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Abstract. O‑linked glycosylation (O‑glycosylation) and 
N‑linked glycosylation (N‑glycosylation) are the two most 
important forms of protein glycosylation, which is an 
important post‑translational modification. The regulation 
of protein function involves numerous mechanisms, among 
which protein glycosylation is one of the most important. 
Core 1 synthase glycoprotein‑N‑acetylgalactosamine 
3‑β‑galactosyltransferase 1 (C1GALT1) serves an important 
role in the regulation of O‑glycosylation and is an essential 
enzyme for synthesizing the core 1 structure of mucin‑type 
O‑glycans. Furthermore, C1GALT1 serves a vital role in a 
number of biological functions, such as angiogenesis, platelet 
production and kidney development. Impaired C1GALT1 
expression activity has been associated with different types of 
human diseases, including inflammatory or immune‑mediated 
diseases, and cancer. O‑glycosylation exists in normal tissues, 
as well as in tumor tissues. Previous studies have revealed that 
changes in the level of glycosyltransferase in different types of 
cancer may be used as potential therapeutic targets. Currently, 
numerous studies have reported the dual role of C1GALT1 in 
tumors (carcinogenesis and cancer suppression). The present 
review reports the role of C1GALT1 in normal development 

and human diseases. Since the mechanism and regulation of 
C1GALT1 and O‑glycosylation remain elusive, further studies 
are required to elucidate their effects on development and 
disease. 
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1. Introduction

Dynamic regulatory mechanisms under a variety of physi‑
ological conditions affect the processing and maturation of 
proteins in mammalian cells. Glycosylation is an important 
type of post‑translational modification. More than half of the 
proteins in human cells and 50‑70% of serum proteins are 
glycosylated proteins (1). Mucin‑type O‑linked glycosylation 
(O‑glycosylation) and N‑linked glycosylation (N‑glycosylation) 
are the two most important forms of glycosylation, and changes 
in either can lead to clinically significant pathogenesis (2‑4). 
O‑glycosylation is considered a protein modification occur‑
ring on proteins that are secreted and membrane‑bound; it 
serves a key role in protein processing, secretion, stability, and 
ligand binding (5). O‑glycosylation is associated with different 
types of biological processes, such as metabolism, translation, 
transcription, cytoskeletal formation, cell cycle progression 
and cell signal transduction (6,7). Abnormal O‑glycosylation 
is associated with a number of human diseases, including 
the development of tumors (8). Tumor cells often contain 
numerous altered O‑glycosylated proteins, which qualitatively 
and/or quantitatively change sugar molecule expression (9). 
Some O‑glycosylated proteins are usually adopted as tumor 
biomarkers in the circulation, such as cancer antigen (CA) 19‑9 
and CA‑125 (9).

O‑glycosylation of proteins most commonly occurs in the 
serine and threonine residues, but it can also occur in the tyro‑
sine, hydroxylysine and hydroxyproline residues. Glycosylation 
is initiated in the endoplasmic reticulum (ER) (10). However, 

C1GALT1 in health and disease (Review)
XIAOJIE SUN1,  MENGRU ZHAN2,  XUN SUN3,  WANQI LIU1  and  XIANGWEI MENG1

Departments of 1Gastroenterology, 2Hepatobiliary and Pancreatic Medicine, and 3Pathology, 
The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China

Received March 18, 2021;  Accepted May 18, 2021

DOI: 10.3892/ol.2021.12850

Correspondence to: Professor Xiangwei Meng, Department of 
Gastroenterology, The First Hospital of Jilin University, 71 Xinmin 
Street, Changchun, Jilin 130021, P.R. China
E‑mail: mengxw@jlu.edu.cn

Abbreviations: O‑glycosylation, O‑linked glycosylation; 
N‑glycosylation, N‑linked glycosylation; ER, endoplasmic reticulum; 
GalNAc, N‑acetylgalactosamine; C1GALT1, core 1 synthase 
glycoprotein‑GalNAc 3‑β‑galactosyltransferase 1; O‑GalNAc, 
GalNAc type O‑glycosylation; Tn antigen, Thomsen‑nouveau 
antigen (GalNAc‑α‑1‑R); T antigen, Thomsen‑Friedenreich 
antigen (Gal‑β‑1‑3GalNAc‑R); ESCC, esophagus squamous cell 
carcinoma; HNSCC, head and neck squamous cell carcinoma; 
EGFR, epidermal growth factor receptor; CRC, colorectal cancer; 
EMT, epithelial‑mesenchymal transition; FAK, focal adhesion 
kinase; IgAN, IgA nephropathy; Gd‑IgA1, galactose‑deficient 
immunoglobulin A1; PDAC, pancreatic ductal adenocarcinoma 

Key words: C1GALT1, O‑glycosylation, integrin β1, Cosmc, 
itraconazole



SUN et al:  C1GALT1 IN HEALTH AND DISEASE2

O‑Xyl (proteoglycan) and N‑acetylgalactosamine (GalNAc) 
type O‑glycosylation (O‑GalNAc) are initiated in the Golgi 
apparatus (10). More than 80% of cell membrane proteins and 
extracellular secreted proteins are O‑GalNAc glycosylated 
proteins (11). This type of glycosylation is mediated through 
transferring GalNAc from UDPGalNAc to threonine or 
serine residues. The GalNAc aminotransferase peptide, which 
contains up to 20 isoenzymes, catalyzes this reaction (10,12). 
The protein encoded by core 1 synthase glycoprotein‑GalNAc 
3‑β‑galactosyltransferase 1 (C1GALT1) generates the common 
core 1 O‑glycan structure, Gal‑β‑1‑3GalNAc‑R (T antigen), by 
the transfer of galactose (Gal) from UDP‑Gal to GalNAc‑α‑1‑R 
(Tn antigen) (13). The formation of complex O‑glycan struc‑
tures requires further modification of the T antigen (14). To 
date, at least eight different O‑glycan core structures have 
been described. The core 1 type O‑glycan forms the basis of 
O‑glycosylation modification and its synthesis is mainly regu‑
lated by C1GALT1 (15). The Tn antigen can form core 3 structure 
under the catalysis of β1,3‑N‑acetylglucosaminyltransferase 6. 
Core 1 and 3 structures are catalyzed by β1,6‑N‑acetylglucosa
minyltransferase to form core 2 and 4, respectively (16).

There are three species of β1,6‑N‑acetylglucosaminyltrans‑
ferases in mammals: Two of them catalyze the core 2 structure 
constitution, and one catalyzes the constitution of core 2 or 
4 structures (17) (Fig. 1). In addition, there are several other 
core structures that are less common than the aforementioned 
ones (17).

The C1GALT1 gene is located on chromosome 7p22.1‑p21.3, 
and the protein T‑synthase, encoded by the gene, has been 
considered to be a core mucin‑type O‑glycosyltransferase that 
resides in the Golgi apparatus (17), and is synthesized due to 
its particular chaperone, Cosmc, in the ER (18). Aryal et al (18) 
reported that T‑synthase could co‑immunoprecipitate with 
Cosmc. Cosmc can interact with the deactivated T‑synthase, 
partially restoring the enzyme activity in vitro, and is a 
specific partner of T‑synthase folding and maturation (18). 
This enzyme adds β1,3‑bonded galactose to the existing 
GalNAc to produce a common core O‑glycan structure. Core 
1 is the precursor of many cell surface mucin O‑glycans and 
secreted glycoproteins, and is the basis for the formation of 
complex O‑glycans, such as core 2 structure and sialylated 
T antigens (19). Furthermore, C1GALT1 serves a vital role 
in numerous biological functions, including angiogenesis, 
platelet production and kidney development (20,21).

The expression of normal O‑glycans is associated with 
health and homeostasis, whereas abnormal glycosylation 
is associated with cancer and other pathologies. Abnormal 
glycosylation is involved in cancer cell invasion, migration, 
angiogenesis, intercellular contact and epithelial‑mesenchymal 
transition (EMT) (1,22‑24). Previous studies have revealed that 
changes in the level of glycosyltransferase are associated with 
cancer (25,26). In addition, C1GALT1 has been associated 
with the metastasis and progression of various types of cancer, 
such as liver and gastric cancer (27,28).

C1GALT1 can act as an oncogene or a tumor suppressor 
gene in various types of conditions. C1GALT1 high expres‑
sion in liver cancer tissues is associated with advanced tumors, 
poor prognosis and metastasis (29). On the contrary, another 
study has presented C1GALT1 as a tumor suppressor gene in 
various types of tumors (30). 

Chugh et al (30) discovered that C1GALT1 expression 
is higher in well‑differentiated pancreatic cancer tissues 
compared with in poorly differentiated pancreatic cancer 
tissues. Moreover, in cancer tissues, T antigen expression is 
lower compared with that of the Tn antigen (30). C1GALT1 
has been shown to be a tumor suppressor gene in pancreatic 
cancer since the absence of C1GALT1 expression promotes 
the development and metastasis of pancreatic cancer (30). 
However, in another study, C1GALT1 served a different 
role (31). Liu et al (31) found that in C1GALT1‑knockout 
mice, spontaneous gastroenteritis and consequently gastric 
antral adenocarcinoma were improved in the gastric mucosal 
epithelial cells, which indicates that C1GALT1‑mediated 
O‑glycosylation is very important for gastric mucosal and 
gastric homeostasis protection (31). However, the use of 
samples from different sources or at different tumor stages may 
have contributed to the observed dual function of C1GALT1; 
hence, the true role of the gene remains elusive. The present 
review focuses on the role of C1GALT1 in health and disease.

2. C1GALT1 in normal development and non‑neoplastic 
diseases

C1GALT1 in normal development. C1GALT1 and glycosyl‑
ation are essential for normal development, especially during 
angiogenesis, platelet production and kidney development (32). 
Impaired T‑synthase activity has been associated with 
different types of human diseases, including inflammatory or 
immune‑mediated diseases, and cancer (33). 

Xia et al (20) targeted deletion of the C1GALT1 gene, 
resulting in normal development of heterozygous mice and 
the mating of 364 viable offspring. A total of 228 (63%) 
T‑syn+/‑ progenies and 136 (37%) T‑syn+/+ progenies were 
identified by genotyping, but no T‑syn‑/‑ progenies were 
identified (20). Whether deletion of two alleles of C1GALT1 
led to fetal death of 293 (E9‑16) embryos was analyzed (20). 
Genotyping revealed the offspring of 142 (48%) T‑syn+/‑, 78 
(27%) T‑syn+/+ and 73 (25%) T‑syn‑/‑ (20). T‑synthase activity 
was decreased in T‑syn+/‑ embryos at E12, and there was no 
activity in T‑syn‑/‑ embryos (20). These results confirm that 
all active T‑synthase are encoded by C1GALT1 at this stage 
of development. T‑synthase was found to be different from the 
typical glycosyltransferase (34). T‑syn‑/‑ embryos in E9 devel‑
oped normally, but then they gradually developed significant 
bleeding in the spinal cord and brain. The T‑syn‑/‑ embryos 
all died at E13 or E14 (20). In the T‑syn‑/‑ embryos, the 
only exception detected was poor angiogenesis (19,20). This 
phenomenon may be explained by isolation of endothelial cells 
from extracellular matrix and supporting pericytes (20). If 
mice lack growth factor B, they cannot recruit peripheral cells 
to the developing cerebral vessels, and bleeding will occur in 
late embryo or perinatal period (35). By contrast, the T‑syn‑/‑ 
embryo always died at E14; this means that in the process of 
angiogenesis, one or more endothelial proteins are inseparable 
from core‑1‑derived O‑glycans (20). This possibility may be 
further explored by constructing an endothelial cell model of 
C1GALT1‑targeted deletion (21).

Although O‑glycans are considered to be ubiquitous in 
various tissues and types of cells, the expression of hematopoi‑
etic and endothelial cells is high throughout postpartum and 
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embryonic development (15,36,37). Fu et al (21) generated mice 
lacking T‑synthase specifically in endothelial and hema‑
topoietic cells (named EHC‑T‑syn‑/‑ mice model). The 
Tn antigen can be expressed in hematopoietic, lymphatic 
and endothelial cells and arteries, but not in other types of 
cells (21). The mice developed lymphatic vessel defects and 
abnormal lymphatic function. Unlike mice with complete 
C1GALT1‑knockout, EHC‑T‑syn‑/‑ mice have no ‘cerebral 
hemorrhage’ and ‘partial onset’ embryonic lethality (21). The 
phenotypic difference may be due to O‑glycans of other types 
of cells, such as nerve cells and parietal cells, which contribute 
to blood vessel development in nerve tissues (21). However, 
EHC‑T‑syn‑/‑ mice exhibited high neonatal mortality, vascular 
system disorder and impaired lymphatic function (21). At the 
time of autopsy, ~75% of EHC‑T‑syn‑/‑ mice exhibited exten‑
sive small intestinal bleeding, which may be one of the reasons 
for the lethality of EHC‑T‑syn‑/‑ after birth (21). Abnormal 
blood vessels in the blind end of EHC‑T‑syn‑/‑ mice exhib‑
ited abnormal function/development of lymphatic vessels, 
constituting abnormal links between lymphatic vessels and 
blood (21). These hyperemic lymphatic vessels are found in 
mice that lack fasting‑induced adipokines and have defects 

in the signaling proteins SLP‑76 and SYK (38). These obser‑
vations suggest that constant O‑glycoprotein expression is 
required for the maintenance of lymphatic vessels, angiogen‑
esis and the separation of blood and lymphatic vessels during 
development. 

In addition, C1GALT1 is very important in the formation of 
the follicular basal layer (FBL) and the follicular environment. 
The basement membrane provides structural and selective filters 
for molecules. The environment is regulated by the FBL in the 
follicle at the time of development (39). It has been demon‑
strated that the oocyte is important in producing FBL (40). 
Mice with C1GALT1 oocyte‑specific deletion do not synthe‑
size main 1β1,3‑galactosyltransferase 1 (named T‑synthase 
as well), and thus are not able to constitute main 1 derived 
O‑glycan (41). Therefore, the FBL changes the distribution of 
laminin and collagen (39) and causes the follicles to combine to 
form multiple follicles, with two or more oocytes in a follicle. 
Therefore, C1GALT1 expression serves a part in keeping the 
normal structure of FBL and the follicular environment. 

Additionally, a series of experiments have revealed that 
C1GALT1 is very important for platelet production and 
renal homeostasis. Kudo et al (42) conditionally knocked out 

Figure 1. O‑glycosylation model. C1GALT1 transfers Gal from UDP‑Gal to Tn antigen to form core 1 O‑glycan structure, T antigen. Core 1 is a 
precursor for numerous extended mucin‑type O‑glycans on the cell surface and secreted glycoproteins. The structure of core 3 is catalyzed by β1,3‑N‑
acetylglucosaminyltransferase 6. Core 1 and 3 core structures can be further modified to form the structure of core 2 and 4, respectively, by the 
catalysis of β1,6‑N‑acetylglucosaminyltransferases. Gal, galactose; GalNAc, N‑acetylgalactosamine; C1GALT1, core 1 synthase glycoprotein‑GalNAc 
3‑β‑galactosyltransferase 1; GlcNAc, N‑acetylglucosamine; GALNT, N‑acetylgalactosaminyltransferase.
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C1GALT1 and constructed ‘Mx1‑C1’ mice, so that the dele‑
tion of the C1GALT1 gene was limited to bone marrow cells. 
Mx1‑C1 mice exhibited severe thrombocytopenia. The hema‑
tology parameters indicated a marked decrease in platelet 
count. However, white and red blood cell counts, as well as 
the levels of hemoglobin, were normal. Notably, giant platelets 
were in the peripheral blood smear, while the morphology 
of other cells was normal. Compared with the platelets of 
wild‑type (WT) mice, those of Mx1C1 mice were larger. Tail 
bleeding time measurement indicated that bleeding in WT 
mice was prevented 6 min after cutting the tail, while bleeding 
time in Mx1‑C1 mice was markedly prolonged (>10 min), indi‑
cating that C1GALT1 expression is important for hemostasis 
and platelet production (42).

In plt1 mice constructed by Alexander et al (32), T‑synthase 
showed residual enzyme activity, and through a series of 
experiments, it was revealed that C1GALT1 had a very 
important role in platelet production and renal homeostasis. 
Alexander et al (32) treated C57BL/6 mice with N‑Ethyl‑n 
nitrosourea (ENU) and produced generation III (G3). In 
lineage 76, multiple mice exhibited lower platelet counts, 
consistent with the isolation of ENU‑induced mutations that 
cause thrombocytopenia. Lineage 76 with recessive mutation 
was called plt1 (32). plt1/plt1 mice had 40% of the platelet 
count of WT mice, and all major organs were histologi‑
cally normal except the kidneys, which exhibited structural 
distortion of the glomerulus‑renal tubules (32). The levels of 
creatine, blood urea and urinary protein in plt1/plt1 mice were 
higher compared with those in WT mice. The kidneys exhib‑
ited inflammatory infiltration, ductal stenosis, glomerular loss 
and cortical atrophy. From the 10th week, plt1/plt1 mice began 
to get sick, and by day 200, 90% of the mice had died (32). It 
was demonstrated that the activity of T‑synthase in plt1/plt1 
mice was <5% of that in WT mice. Plt1 mutation could lead to 
severe but incomplete loss of T‑synthase activity (32).

Decrease of T‑synthase activity can lead to exposure to 
the Tn antigen. The Tn antigen could not be detected in WT 
mice, but could be detected in plt1 mice. plt1/plt1 mice died of 
a severe kidney disease accompanied by massive proteinuria 
and glomerulonephritis (32). Podocalyxin, which develops 
from podocytes of the kidney, has been discovered to be a 
core TN protein in the kidney (43). Mice with low levels of 
podocalyxin shortly died after birth from anuria and renal 
dysplasia, consistent with the anti‑adhesion effects of podo‑
calyxin on the podocyte surface for ensuring that the filtration 
gap is obstructed (44). Plt1/plt1 mice can produce urine, which 
proves that low glycosylated podocalyxin can maintain part of 
renal function. However, kidney disease in mice indicates that 
podocalyxin glycosylation mediated by T‑synthase is crucial 
for the maintenance of normal renal function and struc‑
ture (32). These results suggest that some pathological changes 
in the kidney may be associated with a decrease of T‑synthase 
activity, which does not depend on the influence of intrinsic 
defects and immune factors. In addition to kidney diseases, 
further attention should be given to IgA nephropathy (IgAN).

IgAN. The decreased activity of T‑synthase has a close asso‑
ciation with human diseases, the most notable being IgAN 
(an ordinary important glomerulonephritis). IgAN has been 
considered to be the most common reason of renal failure and 

glomerulonephritis globally, and it is an immune‑mediated 
disease characterized by abnormal glycosylation (45). IgAN 
accounts for 37‑58% of biopsy‑confirmed primary glomeru‑
lonephritis in China (46‑48). Within 10 years after diagnosis, 
approximately one‑third of patients with IgAN will progress 
to the final stage of kidney disease (49,50). Two case‑control 
studies have discovered that Chinese population susceptibility 
and C1GALT1 gene polymorphism are associated with the 
IgAN variations of the C1GALT1 gene; in particular, the haplo‑
types YATIG, YAGDA and YATDG were associated with the 
susceptibility to IgAN (51,52). Abnormal O‑glycosylation of 
IgA1 has been identified in IgAN, which was an important 
breakthrough in the study of its pathogenesis (53). IgA1 
glycosylation defects result in elevated galactose‑deficient 
IgA1 (Gd‑IgA1) and immunocomplex, and are associated with 
IgAN development (53).

There is evidence that the Gd‑IgA1 level is heritable (54,55). 
Using a genome‑wide approach, Gale et al (56) identified 
common genetic factors that influence Gd‑IgA1 levels in East 
Asian and Caucasian populations. Gale et al (56) studied 
hundreds of patients with IgAN from the UK and China, 
revealing that C1GALT1 is an important genetic determinant of 
Gd‑IgA1 level, which is an independent risk factor for progres‑
sive IgAN. Compared with that in ethnicity‑matched healthy 
subjects, the Gd‑IgA1 level is increased in patients with IgAN 
and is associated with disease severity (56). Chinese patients 
with IgAN have lower levels of Gd‑IgA1 than Caucasian 
patients (56). This suggests that there may be ethnical differ‑
ences in the pathogenic importance of IgA1 O‑glycosylation 
changes.

Kiryluk et al (57) used in vitro small interfering (si)RNA 
knockdown to demonstrate that C1GALT1 can determine the 
secretion rate of Gd‑IgA1 in serum IgA1‑producing cells. 
Xing et al (58) discovered that C1GALT1 expression in peripheral 
B lymphocytes of patients with IgAN has a negative correlation 
with increased Gd‑IgA1 levels and is markedly downregulated 
compared with the increase of Gd‑IgA1 level. The aforemen‑
tioned study involved 30 patients with IgAN and 30 healthy 
volunteers in China (58). Gd‑IgA1 level was measured by an 
enzyme‑linked immunosorbent assay, and the results revealed 
that Gd‑IgA1 levels ranged between 8.55 and 14.48 U/ml in 
patients with IgAN and between 3.97 and 12.15 U/ml in healthy 
controls (58). In comparison with those in healthy controls, 
Gd‑IGA1 levels were determined to be significantly higher 
in patients with IgAN (P<0.001) (58). By reverse transcrip‑
tion‑quantitative PCR, the expression levels of C1GALT1 were 
detected in peripheral B lymphocytes of both patients with 
IgAN and healthy controls, revealing that C1GALT1 expres‑
sion was significantly downregulated in patients with IgAN 
compared with that in healthy controls (P=0.04) (58). It has 
been suggested that a decrease in C1GALT1 expression in B 
lymphocytes may contribute to the increased production of 
Gd‑IgA1 and eventually lead to IgAN pathogenesis (59). One 
difficulty in exploring the role of C1GALT1 in IgAN is that 
only a small proportion of plasma cells secrete IgA1, which is 
associated with the disease. The identification and isolation of 
these plasma cells are difficult, but it is important for elucidating 
the role of C1GALT1 in IgAN. Studying the real cause of the 
lack of C1GALT1 expression may illustrate the pathogenesis of 
IgAN and contribute to finding new treatments for the disease.
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Tn syndrome. In addition to IgAN, another disease that is 
closely associated with decreased T‑synthase activity is Tn 
syndrome. Tn syndrome is an infrequent blood disorder char‑
acterized by exposure of the Tn antigen on the surface of human 
red blood cells, granulocytes, platelets and lymphocytes (60). 
Patients can present as asymptomatic, or can exhibit mild 
hemolysis, thrombocytopenia and/or leukopenia, which are 
usually considered to be caused by the reaction of Tn antigens 
with naturally occurring anti‑Tn antibodies (61). These anti‑
bodies may be IgM condensation agglutinin‑type and appear 
to be autoantibodies against carbohydrate I antigens on adult 
red blood cells (62). Another possible pathological mechanism 
is the abnormal function of glycoproteins on leukocytes or 
platelets. Since glycoproteins have an important role in the 
function of these cells, changes in glycosylation may impair 
the function of glycoproteins (62).

The expression of Tn antigen and T‑synthase activity 
loss is the result of Cosmc mutation, which has been widely 
confirmed (36,63‑66). A study by Vainchenker et al (60) has 
demonstrated the existence of the Tn antigen on stem cells 
of the Tn clone, and Tn syndrome is derived from acquired 
somatic changes in Cosmc in the early blood progenitor cells. 
Wang et al (67) constructed a mouse model with a targeted 
deletion of Cosmc in hematopoietic cells/endothelial cells 
(EHC Cosmc‑/y), which caused fatal perinatal bleeding in 
~90% of mice. The surviving mice developed macrothrombo‑
cytopenia and severely prolonged caudal bleeding time (67). 
Compared with those in wild‑type (Cosmc+/y) mice, platelets 
in EHC Cosmc‑/y mice were lacking T‑synthase activity. 
The decrease in T‑synthase activity was associated with the 
expression of the Tn antigens on the surfaces of most platelets 
from EHC Cosmc‑/y mice (67). These experiments convinc‑
ingly suggest that thrombocytopenia and hemorrhage in 
patients with Tn syndrome are primarily caused by the lack of 
functional Cosmc.

High expression of Tn antigen is associated with Tn 
syndrome, as well as with cancer (68). According to statistics, 
>70% of human cancers may express Tn antigen, including 
colon (69), breast, ovarian and uterine cervical epithelial 
cancer (70‑72). The expression of Tn antigen is closely associ‑
ated with a poor prognosis, and it is an attractive target for the 
development of new diagnostic and therapeutic methods (70).

Inflammatory bowel disease. Inflammatory bowel disease 
(IBD), consisting of ulcerative colitis (UC) and Crohn's disease 
(CD), is a chronic inflammatory disease. Although the exact 
cause of IBD remains unclear, it is generally believed to be 
jointly caused by environmental factors and genetic suscep‑
tibility. At the same time, intestinal microorganisms serve an 
important role in the occurrence and development of IBD (73). 

The colonic mucus layer is divided into two layers. The 
inner layer adheres to epidermic cells, and in healthy condi‑
tions it is impermeable to bacteria. The primary mucin 
(MUC) secreted by colon cells is MUC2, which is generally 
O‑glycosylated (74) (Fig. 2). Active human UC is associated 
with a mucus layer with structural and functional defects, 
such as a thinner mucus layer and increased permeability to 
bacteria (75,76). Studies have reported that patients with active 
UC have lower levels of carbohydrates in their mucus layer 
compared with those in healthy controls and patients with 

dormant disease (77‑79). Defects in the inner mucus layer 
can result in increased bacterial association with epithelial 
cells, which may trigger inflammation (80). In serum, reduced 
galactosylation of IgG is considered a diagnostic marker for 
IBD disease (80). The function of suitable mucin glycosyl‑
ation is also proven by the fact that mice defective in core 
1derived Oglycans have poor glycosylated MUC2 and develop 
spontaneous colitis resembling UC (75).

Fu et al (75) established a mouse model of colitis evoked 
by intestinal epithelial cells lacking C1GALT1. The clinical 
manifestations and pathological features are very similar to 
those observed in humans (75). The mice developed tran‑
sient colitis immediately at 3 weeks of age, which subsided 
at 6 weeks, but relapsed at 8 weeks; the severity of the disease 
could be reduced by broad‑spectrum antibiotic treatment in 
mice with metronidazole and vancomycin (75). Additionally, 
the mice exhibited colon tumors when they were older. 
Immunohistochemistry and histology proved that these 
tumors were invasive adenocarcinoma, and the tumor tissue 
expressed abundant Tn antigen (75). The association between 
genetic variations in C1GALT1 and the microbiota in hundreds 
of patients with CD and healthy controls has also been 
studied (81). Polymorphisms around C1GALT1 (rs10486157) 
and COMSC (rs4825729) have been associated with changes in 
the composition of the microbiota of the colonic mucosa (81). 
These results support the association between C1GALT1 or 
O‑glycosylation and host regulation of the microbiome and 
suggest a role for the intestinal microbiome in the pathogenesis 
of IBD. Improvements in understanding the molecular etiology 
of IBD, especially pathways involving glycans, may facilitate 
the development of therapeutic drugs.

The high embryonic lethality exhibited by C1GALT1‑
knockout mice prevents the development of an effective 
C1GALT1 deficiency animal model. Simultaneously, it also 
demonstrates that C1GALT1 and O‑glycosylation are vital 
in normal development. One study has demonstrated that 
numerous membrane glycoproteins expressing Tn antigen 
and/or truncated O‑glycans may be dysfunctional due to degra‑
dation and/or folding errors (82). Therefore, the expression of 
normal O‑glycans is associated with health and homeostasis, 
while the truncation of O‑glycans and Tn antigens is associ‑
ated with pathologies. The association between the role of 

Figure 2. Two‑layer mucus system in the colon with a loose, unattached outer 
mucus layer and a tightly attached inner layer. MUC2, mucin 2.
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C1GALT1 in angiogenesis, platelet production and kidneys, 
and the pathways it may regulate requires further research. 

3. C1GALT1 as an oncogene

C1GALT1 functions as an oncogene in some cases. The role of 
the gene in tumor cells and its association with different types 
of related signaling pathways and molecules have been shown 
in previous research.

Liver cancer. It is known that O‑glycosylation can regu‑
late receptor tyrosine kinases (RTKs), such as fibroblast 
growth factor receptor 2, MET and epidermal growth factor 
receptor (EGFR) (27,83‑86). Changes in RTK activities are 
associated with cancer progression and occurrence (27). The 
hepatocyte growth factor (HGF)/c‑Met signaling pathway 
is important in tumor invasion and metastasis (87). The 
HGF/c‑Met axis is involved in cell proliferation, movement, 
differentiation, invasion, angiogenesis and apoptosis via acti‑
vation of multiple downstream signaling pathways (87‑89). 
C1GALT1 can activate the HGF/c‑Met signaling pathway 
and increase mucin O‑glycan expression in liver cancer cells, 
which promotes the proliferation of cells (27). High protein 
and mRNA expression levels of C1GALT1 are usually associ‑
ated with a poor prognosis and metastasis in hepatocellular 
carcinoma tumors (27). Overexpression of C1GALT1 in hepa‑
tocellular carcinoma activates the HGF signaling pathway 
through the regulation of dimerization and O‑glycosylation 
level of the MET protein (27). Additionally, C1GALT1 expres‑
sion can regulate the proliferation and viability of hepatoma 
cells both in vivo and in vitro (27).

Wu et al (27) reported that C1GALT1 enhanced cell 
proliferation triggered by HGF through MET. The afore‑
mentioned study revealed that C1GALT1 expression was 
upregulated in hepatocellular carcinoma. According to the 
immunohistochemical analysis of 32 non‑tumor liver tissues 
and 72 primary hepatocellular carcinoma tissue specimens, 
C1GALT1 expression was upregulated in 54% of hepatocel‑
lular carcinoma tissues, but only in 19% of non‑neoplastic liver 
tissues (Mann‑Whitney U test, P=0.002) (27). Compared with 
non‑tumor liver tissues, C1GALT1 expression was frequently 
upregulated in hepatocellular carcinoma tumors. High 
C1GALT1 expression was associated with poor prognosis and 
tumor metastasis (27). Moreover, the study revealed an impor‑
tant correlation between the expression levels of phospho‑MET 
and C1GALT1 (R=20.73, P<0.0001) (27). Additionally, MET 
dimerization and phosphorylation were decreased by knocking 
out C1GALT1 in hepatocellular carcinoma cells, and MET 
HGF‑induced activation was enhanced by C1GALT1 over‑
expression (27). The trypan blue rejection test revealed that 
C1GALT1‑enhanced cell viability was significantly inhibited 
by blocked MET activity (27). The proliferation of the cells 
was decreased by knocking out C1GALT1 through HGF (27).
On the contrary, the HGF‑induced cell proliferation was 
enhanced by C1GALT1 overexpression (27). Therefore, the 
aforementioned study offers new insights into glycosylation in 
the regulation of RTK activities. 

Gastric cancer. According to preclinical patterns of gastric 
cancer, activation of the HGF/c‑Met signaling pathway is able 

to improve EMT (27,90); nevertheless, further studies are 
required to determine whether C1GALT1 can promote tumor 
malignancy or activate the HGF/c‑Met signaling pathway in 
gastric cancer cells. One study has revealed that changes in 
RTK genome have been observed in ~37% of patients with 
gastric cancer (91). The occurrence and development of gastric 
cancer is promoted actively by RTK, which is considered as a 
target for cancer treatment (92,93).

The ephrin (EPH) receptor is the largest of the RTK 
family and is usually upregulating in tumors, which promotes 
tumor development (94‑97). These receptors are popular 
drug targets (98,99). The human EPH receptor consists of 
a neighboring EPHA and five EPHB domains. Ephrin A1 
is a ligand of the EPHA receptor and has been shown to be 
upregulated in gastric cancer, promoting EMT (100,101). 
Lee et al (28) observed that C1GALT1 expression increased 
in gastric adenocarcinoma and was associated with a poor 
prognosis. Soluble ephrin A1‑mediated cell migration is 
promoted by C1GALT1 through the activation of EPHA2 in 
gastric cancer. Immunohistochemical staining of 25 cases 
of gastric adenocarcinoma revealed that C1GALT1 protein 
expression was higher in 80% of the gastric adenocarcinoma 
tissues than in matched non‑tumor gastric tissues, and the low 
expression levels of C1GALT1 protein were observed in only 
4% of the cases (28). In addition to lymph node metastasis 
and tumor invasion, high C1GALT1 expression is often asso‑
ciated with higher histological grade and advanced cancer 
stage (stage III and IV), and it is an independent prognostic 
factor of poor survival (28). C1GALT1 silencing inhibits 
gastric cancer cell invasion, migration and viability (MKN45 
and AGS cells), as well as metastasis and tumor growth (28). 
C1GALT1‑knockdown in AGS cells affects multiple functional 
pathways. Silencing C1GALT1 decreases phosphorylation and 
O‑glycation levels of HER2 and EGFR, as well as inhibiting 
gastric cancer cell migration (28). Although other pathways 
are also involved, the viability of cells may be promoted by 
C1GALT1 at least in part through the activation of HER2 
and EGFR. 

Prostate cancer. There is increasing evidence that galectins 
may interact with abnormal glycosylation and may be asso‑
ciated with cancer progression. Galectin‑4 expression is 
consistently lower in patients with primary prostate cancer 
compared with in patients with lethal metastatic prostate 
cancer (102). Galectin‑4 activates HER2, EGFR, IGF1 and 
HER3 receptors in a carbohydrate‑dependent manner (102). 
Tsai et al (102) discovered that C1GALT1 expression in primary 
tumors is lower than that in castration‑resistant prostate cancer. 
In metastatic prostate cancer samples, it was demonstrated 
by immunohistochemical analysis that C1GALT1 was highly 
expressed in 70% of the samples, and this high expression was 
closely associated with advanced tumor stage (102). During 
prostate cancer progression, C1GALT1 expression is increased 
and castration resistance is promoted. Notably, metastatic 
prostate cancer cell lines exhibit high C1GALT1 gene and 
protein expression levels (102). The aforementioned findings 
indicate that there is a close association between tumor malig‑
nant transformation and the change of protein O‑glycosylation 
and castration resistance. Tumor metastasis may be promoted 
through interaction with lectin in prostate cancer. Therefore, 
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the significance of O‑glycosylation in tumor diagnosis and 
treatment required to be further explored.

Esophageal cancer. MUC1 is a type I transmembrane 
mucin, consisting of two subunits, MUC1‑N and MUC1‑C. 
High MUC1 expression is associated with a poor prognosis 
and tumor progression in different types of cancer, making 
it an oncoprotein (103‑106). MUC1 can regulate the WNT 
signaling pathway by forming intracellular complexes with 
β‑catenin, which in turn can co‑activate the expression of 
cyclin‑D1 in the nucleus, ultimately promoting tumorigenesis 
by allowing cancer cells to avoid apoptotic pathways (107). 
MUC1 is greatly expressed in esophageal squamous cell 
carcinoma (ESCC) and ESCC cell migration and invasion can 
be inhibited by silencing MUC1. 

Wang et al (108) analyzed MUC1 expression through 
a large‑scale database. MUC1 gene copy number in 102 
ESCC tumor samples among 132 ESCC samples was greatly 
lower than that in 30 cases of adjacent esophageal squa‑
mous epithelium. Wang et al (108) also analyzed C1GALT1 
expression through the large‑scale ONCOMINE database. 
The average gene copy number of C1GALT1 in 30 ESCC 
samples was higher than that in 102 normal esophageal 
epithelia (108). These data indicate that both MUC1 and 
C1GALT1 are abundantly expressed in ESCC. In addi‑
tion, 7 of the 10 pairs of ESCC samples with high MUC1 
O‑glycosylation had significantly higher expression levels 
of C1GALT1 than normal tissues, indicating that C1GALT1 
was positively associated with MUC1 O‑glycosylation in 
ESCC (108). MUC1 O‑glycosylation/C1GALT1 expres‑
sion in ESCC without lymph node metastasis was greatly 
lower in ESCC with lymph node metastasis, and there 
was a negative association between survival and MUC1 
O‑glycosylation/C1GALT1 co‑expression (108). The afore‑
mentioned results suggest that it is possible for MUC1 
O‑glycosylation/C1GALT1 to be prognostic elements and 
have diagnostic significance in ESCC, which proposes new 
insights for targeting MUC1 O‑glycosylation and C1GALT1 
for inhibiting ESCC metastasis.

Zhang et al (51) demonstrated the role of C1GALT1 expres‑
sion in the development of radioresistant esophageal cancer. 
C1GALT1 protein expression in esophageal cancer tissues was 
higher than that in adjacent normal tissues. Poor prognosis, 
lymph node metastasis and TNM staging were associated with 
upregulation of C1GALT1 expression. In addition, high levels 
of C1GALT1 increased the resistance of esophageal cancer 
cells to radiation therapy (51). Similarly, Dong et al (109) 
demonstrated that C1GALT1 could enhance radiation resis‑
tance and malignant phenotype of laryngeal cancer cells. 
Thus, C1GALT1 is very important in carcinogenic resistance 
to radiotherapy. 

Cholangiocarcinoma. C1GALT1 serves a role in the develop‑
ment of cholangiocarcinoma. Cholangiocarcinoma tissues 
have higher C1GALT1 expression than normal bile ducts (110). 
Additionally, elevated C1GALT1 expression in cancer tissues 
is associated with advanced cell grade, larger tumor size and 
tumor stage (110). The inhibition of C1GALT1 can significantly 
inhibit the viability, migration and invasion of cholangiocarci‑
noma cells, whereas overexpression of C1GALT1 can promote 

these abilities (111). This indicates that C1GALT1 is critical for 
cancer progression in cholangiocarcinoma.

Head and neck cancer. Lin et al (13) demonstrated that 
C1GALT1 expression is upregulated in head and neck squa‑
mous cell carcinoma (HNSCC), and high C1GALT1 expression 
is associated with poor clinicopathological characteristics. In 
addition, C1GALT1 can modify the O‑glycans on the EGFR. 
Previous studies have revealed that O‑glycan modification can 
influence the behavior of cancer cells and their signal transduc‑
tion pathway (27,83,85,112). Phosphorylation RTK array assay in 
HNSCC indicated that the phosphorylation of MET and EGFR 
is mostly decreased by C1GALT1 knockout or knockdown (13). 
The EGFR signaling pathway is important in the invasion 
and survival of tumor cells in HNSCC (113). Lin et al (13) 
provided evidence via mass spectrometry that EGFR has 
GalNAc type O‑glycans, indicating that C1GALT1 can modify 
EGFR. Subsequently, SAS cells overexpressing C1GALT1 
were constructed. The EGF‑induced EGFR phosphorylation at 
Y1068 was improved by C1GALT1 overexpression, and HNSCC 
cell invasion, migration and activity was also improved (13). 
EGF‑EGFR binding affinity was decreased by the knockout of 
C1GALT1 in SAS cells, and the EGFR signaling pathway was 
inhibited. Additionally, the invasion, migration and viability 
of SAS cells treated with erlotinib, an EGFR tyrosine kinase 
inhibitor, were reversed (13). The aforementioned results indi‑
cated that C1GALT1 may change the glycosylation of EGFR. In 
HNSCC cells, C1GALT1 enhances the binding affinity to the 
EGF ligand, as well as phosphorylation of EGFR, increasing 
the malignant phenotype.

Ovarian cancer. Immature truncated O‑glycans have usually 
been detected in the ovarian cancer cells of human beings, 
and evidence indicates that these changes in glycosylation 
expression can contribute to various types of cancer, including 
colon and ovarian cancer, which usually express short 
O‑glycans (114,115).

Chou et al (116) evaluated the prognostic value of 
C1GALT1 expression through analysis of patients with ovarian 
cancer in a public database, generating survival curves of 
each patient. In all patients with ovarian cancer followed for 
20 years, a low overall survival rate was associated with high 
C1GALT1 expression (hazard ratio, 1.19; 95% CI, 1.04‑1.37; 
P=0.014) (116). These results indicate that targeting C1GALT1 
may be a promising strategy for ovarian cancer (116). 
Further research on C1GALT1 is essential for an improved 
understanding of the occurrence of ovarian cancer.

Overall, the aforementioned findings indicate that 
C1GALT1 promotes tumor development. However, in other 
cases, C1GALT1 may also have a tumor‑suppressing effect.

4. C1GALT1 as a tumor suppressor

In the aforementioned types of tumor, C1GALT1 expression 
is usually upregulated during tumorigenesis. However, the 
expression levels of C1GALT1 in colorectal and pancreatic 
cancer are different from the aforementioned types of tumor. 

Pancreatic cancer. The loss of C1GALT1 in mice caused 
increased truncated O‑glycan expression, which caused the 
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metastasis of pancreatic ductal adenocarcinoma (PDAC) (30). 
Genetically engineered KPC and KPCC mice models were 
created by breeding KrasG12D/+, Pdx1‑Cre and LSLTrp53R172H/+ 

with C1galt1loxP/loxP (30). The KPC pattern was adopted to 
create pancreas‑specific C1GALT1 depletion (KPCC mice) 
and monitor pancreatic tumor progression and growth in 
these mice (30). The survival time of KPCC mice (median, 
102 days) was longer compared with that of KPC mice 
(median, 200 days), and KPCC mice developed early pancre‑
atic intraepithelial neoplasia at 3 weeks, PDAC at 5 weeks 
and metastases at 10 weeks compared with KPC mice (30). 
Moreover, metastases to distant organs in KPC mice were 
observed after 20 weeks (30). Compared with other PDAC 
animal patterns, KPCC is considered to be the predominant 
PDAC mouse pattern to present primary metastasis (117,118). 
Compared with KPC mice, pancreatic tumors in KPCC mice 
have been considered to be more metastatic and aggressive, 
and Tn production is increased, while the number of stromata 
is decreased (30). Pathological analysis of tumor tissues has 
shown that most KPCC tumors are poorly differentiated or 
undifferentiated, while most KPC animals have moderate to 
highly differentiated tumors (30). It is worth noting that when 
C1GALT1 is conditionally inactivated without the background 
of carcinogenic mutations, the pancreas appears normal (30). 
This indicates that loss of C1GALT1 alone does not lead to 
the formation of PDAC. Loss of C1GALT1 is associated with 
p53 and KRAS mutations leading to faster progression of 
PDAC (30).

According to experiments performed in cell lines, human 
PDAC cells with C1GALT1 gene knockout have greatly devel‑
oped MUC16 abnormal glycosylation, tumorigenicity and 
invasion, proliferation and increased expression of Tn carbo‑
hydrate antigen compared with a control group (PDAC cells 
without C1GALT1‑knockout) (30). Growth factor receptor 
activation, such as HER2 and EGFR, as well as activation 
of downstream effectors, such as Akt and focal adhesion 
kinase (FAK) proteins, is promoted, and MUC16 activates 
metastasis signals and interacts with FAK (119). PDAC cell 
migration is induced by the activated signals of Akt and 
FAK, which may possibly explain the increased migration 
of C1GALT1‑knockout cells (30). It is necessary to conduct 
further research on this topic in the future. 

Colorectal cancer (CRC). The expression of Tn antigen is 
associated with various types of cancer metastasis and progres‑
sion (120). For example, immature truncated O‑glycans (like 
the Tn antigen) can usually be detected in human CRC (121). 
Bergstrom et al (122) argued that there was no association 
between cancer progression and Tn antigen by adopting a 
CRC murine pattern. Instead, intestinal inflammation has been 
shown to lead to eventual tumorigenesis rather than abnormal 
O‑glycosylation (122). Mice lacking core 1‑derived O‑glycans 
(IECC1galt1‑/‑) developed spontaneous colitis. Between 
18 and 24 months, ~90% of mice developed colon tumors, with 
an average of 3 tumors, of various sizes (122). In vivo analysis 
revealed that Tn exposure itself did not significantly promote 
colon inflammation and tumorigenesis. Thus, the incidence 
of carcinogenesis in patients who have UC may be decreased 
by core inflammatory pathway inhibition. Nevertheless, 
Dong et al (123) indicated that forced knockout of C1GALT1 

in HCT116 cells significantly induced Tn antigen expression 
and contributed to metastasis and progression of CRC. It 
seems that Tn antigen can be adopted as an underlying target 
of therapeutic intervention (124,125). T‑synthase deficiency in 
CRC cells may lead to the activation of the EMT signaling 
pathway. EMT is important in cancer progression (126,127). 
Knockout of C1GALT1 in HCT116 cells can greatly enhance 
the adhesion and proliferation of cells and induce Tn antigen 
expression (123). Moreover, E‑cadherin (a typical epithelial 
marker) was markedly decreased in C1GALT1‑knockout HCT 
116 cells, accompanied by an enhanced expression of mesen‑
chymal markers including snail and fibronectin (123). These 
observations indicate that T‑synthase deficiency can induce 
abnormal O‑glycosylation in cells, subsequently promoting 
carcinogenesis by activating the EMT process (123).

The aforementioned studies reported the dual role of 
C1GALT1 in cancer (carcinogenesis and cancer suppression), 
and the association between this gene and several molecules 
and signaling pathways has been explored. This may provide 
new therapeutic strategies for cancer treatment. Table I shows 
the role of C1GALT1 in different types of cancer.

5. Cosmc and integrin β1

Cosmc is the molecular partner of T‑synthase, helping 
T‑synthetase to fold correctly in the ER (128). This chaperone is 
encoded by Cosmc in the X chromosome (human Xq24, mouse 
Is Xc3). Cosmc is located in the ER. The newly synthesized 
T‑synthase needs Cosmc to avoid incorrect folding, aggregation 
and degradation. Human Cosmc is a type II transmembrane 
protein with 318 amino acids (36). It has a short N‑terminal 
domain, a transmembrane domain and a large C‑terminal domain 
in the cytoplasm, which can independently act as a molecular 
chaperone for T‑synthase (36). Cosmc protein itself does not 
possess galactosyltransferase activity. However, the expression 
of functional T‑synthase must be accompanied by the presence 
of Cosmc (129). There is 26% homology in amino acid sequence 
between human T‑synthase and human Cosmc, indicating that 
they are from the same ancestor (36,129). In humans, Cosmc and 
T‑synthase are universally expressed and work cooperatively, 
but their expression levels vary by tissue or cell type (15,130). 
Zeng et al (131) reported that the promoter structures of Cosmc 
and T‑synthase are similar. The CpG islands in the 5' flanking 
regions of human Cosmc and T‑synthase are gene promoters, 
and they each contain two SP1/3 binding sites (131). Chromatin 
immunoprecipitation analysis and site‑directed mutagenesis 
analysis of any SP1/3 site confirmed the important role of the 
SP1/3 sequence in regulating these two genes (131). In patients 
with Tn syndrome lacking functional Cosmc, T‑synthase activity 
is completely absent, indicating that Cosmc is an important 
partner in the formation of active T‑synthase (131). Upon lack 
of functional Cosmc, T‑synthase will be reversely transported 
from the ER back to the cytoplasm, ubiquitinated and degraded 
in a 26S proteasome‑dependent manner (131).

Lack of Cosmc is fatal to mice embryos (37,132). Knockout 
of Cosmc or T‑synthase in mice causes the expression of Tn 
antigen and embryonic lethality (20,132). Wang et al (132) 
found that mice with obvious absence of Cosmc have lung and 
gastrointestinal bleeding, chylous ascites and growth retarda‑
tion, and this state is similar to the conditional T‑synthase 
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deletion in hematopoietic cells and endothelial cells observed 
in mice. These findings indicate that the lack of O‑glycans in 
endothelial cells can lead to misconnection of blood/lymphatic 

vessels, and that T‑synthase and its molecular chaperone 
Cosmc are both necessary for the proper development of blood 
vessels (21).

Table I. Role of C1GALT1 in different types of cancer.

First author,  Cell   Expression in Type of 
year lines Model Effects cancer cancer (Refs.)

Wang et al,  HA22T,  In vitro,  Regulation of the Upregulation Hepatocellular (87)
2020 PLC5 in vivo,  O‑glycosylation  carcinoma 
  human level of the MET   
  tissue protein activates   
   the HGF signaling   
   pathway   
Zhang et al,  ECa109 In vitro,  Radiation resistance Upregulation Esophageal (51)
2018  in vivo,  is inhibited by  cancer 
  human glycosylation   
  tissue of the modifier   
   β1 integrin   
Lee et al,  AGS In vitro,  Activation of Upregulation Gastric (28)
2020  in vivo,  EPHA2‑promoted  cancer 
  human cell migration   
  tissue mediated by   
   soluble Ephrin A1   
Huang et al,  HUCCT1 In vitro,  C1GALT1‑ Upregulation Cholangiocarcinoma (111)
2015  human knockout inhibits   
  tissue the malignant   
   behavior of bile   
   duct cancer cells   
Lin et al,  OEC‑M1,  In vitro,  C1GALT1‑ Upregulation Head and neck (13)
2018 FaDu in vivo,  knockdown  squamous cell 
  human blocks O‑glycan  carcinoma 
  tissue extension on   
   EGFR and   
   inhibits EGFR   
   signal   
   transduction   
Chou et al,  ES‑2 In vitro,  Regulates the Upregulation Ovarian cancer (116)
2017  human expression of   
  tissue multiple genes   
   associated with   
   tumor stem cells   
   in ovarian cancer   
   cells   
Chugh et al,  T3M4 In vitro,  C1GALT1‑ Downregulation Pancreatic ductal (30)
2018  in vivo,  knockdown  adenocarcinoma 
  human promotes the   
  tissue occurrence and   
   metastasis of   
   pancreatic   
   adenocarcinoma   

C1GALT1, core 1 synthase glycoprotein‑N‑acetylgalactosamine 3‑β‑galactosyltransferase 1; EGFR, epidermal growth factor receptor; 
HGF, hepatocyte growth factor; EPH, ephrin.
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Acquired mutations in Cosmc are associated with a number 
of diseases, such as IgA nephropathy and Tn syndrome. Some 
of the Cosmc gene has genetic deletion in invasive human mela‑
noma LOX cells, while point mutations exist in other cell lines, 
causing Cosmc inactivation and elevating Tn antigen expres‑
sion (64). For example, human cervical cancer cells exhibit 
Cosmc deletion (65). In pancreatic cancer, epigenetic silencing 
by Cosmc promoter methylation leads to inactivation of 
T‑synthase, accompanied by abnormal O‑glycosylation (133). 
Additionally, Cosmc point mutations are found in several 
epithelial samples of patients with UC (75), but it is unclear if 
this is associated with an increased risk of colon cancer. 

Cosmc is required for the functional expression of 
T‑synthase. The expression of Tn antigen and T‑synthase 
activity loss is a result of human Cosmc loss, which is asso‑
ciated with several diseases (60,61,63,66,134‑136), such as 
Tn syndrome (61), IgAN (137) and human tumor (68). Thus, 
although these outcomes do not elucidate the Cosmc chaperone 
impact, the role of Cosmc in O‑glycosylation seems to specifi‑
cally rely on T‑synthase. The proper function of T‑synthase 
requires the molecular chaperone Cosmc, and the integrin β1 
subunit may be involved in mediating these functions.

C1GALT1 can regulate the activity and glycosylation of 
integrin β1 (29). Integrin β1 belongs to the integrin family, 
which consists of transmembrane proteins. It can transduce 
changes in the extracellular mechanical state and chemical 
environment of the cell, which can lead to cytoskeletal changes. 
It participates in a wide range of functional activities, such as 
cell proliferation, invasion, adhesion and inflammation (138). 
According to previous studies, there is a close association 
between integrin β1 and improvement in therapeutic drug 
resistance in different hematopoietic malignancies and solid 
tumors, and drug resistance of tumors is mediated by integrin 
β1 at the cellular level (139,140). A study has indicated that 
blocking integrin β1 inhibits breast cancer cell proliferation and 
induces apoptosis (141). Integrin β1 has a close association with 
TNM grade and tumor size in liver cancer (142). High expres‑
sion levels of integrin β1 are associated with worse survival in 
patients with liver cancer (143). Moreover, a previous study has 
indicated that C1GALT1 induces hepatocellular carcinoma 
cell adhesion to extracellular stroma proteins via integrin β1, 
as well as inducing cancer cell migration and invasion (29). 
C1GALT1 regulates integrin β1 activity as well as its down‑
stream signaling through the modification of the O‑glycan on 
integrin β1 (29,144). The interaction between MET and inte‑
grin in the regulation of development, immunity and invasion 
of cancer cells has been previously reported (145‑147). Since 
HGF‑triggered cell proliferation is enhanced by C1GALT1 via 
MET, it is a reasonable assumption that the signaling pathways 
of MET and integrin β1 promote C1GALT1‑mediated HCC 
malignancies synergistically. These findings further prove that 
mucin‑type O‑glycosylation is important in regulating cancer 
malignancies, indicating that C1GALT1 may be a promising 
therapeutic candidate. 

Targeting integrin β1 with inhibitory antibodies can 
increase the sensitivity of hepatocellular carcinoma cells 
to radiation (148). Moreover, the inhibition of integrin β1 
using antibodies or siRNAs causes dose‑dependent radiation 
sensitization of head and neck cancer cells (149). The down‑
regulation of integrin β1 in laryngeal carcinoma can inhibit 

glycosylation‑mediated radiation resistance (123). In esopha‑
geal cancer, C1GALT1 can regulate the signaling pathway of 
the downstream FAK and modify the O‑glycan structure on 
integrin β1 (51). Moreover, in esophageal cancer cells, inte‑
grin β1 blocking antibodies and FAK inhibitors can enhance 
radiation‑induced apoptosis (51).

In conclusion, the aforementioned results indicate that 
C1GALT1 and integrin β1 signaling pathways can syner‑
gistically promote intrinsic radiation resistance mediated 
by glycosylation, although the detailed mechanism of this 
phenomenon remains elusive. 

6. Itraconazole, an inhibitor of C1GALT1 

Itraconazole is a common antifungal drug with anticancer 
effects. Itraconazole has been beneficial in patients with 
ovarian cancer, recurrent non‑small cell lung cancer, prostate 
cancer and other types of cancer, either as a single drug or in 
combination therapy in clinical trials (150‑153). Lin et al (13) 
proposed itraconazole as a new important C1GALT1 inhibitor 
in head and neck cancer. Lin et al (13) screened the ZINC data‑
base for compounds that could bind to the C1GALT1 protein. 
A total of seven drugs were found not to be standard anticancer 
treatments and had fewer side effects. Only itraconazole 
significantly increased the expression of Tn antigens on several 
cell surfaces (13). At the same time, itraconazole significantly 
decreased the protein expression levels of C1GALT1, while 
mRNA expression was not significantly affected, suggesting 
that itraconazole may affect the protein level of C1GALT1 
through post‑translational modification (13). In general, 
C1GALT1 protein folding errors are transported to the protea‑
some and then degraded (154). The proteasome degradation 
pathway involves ubiquitination, and itraconazole increases 
ubiquitinated C1GALT1. The results of the cell thermal 
displacement analysis revealed that when using itraconazole 
to treat SAS and OEC‑M1 cells, the melting temperature of 
C1GALT1 decreased, and itraconazole decreased the protein 
expression levels of C1GALT1 in a dose‑dependent manner at 
a constant melting temperature (13). Vicia villosa agglutinin 
pull‑down tests indicated that itraconazole increased the Tn 
antigen on EGFR (13). SAS cells that overexpressed C1GALT1 
and OEC‑M1 cells with inhibited C1GALT1 were injected in 
a mouse xenotransplantation model (13). The tumor growth 
rate and volume of SAS cells increased significantly, while the 
tumor growth of OEC‑M1 cells decreased significantly (13). 
C1GALT1‑mediated tumor growth was partially reversed by 
itraconazole in SAS cells (13). The aforementioned results 
indicate that C1GALT1 greatly influences HNSCC, and 
silencing C1GALT1 may potentially be an underlying treat‑
ment for tumors (13). Although C1GALT1 expression in mice 
is partially inhibited by itraconazole, targeting C1GALT1 
via genetic molecular pathways can have great therapeutic 
potential for cancer treatment.

7. Conclusion

Glycosylation is a common, complex and diverse post‑trans‑
lational modification. This diverse polysaccharide has a wide 
scope of biological functions. Mammalian angiogenesis, platelet 
production and kidney development are inseparable from 
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O‑glycosylation. The orderly construction of sugar molecules 
in normal cells involves substrate‑specific glycosyltransfer‑
ases (51,155). C1GALT1 and glycosylation are essential for normal 
development. Impaired T‑synthase activity has been associated 
with different types of human diseases, including inflammatory 
or immune‑mediated diseases, and cancer. The present review 
highlighted the relevance of C1GALT1 in the pathogenesis of 
IgAN, Tn syndrome, IBD and various types of cancer.

The change in glycosylation was discovered in a malignant 
transformation 60 years ago, and this change is considered to 
be one of the hallmarks of human cancer pathogenesis (156). 
Abnormal O‑glycosylation, which found in various types of 
tumor, is very important in metastasis progression (83,157‑159). 
The abnormal O‑glycosylation of proteins on malignant 
tumor cell surface participates in different steps of tumor 
progression and regulates intercellular and intracellular signal 
transduction, thus inducing angiogenesis, EMT, metastasis 
and cell proliferation (157,160). The protein encoded by the 
C1GALT1 gene is a key mucin‑type O‑glycosyltransferase 
located in the Golgi apparatus (17). Galactose transfers to 
Tn antigen with its molecular chaperone Cosmc, forming 
Galβ1‑3GalNAcαSer/Thr structure (T antigen, core 1 
structure) (83). In cases of hepatocellular carcinoma and 
cholangiocarcinoma, C1GALT1 expression is usually upregu‑
lated during tumorigenesis (27,109). Additionally, C1GALT1 
silencing can inhibit cancer cell migration, invasion and prolif‑
eration, which inhibits metastasis and tumor growth (27,28). 
The C1GALT1 and integrin β1 signaling pathways can syner‑
gistically promote glycosylation‑mediated intrinsic radiation 
resistance (149). Abnormal O‑glycosylation is involved in 
the process of EMT (123). In addition, changes in C1GALT1 
expression can cause short O‑glycan expression in different 
types of cancer, which leads to cancer progression (120). 
C1GALT1 expression in mice is inhibited partially by itracon‑
azole (13). Targeting C1GALT1 via genetic molecular pathways 
can have great therapeutic potential for cancer treatment. On 
the contrary, C1GALT1 acts as a tumor suppressor gene in 
colon and pancreatic cancer (30,123). Using samples from 
different sources or at different tumor stages may contribute to 
the observed duality in the C1GALT1 function, rendering the 
true role of this gene still elusive. 

In conclusion, it is of great necessity to implement further 
studies for exploring the role of C1GALT1 and O‑glycosylation, 
as well as its molecular chaperone Cosmc, and their interac‑
tion with different C1GALT1 targets, such as integrin β1, in 
the clinical setting. Future studies will help improve the under‑
standing of certain pathologies and find new ways to treat and 
prevent disease in the future.
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