic obstacles and generates smooth, collision-free trajectories. The naviga-
tion function is based on a potential field derived from an E* graph search algorithm on a discrete
occupancy grid and by bicubic interpolation. It has convergent behavior from anywhere to the target
and is computed in advance to increase computational efficiency. The novel optimization strategy
used in MPC combines a discrete set of velocity candidates with randomly perturbed candidates
from particle swarm optimization. Adaptive horizon length is used to improve performance. The
efficiency of the proposed approaches is validated using simulations and experimental results.

Keywords: navigation; model predictive control; path planing; mobile robots; warehouse automation

1. Introduction

Mobile robotic platforms have found numerous applications over the past decade, a
significant portion of which can be attributed to intralogistics and transportation in modern
manufacturing, warehousing, and utility markets [1–3]. Although numerous sites have
been automated by either automated guided vehicles (AGV) or autonomous mobile robots
(AMR) with impressive deployments, the market is expected to grow by about 30% over
the next five years [4,5].

Since the first AGV was built in 1953 [3], AGVs have evolved into today’s solution,
which is the standard in automating internal logistics. Typically, AGVs move along pre-
defined paths and can only deliver to fixed points along the path. This makes these
transportation systems simpler and more robust. Since movement is limited to fixed paths,
the complexity of path planning and coordinating multiple AGVs is reduced. Neverthe-
less, planning collision-proof safe paths for a group of AGVs and creating and optimizing
schedules to achieve better performance (higher throughput and less likely occurrence of
conflicts) remains a challenging task [6]. Path planning is usually solved using graph-based
search algorithms such as A*-based search, where optimal approaches [7,8] are feasible for
a smaller number of vehicles since the computational complexity is exponential with the
number of vehicles. The coordination overhead in multi-AGV systems is further reduced by
suboptimal approaches, where the problem is decoupled from finding individual vehicles
and conflicts are resolved by assigning traffic rules, priorities, or distributed multi-agent
negotiations [6,9,10].

AMRs (unlike AGVs) are more flexible (in terms of their navigation capabilities and
the services they can provide) and can move freely in dynamic environments where they
locate, navigate, and act autonomously [4]. Free space is mapped based on knowledge
of static obstacles, and dynamic obstacles are avoided using sensors. Since movement is
not restricted to predefined paths but is possible in the continuum of obstacle-free space,
the complexity of path planning must be reduced. A common approach is to discretize
the environment into cells of equal size and use grid-based path planning [11,12]. Since
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pathfinding usually examines only 4 or 8 neighbourhood directions, the paths obtained are
not smooth.

Another approach is to apply a discrete set of motion primitives or actions that a
vehicle can apply to advance to new locations. The motion primitives can be Bezier
curves [13,14], clothoids [15], or other smooth curvature curves [16–18]. This usually results
in smoother paths that a vehicle can easily follow. Different optimization strategies can
be used to select suitable motion primitives. In high-dimensional spaces, randomised
planners such as the Rapid Exploring Random Tree (RRT*) and the kinodynamic RRT*
are popular choices [3,19]. A state lattice graph can be constructed from a discrete set of
motion primitives that have smooth curvature transitions in the joints [20,21]. Graph search
algorithms such as A* [22,23], D* [11,24], and E* [25] can be used to find the final path. The
computational complexity can be addressed by hybrid search approaches such as Hybrid
A* or HE * [14,26], where a computationally efficient discrete graph-based search is applied
to obtain the heuristics for more efficient construction and search of the lattice graph, where
the motion primitives form the edges of the graph.

Potential field-planning methods are also popular, where the potential function for
online navigation can be used to guide the search or control algorithm. The goal with
minimum potential value can be achieved by simply following the direction of the steepest
descent of the potential field. A common problem of the potential field is local minima in
which the robot may be trapped. Several approaches have been proposed to avoid local
minima. Concave obstacles can be simply modelled as convex [27] in the environment map,
or an adaptive potential field can be generated using multiple points of attraction instead
of just one in the target [28]. It is also possible to modify the potential field in unstable
equilibrium by introducing perturbations into the field [29] or adding virtual obstacles to
repel the robot from the local minima [30]. The potential field can also be interpolated from
a discrete cost map obtained from an optimal grid-based search [31,32]. Relying only on the
reactive behavior of a potential field may result in unwanted oscillations in the presence
of obstacles where alternating repulsive and attractive fields may cause approaching and
moving-away behavior [33]. Therefore, prediction capabilities are needed to achieve more
deliberative actions where planning and control are combined in receding dynamic window
approaches or trajectory roll-out algorithms considering convergent navigation function,
such as in [31,34–36]. Here, the obtained performance depends on a control law and uses an
objective function, which needs to incorporate mapped static obstacles and sensed dynamic
obstacles to find feasible optimal trajectories in a prediction horizon.

Moving obstacle avoidance is required for efficient multiple vehicle navigation. Coor-
dinated motion of multiple vehicles can be dealled by assigning traffic rules in decentralised
manner as in [10] or by combining a centralized supervisor, which detects collisions and
assignes priorities for decentralised planner and scheduling for collision avoidance [37].
The decentralised decoupled approach is proposed in [18], where vehicles first plan optimal
paths independently; then, conflict resolution is performed based on a priority scheme.
In [38], a model predictive scheme is proposed where local deviations from the existing
reference path are optimized considering collision avoidance with static and moving ob-
stacles. In [39], an integration of the focused D* graph search algorithm for path planning
and the dynamic window algorithm for generating admissible robot trajectories around
the planned global path is proposed.

In this paper, the main contributions are the following. We propose a global navigation
function applied in model predictive control to safely navigate the vehicle to the goal
destination. The navigation function depends on a potential field for the environment
layout and the driving direction. The potential function for a known target is computed in
advance by an E* graph search algorithm on a discrete rectangular grid. A smooth surface
with arbitrary potential values and slope directions is obtained by bicubic interpolation. It
allows navigation from any location to the target and can be precomputed for any known
target to which AMR must deliver.

Constrained Model Predictive Control (MPC) is a method of finding optimal trajectories
given the proposed navigation function and constraints on robot kinematics, maximum veloc-
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ities and accelerations, convergent behavior, and the coordination of multiple robots. MPC
combines local motion planning and control in the presence of static and dynamic obstacles.

Adaptive horizon length is introduced in MPC to improve performance in terms of
safety and achieved curve optimality.

A novel optimization strategy for MPC is proposed that combines a discrete set of
command velocities proposed in [36] with randomly perturbed particle swarm optimization
candidates. This approach extends the navigation of a single robot [32] to multiple robots.

Coordinated navigation in the presence of multiple vehicles is obtained locally as a
constraint in the MPC objective function. The approach assumes that cooperative vehicles
share their planned trajectories within the prediction horizon. For non-cooperative objects,
the motion trajectories must be estimated from measurements.

The performance of the proposed approaches is illustrated by several examples.

2. Vehicle Autonomous Navigation and Control

For an example of a simple production layout, see Figure 1, where robots typically
need to transport material between known, fixed locations. Suppose a destination is the
dropoff point shown in Figure 1, to which robots must deliver material from several other
locations, such as pickup point, workstations, and storage aria. A navigation function
can be created to guide the robot safely from any starting point in the environment to the
desired destination.

Figure 1. Production layout with multiple known and fixed delivery points and defined free corridors.
Shown are robot delivery paths from three starting locations to the same destination. The paths can
be effectively determined by a single navigation function, as shown in Figure 6.

Basic idea of applied navigation and control diagram is illustrated in Figure 2.
In Figure 1, three paths are shown that are automatically determined based on the

derived navigation function shown in Figure 6, which is interpolated at runtime from a
stored discrete potential field of the layout, as shown in Figure 3. Other navigation functions
are determined for other desired frequent destinations such as pickup belts, workstations,
or battery charging arias. Such navigation functions can be computed in advance if the
pickup and drop-off locations are fixed and the robots can move in predefined corridors.
This leads to a computationally efficient approach with high-quality trajectories that takes
static obstacles into account during design and can also be extended to include detected
dynamic obstacles. Further details of the navigation function and control algorithm are
presented below.
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Figure 2. Basic idea of navigation and control of multiple vehicles based on the proposed navigation
function and model predictive control.

2.1. Concept of Navigation

The navigation function N(x, y, ϕ) is used to drive a wheeled robot with position x, y
and orientation ϕ) safely between obstacles to the goal. A control algorithm therefore steers
the robot to locations where N(x, y, ϕ) decreases. The unimodal potential function is a
good choice for N(x, y, ϕ) because it has a single minimum (N(x, y, ϕ) = 0) at the goal and
no local minima where the control algorithm might get stuck. Additionally, N(x, y, ϕ) must
have the highest values at the obstacles. A graph search algorithm such as D∗ for dynamic
environments can be used to obtain such a potential function U(x, y) as shown in Figure 3.
The value of U(x, y) represents the distance to the target cell, which is computed as the
sum of the distances between cells (dc) along the path. Such a search is computationally
efficient since it is performed on a discrete grid of the environment but is not suitable for
a control algorithm since U(x, y) is constant for any robot position within a discrete cell.
Therefore, the grid-based navigation function must be modified to obtain a unique value
for each position within a cell that retains the property of a single minimum [31]. In the
following, we propose a bicubic interpolation approach.
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Figure 3. 3D view of the discrete potential function from obtained a grid-based search with 0.5 m
resolution, a target position at x = 9.25 m, y = 5.25 m, and occupied cells with U(x, y) = ∞ (grey cells).
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2.2. Bicubic Interpolation

To obtain a smooth interpolated potential P(x, y) from a discrete potential U(x, y),
bicubic interpolation [40] is used. For a given arbitrary position [x, y]T within a cell M,
an interpolated potential is calculated based on a 4 × 4 cell neighborhood, as shown in
Figure 4. Depending on the quadrant of cell M in which the point [x, y]T is located, an
appropriate four-cell neighborhood is determined whose centers form a square, as shown
in Figure 4 shown by a dashed line.

Figure 4. Selection of the cell neighbourhood for the bicubic interpolation of the potential field based
on a point [x, y]T within the cell M.

The normalized coordinates xn, yn ∈ [0, 1] are defined as xn = x−x0
dc

, yn = y−y0
dc

, where
the origin [x0, y0] is defined by the lower left corner of the dashed square and dc is the
cell size. The interpolated and discrete potential in normalized coordinates are expressed
as Pn(xn, yn) = P(x, y) and Un(xn, yn) = U(x, y), respectively. Define the potential and
estimated partial derivatives for the four adjacent cell centers (corners of a dashed square
in Figure 4)

prc = Un(xn, yn)

∣∣∣∣
xn=r, yn=c

fxrc =
∂Pn

∂xn

∣∣∣∣
xn=r, yn=c

≈ Un(r + 1, c)−Un(r− 1, c)
2

fyrc =
∂Pn

∂yn

∣∣∣∣
xn=r, yn=c

≈ Un(r, c + 1)−Un(r, c− 1)
2

fxyrc =
∂2Pn

∂xn∂yn

∣∣∣∣
xn=r, yn=c

≈ Un(r+1,c+1)−Un(r−1,c+1)−Un(r+1,c−1)−Un(r−1,c−1)
4 ,

where r, c ∈ {0, 1} and Un(xn, yn) = U(x, y).
For a given arbitrary position, the interpolated potential is then defined by bicubic

interpolation as follows

Pn(xn, yn) =
[
1 xn x2

n x3
n

]
A
[
1 yn y2

n y3
n

]T
, (1)

where the matrix of coefficients is

A =

[
1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

] p00 p01 fy00 fy00
p10 p11 fy10 fy11
fx00 fx01 fxy00 fxy01
fx10 fx11 fxy10 fxy11

[ 1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

]
.
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And negative gradient of P(x, y) in [x, y]T is computed in a closed-form as

−→g (x, y) = −∇P(x, y) = −
[

∂P(x,y)
∂x , ∂P(x,y)

∂y

]T
=

= − 1
dc

[
∂P(xn ,yn)

∂xn
, ∂P(xn ,yn)

∂yn

]T . (2)

For non-holonomic robots (with the kinematics given in 6), the final navigation function
depends on the interpolated potential P(x, y) and on the robot orientation ϕ

N(x, y, ϕ) = P(x, y) + ξe(ϕ)
e(ϕ) = min

k={0,1,−1}
|∠−→g (x, y)− ϕ + 2kπ|, (3)

where e(ϕ) is the absolute orientation error, ξ > 0, and ∠−→g (x, y) is the orientation of the
negative gradient .

In Figure 5, the interpolated potential function P(x, y) of the free space and the cen-
trally located target is shown for discrete potentials obtained by A∗ and E∗ grid-based
searches. Since A∗ uses 4 and 8 neighbourhood connections, respectively, the gradients of
P(x, y) remain multiples of 90◦ and 45◦, respectively (see contours of the same potential
in Figure 5). The E∗ [25] is a dynamic path planning algorithm that can approximate
continuous gradients (and contours). It uses 4 neighbour connectivity (such as A∗ or D∗),
but instead of one, two parent nodes in orthogonal directions are used to get a better
cost-to-goal estimate for each cell. Using the discrete potential field obtained from the E∗

algorithm, the interpolated potential function (1) is smoother with arbitrary direction of the
negative gradient (2).

0

8

5

6 8
64 42 2

0

8
6 8

5

64 42 2

0

8
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64 42 2

Figure 5. Interpolated potential function P(x, y) based on the discrete potential obtained by A∗

with 4 and 8 neighbour cells connections and by E∗. The obtained gradient is in the directions
of multiples of 90◦ or 45◦ when 4 or 8 neighbourhood connections are used in A∗. While E∗ can
have arbitrary directions, which can be seen from the contours of equal potentials orthogonal to the
gradient direction.
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An example of an occupied space and its computed interpolated smooth navigation
function is given in Figure 6. Additionally, three paths are drawn from different starting
points following the negative gradient towards the target with the lowest potential. The
obtained paths are orthogonal to the contours of the same potential (see the lower part of
Figure 6).

0

2

4

8

6

8

86

10

6

12

4
4

2
2

Figure 6. 3D view of the interpolated navigation function N(x, y, ϕ). For clarity, e(ϕ) is set to zero in
Equation (3). Three paths are drawn from different starting points, following the negative gradient
towards the goal location with the lowest potential value.

3. Coordinated Model Predictive Control

The proposed interpolated potential function Equation (1) allows the simple appli-
cation of control of a single robot to safely navigate from anywhere to the target while
automatically avoiding obstacles. The vehicle only needs to follow the given negative gra-
dient direction Equation (2), and since the gradient has soft transitions (see e.g., Figure 3),
feasible trajectories result. Such an approach lacks predictive capabilities and assumes a
static environment without any other vehicles.

Therefore, the control behavior is defined as follows. The simple gradient-following
reactive behavior is improved by incorporating prediction, so that the current control
action also depends on the future states of the vehicles. The navigation function already
includes knowledge of a static map in which the space occupied by obstacles has infinite
potential. However, observed dynamic obstacles (cooperative obstacles such as other
transport vehicles or non-cooperative obstacles such as humans or forklifts controlled by
humans, etc.) are not included in the navigation function as this would require constant
replanning. Dynamic obstacles are observed by sensors (laser range finder, camera, etc.),
and their movement is estimated in the prediction horizon of the controller. A feasible
trajectory is determined in the prediction horizon that is consistent with the navigation
function, does not conflict with other vehicles or other detected obstacles, and is within the
kinematic and dynamic constraints of the vehicle.
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3.1. Control Definition

Model predictive control (MPC) is defined as an optimization problem with constraints.
Optimal controls u(t) = [v(t), ω(t)]T are found for a differential robot over a prediction
horizon h that minimize the objective function J at the current robot state s(t) = [x, y, ϕ]T

J(s(t)) = min
u(i−1)

∑h
i=1
(

N(s(i)) + uT(i− 1)Ru(i− 1)
)

subject to:
- free configuration space (Equation (5))
- driving constraints (Equation (7))
- convergent behavior (Equation (11))
- collision-free with dynamic obstacles (Equation (12))

(4)

where v and ω are translational and angular velocity, i is a shorthand notation for time
t + iTs, Ts is the sampling time, and R is the weighting matrix. Note that MPC considers
the robot’s motion model and the environment model, where the target and static obstacles
are already considered in the navigation function. However, due to kinematic constraints,
collisions with static obstacles may still occur. Therefore, a valid trajectory in the horizon
must lie in the free configuration space of the static map Q f ree

s(i) ∈ Q f ree , i = 1, . . . , h. (5)

Similarly, collisions with dynamic obstacles are considered. For more details, see the
Section 3.1.4. The future state of the robot s(i) = [x(i), y(i), ϕ(i)]T is predicted using
differential drive kinematics

x(i + 1) = x(i) + v(i)Ts cos
(

ϕ(i) + ω(i)Ts
2

)
y(i + 1) = y(i) + v(i)Ts sin

(
ϕ(i) + ω(i)Ts

2

)
ϕ(i + 1) = ϕ(i) + ω(i)Ts.

(6)

3.1.1. Driving Constraints

Control actions are constrained by maximum velocities and accelerations by

0 ≤ v(i) ≤ vmax , |ω(i)| ≤ ωmax
|v(i)−v(i−1)|

Ts
≤ amax , |ω(i)−ω(i−1)|

Ts
≤ αmax,

(7)

where vmax, ωmax, amax, and αmax are maximum allowable translational and rotational
velocities and accelerations.

3.1.2. Length of the Horizon

During the horizon, let the robot travel on an arc, where v(i)/ω(i) is its radius. A
constant arc in the horizon is convenient because it reduces the computational cost of the
MPC problem since it only requires the optimization of two parameters. The choice of
horizon length affects the driving performance, safety, and computational cost of MPC.

The minimum horizon length (h = hmin) is chosen so that the robot travelling at
maximum speed can safely decelerate to a stop at the end of the prediction horizon

hmin =

⌈
max

(
vmax

amaxTs
,

wmax

αmaxTs

)⌉
+ 1. (8)
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This prevents the worst case collision with the maximum robot speed and the newly ob-
served (static) object at the end of the prediction horizon. The control u(i), i ∈ 0, 1, . . . , h− 1
in the horizon therefore decreases linearly to zero at the end of the horizon, as follows

u(i) =

{
u(0) , 0 ≤ i ≤ h− 1− Ndec

u(0) h−1−i
Ndec

, h− 1− Ndec < i ≤ h− 1. (9)

where the required number of deceleration samples at the end of the horizon is Ndec =⌈
max

(
v(0)

amaxTs
,

w(0)
αmaxTs

)⌉
at the current robot velocity u(0) = [v(0), ω(0)]T .

Choosing a larger horizon (h > hmin) also increases safety for moving objects because
the motion of the obstacle is predicted early enough to find alternative trajectories that
efficiently avoid the collision. However, too large a horizon increases the computational
cost and may lead to worse trajectories in free space due to the averaging effect since a
longer constrained trajectory does not fit as optimally on the surface of the navigation
function.

As a compromise, we choose a larger horizon (h > hmin) and allow the robot to stop
even before the end of the horizon (e.g. at hstop ≤ h) and keep the remaining number of
samples h− hstop still. This effectively makes the horizon variable (with variable stopping
time), and since all optimised trajectories have the same number of samples (h), their
objective functions in Equation (11) are still comparable. The velocity profile in the horizon
is then

u(i) =


u(0) , 0 ≤ i ≤ hstop − 1− Ndec

u(0) hstop−1−i
Ndec

, hstop − 1− Ndec < i < hstop

[0, 0]T , hstop ≤ i ≤ h− 1
(10)

where the candidates for hstop are selected according to the previous optimal curve by
evaluating four possibilities hstop → hstop + {0,−1,−2,+1} that need to be in range (Ndec +
1) ≤ hstop ≤ h. Initial value is set to hstop = hmin.

Optimal control sequence u(0), u(1), . . . , u(h − 1), which minimizes Equation (4),
defines the best feasible future trajectory, and its first control action is applied to the robot
in the current time. In the next time sample, the procedure repeats.

3.1.3. Convergent Behavior

To ensure convergent behavior of the MPC control, the summands V(s(i)) = N(s(i))+
uT(i− 1)Ru(i− 1) in the criteria Equation (4) will have to decrease in the horizon. This
follows from the convergence constraint in Equation (4)

N(s(i)) ≥ N(s(h)), i = 1, . . . , h. (11)

In the worst case, if all the candidate control actions in Equation (4) result in trajectories
that violate the convergence constraint Equation (11), the robot can still choose the optimal
trajectory from the previous control step, shifted by one sample. Since the trajectory slows
down at the end of the horizon (see Equations (9) and (10)), the robot will start slowing
down earlier. This can happen if some dynamic (non-cooperative) objects block its path.

3.1.4. Preventing Conflicts with Dynamic Obstacles

The environment may contain dynamic obstacles that can be treated as cooperative
objects (e.g., other robots) and non-cooperative objects (e.g., forklifts operated by humans).
Cooperative objects are assumed to have intentions and trajectories known to the robot for
at least a prediction horizon h. The intentions of non-cooperative objects can be estimated
from sensor observations (e.g., laser range scans) of their past movements by estimating
their velocities and predicting the most likely trajectories in the horizon.

For a given control u(i) in Equation (4), the robot trajectory s(i) is collision-safe
(CS) if it does not collide with any moving object trajectory (static obstacles are already
considered in Equation (5)). Let o ∈ O denote all other moving objects from a set O,
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and let so(i) = [xo(i), yo(i), ϕo(i)]T be the location of an object at horizon prediction time
i ∈ 1, . . . , h

CS =⇒ @o ∈ O : (||s(i)− so(i)|| < dsa f e) and |ϕ(i)− arctan( yo(i)−y(i)
xo(i)−x(i) )| < ϕsa f e, (12)

dsa f e is the required safety distance between the robot and an object o, and ϕsa f e is the range
of angular deviation from the robot’s forward motion that can lead to a collision, arctan(·)
is the four-quadrant inverse tangent version. Any robot trajectory that is not collision safe
to moving objects is rejected in Equation (4).

The same procedure is followed for all cooperative robots. After one robot determines
optimal controls (and trajectory in the horizon), the other robots can adapt by finding
collision-proof trajectories to the previous robot. To prevent chattering behavior (where
two robots can switch between different optimal controls while avoiding collisions), the
selection of optimal controls (trajectories) is done sequentially, which is natural if all robots
are controlled from a central computer. If the first robot determines an optimal trajectory
that avoids all other robots (taking into account the predicted trajectories of the others),
the next robot will adapt by finding collision-safe paths (e.g., swerving to the other side
or slowing down). This will automatically lead to consensus since the current predicted
trajectories are inherited and known to the others in the same sample. When robots plan
and control autonomously, if there is a possibility of collision, they need to only negotiate
the order in which they compute their trajectories. Alternatively, they can consider priorities
when they are assigned (e.g., for priorities for transportation tasks), as in [10] and [18]. In
this way, the first robot computes the optimal trajectory in the prediction horizon, which
takes into account the previous trajectories of the others. Additional traffic rules (e.g.,
swerving to the right for head-on collisions) can also be used [9].

The proposed navigation approach is computationally efficient since the navigation
function is precomputed for a static environment, and collisions with dynamic obstacles in
the control (Equation (4)) are avoided at runtime.

Note that local minima can still occur (but this is unlikely in practise) if another robot
(the second robot or the moving object) approaches another robot (the first robot) exactly
from the direction opposite to the negative gradient of the first robot’s navigation function.
This also means that the second robot uses a different navigation function, to a different
destination whose gradient is in the opposite direction to that of the first robot. When this
happens, both robots may slow down as this can be cheaper (according to the MPC control
cost (Equation (4)) than driving with the increased values of the navigation functions while
avoiding a collision.

In this particular case, it may be a good choice to perform a dynamic replanning of the
navigation functions with the detected possible collision position of the other robot. In this
way, no slowdown or local minima can occur since the navigation function also considers
moving obstacles. This replanning requires additional computation time and should
therefore be performed incrementally using the dynamic E* algorithm [25]. Moreover,
a relatively fine grid should be chosen (e.g., at most half the robot size) to reduce the
discretization error when the predicted collision location is snapped to a grid. Therefore,
replanning can only occur if an object is in the collision with the robot in the predicted
horizon. Note that the presented MPC approach remains the same if replaned navigation
function is used in (Equation (4)), where the objects contained in the navigation function
will no longer appear as dynamic collision constraints (Equation (12).

4. Optimisation Strategy in MPC Control

In the following, we propose a novel optimization strategy for solving (Equation (4))
that combines optimization with a fixed set of control action candidates and particle swarm
optimization.
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4.1. Fixed Candidate Optimization

To reduce the computational cost, Fixed Candidate Optimization (FCO) is introduced
in [36] to solve the MPC problem. Given the current velocities uc = [vc, ωc]T (applied
to the robot at time t− Ts), a set of possible discrete accelerations ac ∈ {−amax, 0, amax},
αc ∈ {−αmax, 0, αmax} is defined to produce a set of 9 candidate velocities for optimization

u(t) = uc + Ts[ac, αc]
T (13)

constrained by Equation (7).
The main strengths of the proposed MPC with FCO are the low computational com-

plexity and the generation of near-optimal trajectories with a guaranteed convergence, as
shown in [36]. However, the obtained velocity profile contains higher noise due to the
coarse set of possible accelerations.

4.2. Particle Swarm Optimization

Particle swarm optimization (PSO) uses a stochastic strategy with a swarm of randomly
perturbed particles to find a solution. Applying PSO to the MPC problem yields arbitrary
velocities u(t) sampled from a continuum and constrained by Equation (7). Each particle
k is parameterized by a parameter vector pk = [vk, ωk]

T defining its velocities and an
increment vector ∆pk defining the change in velocities. During MPC optimization, the
population of all particles is iteratively updated and validated according to the objective
function (4). Each particle keeps track of its parameters and remembers its best previously
achieved parameter pBk, along with its associated objective function Jk = f (pBk), where
f is the function that is minimized in Equation (4). During optimization, the global best
parameter vector of the entire swarm gB is also remembered.

In each sample time, the particles are iteratively updated according to the following
rules

∆pk ← γ∆pk + c1rand(0, 1) · (pBk − pk) + c2rand(0, 1) · (gB− pk)
pk ← pk + ∆pk,

(14)

where γ > 0 is the inertia factor, c1 > 0 is the self-cognitive constant, c2 > 0 is the social
constant, and rand(0, 1) is a vector of uniformly distributed values in the range [0, 1]. At
the end of the optimization, the best parameter is applied to the robot u(t) = gB(t).

MPC with PSO produce smoother velocity profiles and can find better solutions
since no velocity discretization is used. However, the computational complexity becomes
much higher (compared to MPC with FCO) due to multiple required iterations with more
particles. Due to the random nature of PSO, both the solution and the convergence of the
search are not guaranteed.

4.3. Combined Deterministic-Stochastic Optimization

The main idea is to combine FCO and PSO in the so-called combined deterministic-
stochastic optimization (CDS) and to exploit the advantages of both algorithms to generate
trajectories with a smooth speed profile, with guaranteed convergence and low computa-
tional complexity.

CDS is a modified PSO algorithm (shown in Algorithm 1) that executes KF = 9
fixed particles and KC changing particles in parallel. Fixed particles are initialized by
Equation (13) and are not updated during optimization. These fixed particles provide
good starting parameters that can be used by other changing particles through gB when
iteratively updated through Equation (14). In this way, CDS provides a better (more optimal
and smoother) or at least as good a solution as FCO itself. MPC with CDS is guaranteed to
converge to the goal in a finite time from any unoccupied location in the environment where
the goal is reachable (N(x, y, ϕ) < ∞). The algorithm is computationally efficient since the
number of changing particles KC in CDS can be much smaller than in the corresponding PSO.
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Algorithm 1 Combined deterministic-stochastic optimization.

Require: List of particles k = 1, · · · , K where first k = 1, . . . , KF are fixed particles.
for each particle k = 1, · · · , KF do

Initialize pk by Equation (13).
end for
for each particle k = KF + 1, · · · , K do

Randomly initialize pk, ∆pk = [0, 0]T , pBk = pk.
end for
Jbest = ∞, iter = 1
repeat

for each particle k = 1, · · · , k do
if k > KF | iter == 1 then

Compute objective Jk by (4) considering ramp down (Equation (9) and add penalty for
Equation (7), Equation (12) violation.
Set convergent condition by Equation (11).
if Jk < f (pBk) then

pBk = pk
end if
if f (pBk) < Jbest & convergent then

gB = pBk, Jbest = f (gB)
end if

end if
end for
for each particle k = KF + 1, · · · , K do

Update pk and ∆pk by Equation (14) constrained by Equation (7).
end for

until iter ≤ MAXiter

5. Simulation Results
5.1. Single Robot Navigation

The performance of a single robot in the environment from Figure 1 is first illustrated
when the robot needs to transport products or materials from different starting locations
to different destinations. A possible scenario could be that the robot has to deliver a semi-
finished product to workstation 1 and then transport it to the dropoff location (see top left
image in Figure 7).

The navigation functions are computed in advance for known locations, which mini-
mizes the online computational overhead (no online planning is required) and makes the
system robust to disturbances during control (e.g., deviations from the original desired
path due to errors in robot location, control performance, or dynamic obstacles). Since only
a discrete cost map needs to be stored to interpolate the navigation values from it, this is
also not memory-intensive (20× 20 cost-to-goal for the environment in Figure 1) with the
cell size dc = 0.5 m.

In Figure 7, the desired target is at x = 3.1 m, y = 8.3 m (e.g., workstation 1 in Figure 1)
for red paths. The destination can be safely reached from any location considering the
navigation function (the top right image in Figure 7) in the proposed MPC control. For a
different desired destination (e.g., drop-off location at x = 9.3 m, y = 5.1 m in Figure 1), a
different navigation function is used for all green paths (the bottom right image in Figure 7).
The simulation results are obtained using the following parameters. The interpolation of
the navigation function is performed on the grid-based search with a cell size resolution of
dc = 0.5 m. As the interpolation is applied, good navigation and control performance can
be obtained even at coarse resolutions. Optimization in MPC is performed using a fixed
horizon length h = 14 (with deceleration at the end, as shown in Equation (9)) and sample
time Ts = 0.1 s, and by considering the constraints on velocities and accelerations vmax = 1
ms−1, ωmax = 6 s−1, amax = 1 ms−2, and αmax = 6 s−2.
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Figure 7. Examples of navigation and control of a single robot in two different destinations defined
by the minimum values of the navigation functions in the right column. All red paths are obtained by
the navigation function in the top right image, while the green paths are obtained by the navigation
function in the bottom right image.

The performance of model predictive control with the proposed combined deterministic-
stochastic optimization (MPC-CDS) is compared with the results of fixed candidate opti-
mization (MPC-FCO) and particle swarm optimization (MPC-PSO). In addition, MPC-based
algorithms are compared with the kinodynamic stable sparse RRT planning approach (SST)
approach [19]. The results are shown in Figures 8 and 9 for the U-obstacle map, Maze
map, and the Random-obstacle map. All MPC trajectories are computed for the bicubic
interpolation function and also collected in Table 1. The results are compared in terms of
obtained trajectories, velocity profiles, length of trajectory L, travel time tgoal , cumulative
navigation AN , and normalized computational efficiency Ecomp (according to MPC-FCO).
The computational complexity of MPC-FCO depends on its implementation. In our case,
it allows for real-time operation with a refresh rate of at least 50 Hz on a 2.80 GHz Intel
dual-core processor with C++ implementation.

The best performance of MPC is obtained by the PSO optimization approach
(Figures 8 and 9 and Table 1), where the obtained trajectories are short and fast and the
velocities have a smooth profile. However, the computational complexity of MPC-PSO
is higher (than MPC-FCO or MPC-CDS) because it uses 25 particles and 20 iterations to
optimize each control sample. Similar performance in terms of trajectory length and travel
time is obtained with MPC-CDS, which uses nine fixed particles and only two changing
particles. The results of CDS are a compromise between the quality of trajectories gener-
ated by PSO and the computational complexity of FCO. CDS produces smoother velocity
profiles than FCO and requires much less computational effort than PSO. SST produces
similarly long trajectories, sometimes shorter since it does not take into account safety costs
around the obstacles, but with much slower velocity profiles due to the randomness of
velocity selection during the search process. Unlike the MPC-based algorithms, the SST
algorithm computes the entire trajectory to the goal before the robot begins execution.
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Figure 8. Trajectory comparison for the U-obstacle map (left), the Maze map (middle), the Random-
obstacle map (right), the bicubic interpolated navigation, and the SST algorithm.
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Figure 9. Comparison of velocity profiles for the U-obstacle map (left), the Maze map (middle), and
the Random-obstacle map (right).

Table 1. Algorithms validation on three different maps.

Alg. L [m] tgoal [s] AN [1] Ecomp [1]

U
m

ap

MPC-CDS 16.88 17.90 230.39 1.61
MPC-FCO 16.95 18.10 230.84 1.00
MPC-PSO 16.79 17.80 228.68 13.11

SST 13.82 19.18 n/a n/a

M
az

e
m

ap MPC-CDS 13.63 14.80 111.30 1.73
MPC-FCO 13.64 14.90 111.66 1.00
MPC-PSO 13.65 14.80 111.73 13.63

SST 12.87 19.09 n/a n/a

R
nd

m
ap MPC-CDS 42.69 43.70 1090.24 2.90

MPC-FCO 42.78 43.90 1092.28 1.00
MPC-PSO 42.59 43.60 1091.18 28.01

SST 46.07 65.59 n/a n/a

5.2. Multiple Robot Coordinated Navigation

Analysis of the selection of the horizon length in MPC performance is first explained.
The minimum horizon length hmin (Equation (8)) is sufficient for navigation in static
environment (obstacles mapped or unknown in the navigation function), but it may not
be good enough for moving obstacles. For moving obstacles and h > hmin, safety and
navigation performance increases because collision threats can be predicted early enough
so that better avoidance routes can be found. The analysis of the varying horizon length
(where the moment of deceleration can also occur before the end of the horizon, as defined
in Equation (10)) for the navigation of two robots approaching a head-on collision and a
cross collision ([9]) is shown in Figure 10 and Table 2. In a head-on collision (left image in
Figure 10), the robots stop to avoid collision when the minimum horizon h = hmin = 11 is
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chosen, while the robots can safely navigate to the target for h > hmin. This scenario is more
difficult than the cross-collision (right part of Figure 10) since the other robots move in the
opposite direction of the negative gradient of the navigation function. A larger horizon can
provide better collision avoidance but increases the computational cost of navigation (Ecomp
increases in Table 2). Ecomp is the normalized computational load corresponding to the
computational time at h = hmin (where in the first line the value Ecomp = 1 is normalized by
the computational time of the ignored collision, since the robots do not reach the goals). A
larger horizon can slightly reduce both the distance traveled (joint distance ∑ L in Table 2)
and the travel time (joint travel time ∑ T in Table 2), which means that the robots do not
need to wait or slow down to avoid a collision. Note that the improvement in travel time
and distance is relatively small compared to the increased computational cost. Therefore,
the main reason for increasing the horizon is safety and collision avoidance performance.

Table 2. Performance at variable horizon.

h/hmin ∑ L [m] ∑ T [s] Ecomp [1]

he
ad

-o
n 11/11 / / 1.00

16/11 14.27 16.40 1.46
22/11 14.26 16.40 2.05

cr
os

s 11/11 13.48 16.20 1.00
16/11 13.38 15.90 1.63
22/11 13.33 15.80 2.27
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Figure 10. Analysis of horizon length in frontal collision avoidance (left) and cross collision avoidance
(right). The target locations are indicated by a cross. A larger prediction horizon can find better
trajectories than the minimum horizon hmin = 11.

Some other examples of coordinated navigation and control of multiple robots can be
found in Figure 11, where the navigation results are shown without collision avoidance (left
images, where the robots drive over each other) and with coordinated collision avoidance
navigation (right images). The starting position of the i-th robot is marked with Ri, and
its target position coincides with the final robot position. The occurrence of collisions is
marked (left image in Figure 11) by ellipses Ci, where C1 is the first collision between
robots 2 and 4; C2 between robots 2, 3 and 4; C3 between robots 1 and 3; and C4 between
robots 4 and 5. The controller with coordinated predictive collision avoidance (right image
in Figure 11) successfully avoids all collisions.
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Figure 11. Coordinated collision avoidance. Obtained robot path without using collision avoidance
in MPC (where robots drive over each other), with collision cases marked by ellipses (left image).
Collision avoidance with prediction horizon h = 20 finds safe routes with similar travel times (right
image).

Coordinated collision avoidance for symmetric initial locations and congested traffic
in the centre of the map is shown in Figure 12. The obtained control with avoidance and
prediction horizon h = 15 fails to navigate the robots to the destinations as the robots stop
safely to avoid collisions (Figure 12, left image). Increasing the horizon to h = 25 results in
safe trajectories to the targets (Figure 12, right image).
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Figure 12. The obtained control with avoidance and prediction horizon h = 15 cannot steer the robots
towards the destinations since the robots stop safely to prevent collision (left image). Increasing the
horizon to h = 25 leads to safe trajectories towards the target locations (right image).

5.3. Experiments

Navigation is performed also in the real map shown in Figure 15 and 16 (floor plan
of our laboratory). The map is an occupancy grid with 10 cm resolution created with
the Sick LMS200 laser range finder. Four target locations GN1 = [2.4, 7]T , GN2 = [6, 6]T ,
GN3 = [10.5, 6]T , GN4 = [15, 4]T (e.g., locations of workstations) are defined on the map.
A robot can reach a desired goal through MPC control (Equation (4)) by following the
navigation function (Equation (3)), which consists of an appropriate interpolated potential
field. Figure 13 shows potential fields for the defined targets.
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Figure 13. Four interpolated potential fields are used in the navigation functions Ni(y, x, ϕ) (i ∈
1, . . . , 4) to find one of the desired target positions GN1 = [2.4, 7]T , GN2 = [6, 6]T , GN3 = [10.5, 6]T ,
and GN4 = [15, 4]T from any initial position. The targets are located at the lowest value of the
potential field (darkest region) and are marked by a cross.

In experiments, Roomba cleaning robots (Figure 14) are used to simulate transportation
tasks between desired workstations. For localization, a camera is used to detect Aruco markers
on the ceiling placed at known locations. The robots are controlled by a built-in Raspberry Pi,
which sends velocity commands with an update frequency of 10 Hz (Ts = 0.1 s).

Raspberry Pi

Figure 14. Roomba robots used to simulate transportation tasks in the laboratory layout from
Figures 15 and 16. View of the robots (left) and closer robot view with integrated Raspberry Pi and
camera (right).

During navigation, velocities and accelerations are constrained by vmax = 0.45 ms−1,
ωmax = 3 s−1, amax = 0.5 ms−2, and αmax = 3 s−2. To predict collision hazards with other
robots, the horizon h = 20 > hmin (hmin = 11 according to Equation (8)) is chosen and
safety distance and angle are set to dsa f e = 0.35 m and φsa f e = π/2.

In Figure 15, the first robot uses the first navigation function (the upper left image in
Figure 13) to get to the destination G1 = GN1. Similarly, the destination for the second
robot is reached by the third navigation function (G2 = GN3) and the destination for the
third robot is reached by the second navigation function (G3 = GN2).
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Figure 15. Robot paths in the laboratory layout. The start location of the i-th robot is denoted by Si

and the destination locations by Gi. Safe navigation during collision avoidance is represented by
dark gray circles belonging to passing robots at the same time (the left pair of circles belongs to time
t = 8.8 s and the right pair to time t = 18.2 s).

In Figure 16, the first robot uses the second navigation function (the upper left image
in Figure 13) to reach the destination G1 = GN2. Similarly, the destination for the second
robot is reached by the fourth navigation function (G2 = GN4) and the destination for the
third robot is reached by the third navigation function (G3 = GN3).
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Figure 16. Robot paths in the laboratory layout. The start location of the i-th robot is denoted by Si

and the destination locations by Gi. Safe navigation during collision avoidance is represented by
dark gray circles belonging to the robots passing simultaneously (the right pair of circles belongs to
time t = 7 s and the left pair to time t = 9.5 s).

6. Discussion

From simulations and experiments, the proposed interpolated navigation function
combined with MPC computes collision-safe paths for a single vehicle that are near-optimal
considering static obstacles. Moreover, the completeness of the system is guaranteed since
the potential field does not contain local minima. The approach assumes that the global
information about the system layout is known and static. This allows a discrete potential
function (e.g., a distance-to-goal cost map) to be computed in advance and bicubic interpo-
lation to be performed only at runtime to obtain a computationally efficient continuous
estimate of the potential field values and their negative gradients. In manufacturing or
similar applications, vehicles need to deliver cargo between several defined destinations.
For each destination, a suitable navigation function can be precomputed, which increases
the computational efficiency.
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Good trajectories are also obtained when avoiding collisions with multiple robots.
Other robots or moving objects are only considered locally within the prediction horizon.
Choosing a minimum horizon (hmin) ensures that the robot navigates safely while moving
past other robots and, in the worst case, stops to avoid a collision. Extending the prediction
horizon (e.g., to 2hmin or more) allows the robots to navigate safely without unnecessary
emergency stops to prevent collision. Since local information is considered, optimality is
not guaranteed, although good results are obtained in practice. The robot could navigate
into a narrow corridor (following the negative gradient) based on the static navigation
function, although there is not enough space to avoid collision with another vehicle. MPC
will try to follow the direction that reduces the potential while searching among the possible
trajectories to avoid collision with another approaching vehicle. In the worst case, if there
is not enough free space, the robots would safely stop before a collision occurs.

It would also be possible to globally take into account information about other moving
objects and re-create the navigation function. This would require dynamic replanning of
the discrete potential field, which is computationally more challenging. However, since
the future positions of other objects are not known in advance (they can only be predicted
within the sensor’s field of view ), the navigation function would need to be modified early
enough for the robot to safely follow the modified negative gradient of the re-planned
potential, which would prevent a collision. The same requirements apply to the length of
the prediction horizon as for the static potential field (the horizon must be long enough
according to hmin). Additionally, the resolution of the discrete grid would need to be fine
(much smaller than the size of the robot) to allow for more accurate updating for detected
moving obstacles, which is important for narrow passages. A finer resolution of the grid
would further increase the computational complexity.

7. Conclusions

In this work, we proposed a novel navigation function obtained from a discrete graph
search and smoothed by bicubic interpolation. The navigation function has no local minima
and decreases monotonically in the direction of a target, allowing a mobile robot to safely
navigate from an arbitrary initial configuration to a desired target. For environments where
a set of desired targets is known and fixed, such as on the shop floor or in a warehouse, the
appropriate navigation functions can be precomputed. This allows for computationally
efficient navigation with rather modest memory requirements. The navigation function is
coupled with model predictive control (MPC), which extends navigation to multiple robots
and introduces variable horizon and combined stochastic and deterministic search in the
optimization to improve performance. Coordination of multiple vehicles is solved locally
in MPC as a constrained optimization problem where the cooperating vehicles must share
their trajectories in the horizon, while for other objects the trajectories must be estimated
from observations. The applicability of the proposed solutions is illustrated by several
simulations and experiments. In the future, we will explore alternative approaches for
interpolating navigation function. In addition, coordination overhead could be reduced
by introducing traffic guidelines and a one-way option in the navigation function, which
would improve performance and reduce coordination overhead in narrow corridor areas.
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