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Abstract: Deep learning is a fast-growing field of research, in particular, for autonomous application.
In this study, a deep learning network based on various sensor data is proposed for identifying the
roads where the vehicle is driving. Long-Short Term Memory (LSTM) unit and ensemble learning are
utilized for network design and a feature selection technique is applied such that unnecessary sensor
data could be excluded without a loss of performance. Real vehicle experiments were carried out for
the learning and verification of the proposed deep learning structure. The classification performance
was verified through four different test roads. The proposed network shows the classification accuracy
of 94.6% in the test data.

Keywords: road classification; ensemble learning; recurrent neural network; feature selection

1. Introduction

With the recent development of vehicle control technology, the number of vehicles with active
suspension is increasing. The active suspension system changes the characteristics of the suspension
depending on the driving condition to secure the ride comfort and steering stability. Most active
suspension systems apply low damping characteristics for comfort on bumpy roads and high damping
characteristics for steerability on flat roads. Thus, it is very important for active suspension control to
obtain the information of road shape such as bump, pothole, etc.

Recently, deep learning is being widely studied in the various fields such as image processing,
natural language processing and reinforcement learning [1]. Deep learning has also been utilized for
identifying road conditions recently. Deep learning is a learning-based method using a neural network
structure with multi hidden layers. Many processing units, which is called Perceptron, are connected
each other and each perceptron consists of nonlinear function. A large number of perceptron operations
can effectively approximate complex nonlinear functions, resulting in high performance improvements
in various fields. Moreover, it is showing good performance in sequential data processing, so deep
learning is actively applied to sensor data analysis recently.

In this study, an algorithm, which estimates the type of the road surface by a deep learning
technique, is proposed. Four different types of the roads (flat road, sinusoidal road, manhole and
pothole, bump) are considered for this study. Various sensor data is utilized for training and verification,
which are available in the Controller Area Network (CAN) of a real vehicle.

The main contributions of this paper can be summarized as follows:
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• Deep ensemble structure with LSTM is designed for the road surface classification. By using the
Recurrent Neural Network (RNN) structure with LSTM, sequential sensor data are processed
and a classification result is generated. The ensemble structure is used to avoid overconfidence
estimation and overfitting.

• Network input is constructed with only the sensor data that can be obtained from the in-vehicle
network. The proposed algorithm can be applied to vehicles with active suspension without
additional sensors.

• The feature selection technique is applied to determine the importance of each piece of sensor
data. Sensor data are selected as an input depending on its importance, and the number of inputs
can be reduced without a loss of performance.

The remainder of this paper is organized as follows: Section 2 reviews the literature of road
surface classification. Section 3 describes the methodology used in this study. Section 4 explains the
structure and learning method of the proposed network. Section 5 explains the verification process
through experiments and discussion. Conclusions and future work are given in Section 6.

2. Related Work

The research to determine the road type has mostly been based on the dynamics of the vehicle
suspension and chassis. A lot of studies have been carried out to estimate the road profile mainly
through the suspension model. Imine et al. [2] design a sliding mode observer to estimate the road
profile where the height of the road surface is measured by an additional profiler and is compared
with the estimated value. The road profile is well estimated in a section where the elevation of the
road is small, but the performance of the observer is insufficient in the section where the elevation
of the road is large. Doumiati et al. [3] obtain the road profile from the profiler and it shows good
performance, but this technique is limited to only large commercial vehicles.

Instead of estimating the road profile directly, there is an approach to classify the road profile
based on the Power Spectral Density (PSD) of the road. Qin et al. [4] estimate a road profile through
Kalman filter and wavelet transform to perform the classification. Wang et al. [5] estimated the road
level in various road conditions by using adaptive Kalman filter considering uncertainty of the road
condition. There are also studies to improve classification performance by installing additional sensors.
Kumar et al. [6] use an additional LIDAR sensor that measures the surface of the road to classify the
type of road surface.

In recent years, many studies are being conducted to classify road surface through machine
learning. Mou et al. [7] proposed a method to classify five different types of the road surface
(grass, asphalt, gravel, pavement and indoor) using a learning-based classifier and controls speed of
the vehicle with respect to the classification result. The result of classification is derived by combining
the results of multiple classifiers based on different sensors of vibration sensor, vision sensor and laser
sensor to classify. Support Vector Machine (SVM) and Gaussian Mixture Models (GMMs) are used to
classify the type of the terrain rather than the type of the road surface for caterpillar robot. Qin et al. [8]
performed road surface classification for a semi-active suspension system using a deep neural network
structure which consists of a sparse autoencoder and softmax classifier. Based on the Carsim simulation
model, data is collected to classify six different road levels defined by ISO (International Organization
for Standardization). Yousefzadeh et al. [9] estimated the road profile using an artificial neural network
whose architecture consists of three linear hidden layers. Seven different kinds of acceleration (roll,
bounce, pitch and four wheels) are used as input and data is collected from the vehicle model of
ADAMS software (MSC Software Corporation, Newport Beach, CA, USA). Solhmirzaei et al. [10]
conducted road profile estimation using a wavelet neural network that uses wavelet basis function
as an activation function instead of sigmoid function. Seven vehicle accelerations and several state
variables from the previous time steps are obtained by a 7-DOF (Degrees of Freedom) vehicle dynamics
model using MATLAB (MathWorks, Natick, MA, USA) and used as inputs for the network. The output
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is the road profile and training data is composed of four different kinds of road surfaces using an
ISO8608 standard.

3. Methodology

3.1. Recurrent Neural Network (RNN)

Among deep learning algorithms, Recurrent Neural Network (RNN) is a specialized model for
analyzing data that is related with time, such as sequential data. RNN model transfers its output
to the next time step by multiplying with a weight. However, this structure causes a vanishing
gradient problem and it was difficult to learn long sequences. Models such as Long-short Term
Memory (LSTM) and Gated Recurrent Units (GRU) are used to solve this problem [11–13]. In this
study, vehicle sensor data is used as the input of the deep learning model. Sensor data is also correlated
with time. Therefore, an RNN with an LSTM cell is used as the network model of this study.

3.2. Ensemble Learning

In general, the deep learning algorithm has a problem of overconfidence on the output and an
overfitting problem that adversely affects the generalization because it is too closely fitted to the
training data. These problems decrease the performance of the deep learning algorithm and make
it hard to estimate robustly. Ensemble, which is mainly used in machine learning, is a technique for
deriving the results from more than one model and synthesizing the results of each model to determine
the final result [14–16]. This is a technique that alleviates the overconfidence and overfitting problems.
In this study, ensemble structure, which consists of the same RNN networks, is used as a network
model. Figure 1 shows the concept of ensemble structure.

Figure 1. Conceptual diagram of ensemble structure.

4. Deep Learning for Road Surface Classification

4.1. Network Input

In this study, data is obtained by using an IMU sensor, steering angle sensor, vehicle speed sensor
and acceleration sensor. Fourteen pieces of sensor data were initially used as input as follows:

• IMU: Longitudinal acceleration, Lateral acceleration, Yaw rate;
• Steering sensor: Steering angle, Steering angular velocity;
• Speed sensors: Speed of each wheel;
• Suspension sensors: Vertical acceleration on the front left and front right wheel, Vertical acceleration

of sprung mass on the front left, front right and rear left.

Deep neural network has the ability to analyze unknown features and use them to solve the
problems. In this study, many available in-vehicle sensor data is used to make the input data. It is
expected that the deep neural network is able to find the suitable features among those sensor data.

Sensor data of the vehicle have various units, so the range of each value is different. Using them as
a network input is likely to have an adverse effect on network training and performance. To overcome
this, all the network inputs are normalized to [–0.5, 0.5]. The equation of the normalization is as
follows:

si,normalized =
1

maxi − mini

(
si −

1
2
(maxi − mini)

)
, (1)
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where i is index of each sensor, max, min are maximum and minimum value of each sensor data,
respectively. s is data of each sensor.

Sensor vector x is defined as x = [s1, . . . , sNs ] and Ns is the number of sensors. Sensor vectors are
stacked in time sequence and used as the input of RNN network. Finally, the network input is the
matrix of size Ns × Ls and Ls is the length of the input sequence:

Input = [x1; . . . ; xLs ] . (2)

4.2. Network Structure

The structure of the LSTM cell which is used in this study is illustrated in Figure 2. The LSTM
network recursively operates according to the sequence, and the cell state transfer the information
through the sequence. The input data of the LSTM cell consists of the cell state, output of the previous
step and input data of the current step. There are three gates inside LSTM and the gates manage the
cell state information. The first gate is called the forget gate, and the forget gate selects the part of cell
state data to be removed. The second gate is the input gate and it determines the data to be added
to the cell state. Lastly, the output gate generates output data using the cell state. This process is
computed sequentially through the following equations [13]:

ft = σ
(

W f · [ht−1, xt] + b f

)
,

it = σ (Wi · [ht−1, xt] + bi) ,

Ci,t = tanh (WC · [ht−1, xt] + bC),

Ct = ft ∗ Ct−1 + it ∗ Ci,t,

ot = σ (Wo · [ht−1, xt] + bo) ,

ht = ot ∗ tanh (Ct),

(3)

where t is the time step in input sequence. x, h and C are the input, output and cell state of the LSTM
cell, respectively. f is the forget selection vector. i is the input selection vector. W f , Wi, Wc, Wo are the
weight variables in forget, input and output gate. b f , bi, bc, bo are the bias variables in forget, input and
output gate. σ (·) denotes the sigmoid function. tanh (·) denotes the hyperbolic tangent function.
∗ denotes the element-wise multiplication.

Figure 2. Structure of the LSTM cell.
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In this study, a multi-layer LSTM network is designed by stacking two LSTM cells and two
dropout layers. The dropout layer is applied to reduce the overfitting problem [17,18]. Figure 3 shows
the structure of the proposed network. Each LSTM cell has a cell state size of 1024. At the output layer,
the softmax function is applied to calculate the probability for each class. The output of LSTM network
is calculated by the following equation:

hs = Ws · h2,Ls + bs, (4)

p = softmax (hs) =
ehs

∑Nc
j=1 ehs,j

, (5)

where p is the output of the multi-layer LSTM network and Nc is the number of the output class.
Subscript j means the index of each class. Ws and bs are the weight and bias variable in softmax
layer, respectively.

Figure 3. Structure of the multi-layer LSTM network.

Several multi-layer LSTM networks were stacked for ensemble learning. An ensemble network
consists of several single networks and each single network has the structure of Figure 3. The output
of ensemble network is the average of the outputs of each single network as shown in the
following Equation:

pe =
1

Ne

(
Ne

∑
z=1

pz

)
, (6)

where pe is the output of ensemble network and Ne is the number of single network. Subscript z means
the index of each single network.

4.3. Network Training

Training of the ensemble network is performed by the training dataset. Each single network in
ensemble is trained through a different batch set which is made by random sampling in the training
dataset. It prevents each network from being trained as the same variables. After ensemble learning,
each network has the same structure and the same classification task but has different variables.
By combining the results from these networks, a more generalized model can be obtained for the
classification task. Each network is trained using softmax cross entropy and the equation of loss
function is as follows:

Lz = −
Nc

∑
j=1

yj log
(

pz,j
)
. (7)
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Training is performed by an Adam optimizer [19] to minimize the loss in Equation (7). Each
network has a different value of Lz. Hyperparameters, which are used for training, are listed in Table 1.
The entire learning process of the ensemble network is shown in Algorithm 1 and Figure 4. The word
’variables’ in Figure 4 indicates the weights and bias in each network.

Table 1. Hyperparameters used in the training process.

Name Value

Number of single networks, Ne 3
Keep probability of dropout layers 0.33

Number of iterations 20,000
Batch size 256

Learning rate 0.0001

Algorithm 1 Training Process of the Ensemble Network.

1: Establish the ensemble network through the single networks (multi-layer LSTM network)
2: Initialize the weights of each single network in ensemble network
3: for iterations do

4: for z = 1 to Ne do

5: Make a batch set bz by random sampling in training data
6: Only the variables in single network z are assigned as trainable variables
7: Minimize the loss Lz of the batch set bz through the Adam optimizer
8: end for
9: end for

10: Verify the performance with test data

Figure 4. Multiple network learning process for the ensemble network.

4.4. Feature Selection

The network is trained by 14 sensor data available in the vehicle as input. However, among these
data, several variables are not needed for road surface classification and they increase computation
and degrade the performance. Feature selection is applied to select important features among the
input data. It can simplify the model and accelerate training of the network. In this study, each sensor
data is used as a feature and find out which sensor data is important for the performance of the road
surface classification. For the feature selection, importance weight [20], which represents importance
of each sensor data, is expressed as the weight variables and they are added to the input layer with the
range of [0,1]. Each weight variable, wi, is scalar and corresponds one to one with each piece of sensor
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data (i = 1, . . . , Ns). This weight variable, wi, is multiplied with the sequence data from the sensor
and the weighted sensor vector, xw, is defined as follows.

xw = [w1s1, . . . , wNssNs] . (8)

Using this weighted sensor vector, weighted input matrix is calculated as follows:

Input = [xw,1; . . . ; xw,Ls ] . (9)

Figure 5 shows the network architecture including the importance weight layer.

Figure 5. Structure of the ensemble network with importance weight layer.

The training of the importance weight layer is done separately from the training of the ensemble
network. If the ensemble weight and importance weight are trained at the same time, weights of
ensemble network intervene in the estimation of the result and it is difficult to efficiently learn the
importance weight. For this reason, weights of the ensemble network in Section 4.3 is used without
any change and only the importance weights are trained. The loss function for training importance
weight is as follows:

L f s = −
Nc

∑
j=1

yj log
(

pj
)
+ λ

Nc

∑
j=1

wi. (10)

The loss function includes the sum of importance weight in addition to the softmax cross entropy.
In this way, the network maintains the accuracy of the classification and reduces the importance weight
of unnecessary data. λ is set to 0.01 as a hyperparameter. After the training, if the importance weight of
a data is close to 0, it means that the data is less significant to the network performance. On the contrary,
the data is important for the performance of the network, if its importance weight is close to 1.

5. Experimental Results and Discussion

In this section, the experiment procedure and the training results are described. Results of
this study include a single network result, ensemble network result and feature selection result. In
addition, the process of determining the length of sequence used in the LSTM network is included.

5.1. Experiment

In this study, data were acquired from four different types of test roads for training and testing of
the deep learning algorithm. The data was obtained from the actual vehicle experiments on each road.
The description of the test roads is illustrated in Figure 6.
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Figure 6. (a) flat road: flat, asphalt road; (b) sinusoidal road: sine wave road (amplitude: 0.05 m,
wavelength: 10 m); (c) manhole and pothole: road with many manholes and potholes; (d) bump:
bumps on the flat road. Three different types of bumps are used as shown in Figure 7.

Figure 7. Shape of bumps.

The overall structure of the experiment procedure is shown in Figure 8. The experiment was
conducted at various speeds and the maximum speed was limited for safety on some roads. Input data
is obtained at every 10 ms using CAN. In order to verify the performance of the deep learning algorithm,
test data was acquired through additional experiments. When the test data was obtained, the vehicle
speed was different from the training data to verify the overfitting of the network. Specific information
of the experiment is listed in Table 2. The examples of sensor data from experiment are shown in
the Appendix A.

Figure 8. Experiment and learning process.

Labeling was performed on the experimental data and is determined based on the position of the
front wheel. The class has an integer value from 0 to 3, and each class corresponds to the road where
the actual vehicle experiment was conducted:
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• 0: Flat road,
• 1: Sinusoidal road,
• 2: Manhole and pothole,
• 3: Bump.

Table 2. Experimental scenario.

Types of Road Vehicle Speed for Data
Acquisition (km/h) Total Number of Data

Training data

Flat road 20, 40, 60, 80
380,556 steps

(63.4 min)
Sinusoidal road 20, 40, 60

Manhole and Pothole 20, 40, 50
Bump 10, 20, 30

Test data

Flat road 0∼100
129,873 steps

(21.6 min)
Sinusoidal road 20, 30, 40, 50, 60

Manhole and Pothole 15, 20, 30, 40, 45, 50
Bump 10, 20, 25, 30, 35

5.2. Experimental Result

In this section, training results of the proposed algorithm and verification are described. In order
to verify the effectiveness of the ensemble learning, performance of the ensemble network is compared
with a single network. The single network is the single LSTM network in Figure 3. Length of the
sequence is 80 for both single network and ensemble network. The result of comparison is shown
in Table 3. Training accuracy of both networks shows over 99% and it means that both networks are
well trained. However, test accuracy shows the difference in performance between the two networks.
The ensemble network shows classification accuracy about 4% better than the single network and
demonstrates that overfitting decreases when applying ensemble learning. Performance of the two
networks is compared through the confusion matrix. The confusion matrix represents the classification
result for the test data. Figures 9 and 10 show that all the classification accuracy improves through the
ensemble learning, in particular, the case of the sinusoidal road is improved significantly.

Table 3. Classification accuracy of the single network and the ensemble network.

Train Accuracy Test Accuracy

Single network 99.6% 90.6%
Ensemble network 99.8% 94.4%

Figure 9. Confusion matrix of classification results from the single network.
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Figure 10. Confusion matrix of classification results from the ensemble network.

The length of the input sequence, which is applied to the LSTM, is a factor directly affecting the
performance of the network. The input sequence is the data that accumulates sensor data every 0.01 s,
and the sequence length determines how many seconds of data are used in the network. Generally,
performance of the network is better when longer sequence length is applied because the result is
classified with more data. However, this trend can be saturated in a certain length because old data
may not be useful for classification. In addition, sequence length directly affects the computation time
of the network. The longer the sequence length, the larger the size of the input, which increases the
computation time. It is important to set the sequence length in consideration of such advantages and
disadvantages. In this study, various lengths of the sequence are tested to find the proper sequence
length and this result is shown in Figure 11. Test accuracy shows that the performance improves with
increasing of the sequence length in the range of 10 to 80. However, this tendency is diminished after
80. The difference between the train accuracy and the test accuracy is reduced as the sequence length is
increased. This shows that the overfitting decreases and performance improves as the sequence length
increases. In this study, the sequence length is set to 80 to ensure high performance of the network and
generalization of the model.

Figure 11. Classification accuracy with the sequence length.

The importance of weight training results for feature selection are shown in Table 4. The importance
weight value indicates the importance of each sensor data. The lateral acceleration sensor, speed sensor,
yaw rate sensor and vertical acceleration sensors of the sprung mass show high importance. On the
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other hand, the vertical acceleration sensors of the unsprung mass, steering angle speed sensor and
longitudinal acceleration sensor show low importance in classification. In this study, sensor data with
an importance weight over 0.4 are selected as the input features. After the feature selection, the input
data of the sensors are reduced from 14 to 10.

• Lateral acceleration, yaw rate, steering angle, speed of each wheel, vertical acceleration at front
left, front right, rear left of the sprung mass.

With the new input of dimension 80 × 10, the classification accuracy of the network trained through
the new features is shown in Figure 12. Total classification accuracy in test data is 94.6%. Although the
number of inputs is reduced, the network performance remains robust. This means that the unnecessary
data in the classification are successfully removed through the feature selection technique.

Table 4. Classification accuracy of the single network and the ensemble network.

Sensors Location Importance Weight

Vertical acceleration of
sprung mass

Front left 0.9514
Front right 0.9999
Rear right 0.9065

Vertical acceleration of wheels Front left 0.2169
Front right 1.558 × 10−5

Longitudinal acceleration - 3.826 × 10−6

Lateral acceleration - 0.9746
Yaw rate - 0.9988

Steering angle - 0.4833
Steering angular velocity - 2.105 × 10−4

Wheel speed

Front left 0.8626
Front right 0.8892

Rear left 0.8347
Rear right 0.5921

Figure 12. Confusion matrix after feature selection.

The test data were sequentially predicted to identify the classification results continuously over
time. The network with feature selection and ensemble learning is used. Figures 13–19 show some
of the test results. In the graphs, cyan lines represent true label of the class and black dots represent
the prediction result of the network. The numbers in the upper left corner indicate the classification
accuracy of each class in that experiment. The results also show that higher speed induces higher
accuracy. Higher vehicle speed causes large difference in sensor data, which makes it easier to be
distinguished by the network.
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Figure 13. Prediction result on sinusoidal road, 20 km/h.

Figure 14. Prediction result on sinusoidal road, 50 km/h.

Figure 15. Prediction result on manhole and pothole road, 20 km/h.

Figure 16. Prediction result on manhole and pothole road, 50 km/h.
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Figure 17. Prediction result on bump road, 10 km/h.

Figure 18. Prediction result on bump road, 35 km/h.

Figure 19. Prediction result on flat road, free speed (0 ∼ 100 km/h).

6. Conclusions

In this study, a deep learning method based on sensor data is proposed to identify road surface
for vehicles. LSTM is applied to process sequential sensor data and ensemble learning is applied for
robust estimation. In addition, feature selection is used to determine the importance among the sensor
data, and unnecessary sensor data is excluded from the input of the network. In order to verify the
proposed algorithm, the experiment was carried out on four different test roads. Train data and test
data were obtained in separate experiments to confirm the generalization of the model. Test data was
used for verification and it shows that the ensemble learning improves classification performance
and reduces the overfitting problem. The effectiveness of the feature selection is demonstrated with
the classification result that the performance is maintained with less sensor data. The network with
ensemble learning and feature selection shows 94.6% classification accuracy on the road surface.
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The future work of this study can be considered in two ways: first, the sensor data was acquired in
four kinds of test roads for the proposed algorithm. Therefore, the dataset is limited in those test roads.
However, there are many kinds of road conditions in the actual road environment. For this reason,
the proposed algorithm can be extended by applying more diverse road conditions. Second, after the
road surface classification through the proposed algorithm, the vehicle can be controlled according
to the estimated road condition. Therefore, the suspension control strategy to enhance stability and
steerability has to be considered as a future work.
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Appendix A

Figure A1. Sensor data on sinusoidal road, 30 km/h.
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Figure A2. Sensor data on bump road, 30 km/h.
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