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INTRODUCTION 
 

Exposure to radiation is an inevitable event in human 

growth, development, and physiological aging. In addition 

to nuclear accidents, nuclear leakage and nuclear war, the 

space radiation following development of aerospace 

projects, medical radiation or tumor radiotherapy in daily 

life and radiation sources applied in consumer goods, all 

have different degrees of radioactivity [1–3]. Irradiation is 

extremely harmful or lethal to human health, and it also 

showed that accumulative radiation exposure leads to 

accelerated hematopoietic aging [4–5] or tissue aging  

[6–8]. Therefore, enhancement of the body resistance to 

radiation and improvement of treatment strategies post-

radiation have been got great attention. Bone marrow 

transplantation (BMT) is one of the major choices in 

saving life and repairing the damaged organs or tissues 

particularly in high-dose radiation, and there is a 

tremendous amount of effort in BMT studies in human or 

animal system [3, 9–11]. Nevertheless, the specific type of 
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ABSTRACT 
 

Accumulative radiation exposure leads to hematopoietic or tissue aging. Whether hematopoietic stem cells (HSCs) 
are involved in lung damage repair in response to radiation remains controversial. The aim of this study is to 
identify if HSC can transdifferentiate to pneumonocytes for radiation-induced damage repair. To this end, HSCs 
from male RosamT/mG mice were isolated by fluorescence-activated cell sorting (FACS) and transplanted into 
lethally irradiated female CD45.1 mice. 4 months after transplantation, transplanted HSC was shown to repair the 
radiation-induced tissue damage, and donor-derived tdTomato (phycoerythrin, PE) red fluorescence cells and 
Ddx3y representing Y chromosome were detected exclusively in female recipient lung epithelial and endothelial 
cells. Co-localization of donor-derived cells and recipient lung tissue cells were observed by laser confocal 
microscopy and image flow cytometry. Furthermore, the results showed HSC transplantation replenished 
radiation-induced lung HSC depletion and the PE positive repaired lung epithelial cells were identified as donor 
HSC origin. The above data suggest that donor HSC may migrate to the injured lung of the recipient and some of 
them can be transdifferentiated to pneumonocytes to repair the injury caused by radiation. 
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contributing cells and their underlying mechanism in 

tissue repair in response to radiation is not fully 

understood. Bone marrow (BM) harbors hematopoietic 

stem cells (HSCs), which differentiate into every type of 

mature blood cells [12]; endothelial cell progenitors; and 

marrow stromal cells, also called mesenchymal stem cells 

(MSCs), which can differentiate into mature cells of 

multiple mesenchymal tissues including fat, bone, and 

cartilage [13]. 

 

Bone marrow-derived cells were widely studied in their 

repair abilities responding to different stimuli or stress,  

in which the plasticity or transdifferentiation was  

proposed as the mechanism for damage repair, but 

controversy on the role of HSCs remains. The pioneering 

transdifferentiation study of HSC from Dr. Krause’s 

group [14], showed that HSC (stained with PKH26+ 

Fr25Lin-) from BM was capable of giving rise to multi-

organ and multi-lineage engraftment in lethally irradiated 

mice, including lung, intestine, stomach, skin, bile, et al, 

especially to lung tissue cells [15–17]. In later studies, a 

series of similar conclusions were drawn that bone 

marrow stem cells possess the ability to transdifferentiate 

to non-hematopoietic tissue cells, such as endothelial 

precursors [18], hepatic cells [19], intestine cells [20], 

brain microglia and macroglia [21], skeletal muscle cells 

[22] and cardiac muscle cells [23, 24]. Notably, most of 

these studies used BM-derived cells as donor cells, not 

HSCs alone. On the other hand, opposing opinions were 

also supported by evidence suggesting that HSCs are 

incapable of transdifferentiating to non-hematopoietic 

cells, especially cardiac muscle cells, represented by 

groups from Dr. Weissman and Dr. Murry [25–27]. There 

are several aspects that might cause the controversy: 

purity in donor cell population, reliability in organ 

damage models, and detection methods. Therefore, further 

studies are warranted to determine the importance and 

efficiency in transdifferentiation of HSCs in response to 

radiation insult. In particular, it is essential to address the 

dispute by optimizing detection techniques, appropriate 

donor mouse model and specific HSC purification, 

suitable recipient mice, and valid controls. The genetically 

modified RosamT/mG mice [28] offer a new opportunity to 

track the fate of HSCs. Almost all the HSCs from the 

mice express high-intensity red fluorescence of tdTotamo. 

So, in this study, we used RosamT/mG mice for HSC donors 

to explore HSC transdifferentiation ability in radiation-

induced tissue damage. 
 

RESULTS 
 

HSC transplantation repaired the radiation induced 

lung damage 
 

To examine if HSC transplantation (HSCT) could  

repair the radiation-induced tissue damage, HSCs 

(CD48-CD150+Lin-Sca-1+c-Kit+) from normal C57 

BL/6 mice and Atg7-/- mice (Atg7f/f;Vav-iCre mice, in 

which the HSC function was severely diminished) [29, 

30] were transplanted into 60Co γ ray 9 Gy lethally 

irradiated CD45.1 mice (Figure 1A). The survival time 

of mice irradiated with lethal dose of 9 Gy was 8-11 

days. Transplantation of HSCs from normal mice 

(HSCT) could save the lives of mice irradiated with 

lethal dose. But HSCs from Atg7f/f;Vav-Cre mice (A7-

VAV-T) couldn’t save the lives of irradiated mice, most 

of which died at about 2 months post transplantation 

(Figure 1B), indicating that normal HSCs could save the 

lives of lethally irradiated mice. The lung coefficient in 

irradiation (IR) group increased as compared to the 

control group; HSCT returned to normal, but A7-Vav-T 

group was still increased, like the IR group (Figure 1C). 

9 Gy IR induced lung pathological alteration in  

mice, including smaller alveolar cavity, thickening 

alveolar septal, inflammatory cell infiltration, bronchial 

epithelial cell structure destruction and hemorrhage 

observed in the HE pathological section, while  

HSCT could alleviate radiation-induced pulmonary 

inflammatory response, most of which returned to 

normal (Figure 1D). The inflammatory factors including 

TNF-ɑ, IL-6, IL-1β, and IL-10 increased significantly in 

IR group, HSCT reduced this damage; In contrast, these 

factors remained high in A7-VAV-T group (Figure 1E). 

ALP (Alkaline phosphatase, assessing lung vascular 

permeability after radiation [31]) was increased in IR 

group and returned to normal in HSCT group, but it was 

getting worse in A7-Vav-T group (Figure 1F). The lung 

epithelial cells (represented by staining of SP-C and T1-

ɑ) and endothelial cells (represented by staining of 

CD31) decreased significantly in A7-VAV-T group as 

compared to the control, but returned to normal in 

HSCT group (Figure 1G). HSCT also repaired other 

tissue damage induced by radiation (Supplementary 

Figure 2A–2H). Together, these data suggested that 

normal HSC could repair the radiation- induced tissue 

damage. 

 
Male donor-derived red fluorescence cells and Y 

chromosome were detected in female recipient lung 

tissue cells 

 

To test whether donor derived cells are present in 

recipient tissue cells, HSCs from male RosamT/mG mice 

were sorted and transplanted into lethally irradiated 

female CD45.1 mice (Figure 2A). 4 months after 

HSCT, the recipient mice were sacrificed, tdTomato/PE 

red fluorescence of donor mice and Ddx3y representing 

Y chromosome were detected in recipient mice. No-

irradiated CD45.1 mice were used as negative control 

(marked as Ctrl); RosamT/mG mice were used as positive 

control (MTG); transplanted mice were marked as 

MTG-T. 
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Figure 1. HSC transplantation repaired the radiation-induced lung damage. (A) Transplantation scheme of HSC (CD48-CD150+Lin-

Sca-1+c-Kit+) from normal C57BL/6 mice and Atg7-/- mice (Atg7f/f;Vav-iCre mice) into 60Co γ ray 9 Gy lethally irradiated CD45.1 mice. (B) The 
survival time of mice in each group, including Ctrl (Control non-irradiated mice), IR (Mice irradiated with lethal dose of 9 Gy), HSCT 
(Transplantation of HSC from normal mice), A7-VAV-T (Transplantation of HSC from Atg7f/f;Vav-iCre mice). N≥10. (C) The lung appearance and 
coefficient in each group. (D) Lung HE pathological alteration in mice, HSCT alleviated radiation-induced pulmonary inflammatory response. 
(E) The inflammatory factors including TNF-ɑ, IL-6, IL-1β, IL-10 expression in each group. (F) ALP indicating lung vascular permeability activity 
in each group. (G) Lung epithelial cells (represented by staining of SP-C and T1-ɑ) and endothelial cells (represented by staining of CD31) 
percentage in each group. N≥4 in C, D, E, F, G. *: p<0.05; **:p<0.01; ***: p<0.001; ****: p<0.0001. 
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Exclusion of blood cells was performed by cardiac 

perfusion and blood cell marker staining. Among the 

non-hematological tissues, lung tissue cells possessed the 

highest PE positive percentage of 3.23% (Figure 2B, 2C). 

With subsequent PE test in lung epithelial cells (E-

Cadherin, SP-C and T1-ɑ) and endothelial cells (CD31), 

it also had around 2%-5% positive PE percentage in 

different cells (after exclusion of contaminated blood 

cells) (Figure 2D). For Ddx3y detection, lung epithelial 

cells (Epithelial marker+/blood Mix FITC-/CD31-) and 

endothelial cells (blood Mix FITC-/CD31+) were sorted 

(Figure 2E), DNA of these cells was extracted and then 

Ddx3y was amplified with quantitative PCR and detected 

by nucleic acid electrophoresis. The results showed that 

Ddx3y was expressed in the female recipient lung 

epithelial cells and it could also be detected in some 

endothelial cells of the female recipient mice (Figure 2F). 

PE red fluorescence could also be detected in the liver 

and intestine tissue cells to some extent, however, not in 

heart and kidney cells (Supplementary Figure 2I); but 

Ddx3y could not be tested in any kinds of these tissues 

(Supplementary Figure 2J). 

 

 
 

Figure 2. Male donor-derived PE red fluorescence cells and Y chromosome were detected in female recipient lung tissue 
cells. (A) HSC from male RosamT/mG mice were sorted and transplanted into lethally irradiated female CD45.1 mice. (B) Flow cytometry 

chart of PE (tdTomato) fluorescence in lung tissue cells with exclusion of blood cells including lineage (CD3, CD8, B220, Gr-1, TER119), 
macrophage (CD11b, F4/80), megakaryocyte (CD41/CD61) and CD45 (marked as Mix). (C) Statistical analysis of PE positive percentage in 
lung tissue cells. (D) PE percentage in lung epithelial cells (E-Cadherin, SP-C and T1-ɑ) and endothelial cells (CD31) (after exclusion of 
blood cells). (E) For Ddx3y detection, lung epithelial cells (Epithelial marker+/blood Mix marker-/CD31-) and endothelial cells (blood Mix 
marker-/CD31+) were sorted. (F) Representative images of Ddx3y expression by amplification with PCR and detection by nucleic acid 
electrophoresis. N≥4 in (C–F). **: p<0.01; ***: p<0.001; ****: p<0.0001. 
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In order to examine if HSC transdifferentiation occurred 

in non-radiation setting, we transplanted HSC of 

RosamT/mG mice into non-irradiated CD45.1 mice, and 

no PE red fluorescence was detectable in any kind of 

tissues of the recipient mice (Data not shown). These 

data together suggested that under radiation injury, 

transplanted HSCs repaired the lung injury at least in 

part through transdifferentiation. 

 

Co-localization of donor-derived cells and recipient 

lung tissue cells were observed 

 

To verify HSC transdifferentiation, confocal immuno-

fluorescence and imaging flow cytometry were carried 

out to observe the morphology of the donor derived 

cells and recipient lung tissue cells. 

 

The image flow cytometry results showed that in MTG-

T group, after exclusion of the blood cells, the PE red 

fluorescence from donor and the recipient lung 

epithelial cell marker SP-C or endothelial cell marker 

CD31 were co-localized, with quantitative analysis 

showing 10% co-localization of SP-C with PE  

(Figure 3A), and 2% co-localization of CD31 with PE 

(Figure 3B). The PE positive cells in the lung were 

sorted, fixed on the slides and stained with lung specific 

marker. This single cell confocal microscope result also 

showed co-localization of PE red fluorescence with 

 

 
 

Figure 3. Co-localization of donor-derived cells and recipient lung tissue cells were observed. (A) The representative images by 
image flow cytometry results of donor derived PE red fluorescence and the recipient lung epithelial cell marker SP-C and (B) endothelial cell 
marker CD31. The right side showed the quantitative analysis of SP-C with PE, CD31 with PE with exclusion of the blood cells (Blood Mix 
antibodies and CD45). (C, D) Representative images of single-cell confocal of PE red fluorescence with lung epithelial cell SP-C and endothelial 
cell CD31 in sorted single PE positive cells of MTG-T group. (E, F) Representative images of confocal co-localizaiton of PE red fluorescence 
with lung epithelial cell marker SP-C, endothelial cell marker CD31 in situ lung section of MTG-T group, DAPI was stained to characterize the 
nucleus. 
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lung epithelial and endothelial cells (Figure 3C, 3D). 

For the in situ lung section, lung epithelial cell marker 

SP-C, E-cadherin, pan-Keratin, and endothelial cell 

marker CD31 were stained, and co-localization of PE 

red fluorescence with these markers were observed by 

confocal microscopy, with DAPI staining to 

characterize the nucleus. It showed co-localization or 

co-expression of PE and SP-C (Figure 3E), PE and 

CD31 (Figure 3F), PE and T1-α (Supplementary 

Figure 3A), PE and P-keratin (Supplementary Figure 

3B), PE and E-Cadherin (Supplementary Figure 3C). 

These data suggested that in morphology, the donor-

derived HSC cells could be transformed to recipient 

lung tissue cells. Moreover, the image flow cytometry 

and single-cell confocal microscope were both at a 

single cell level, the images showed that the 

transformed PE positive cells were all one nucleus, no 

division or fusion shape, which in somewhat excluded 

cell fusion. 

 

HSC transplantation replenished radiation-induced 

lung HSC depletion and the repaired epithelial cells 

were of HSC donor origin 

 

To explore how the BM HSCs repair the injured lung, 

HSPC (stained against LSK) and HSC residency in the 

lung were measured by flow cytometry. HSPC and 

HSC percentage and cell number in the lung all 

decreased significantly in irradiated group (IR). HSCT 

restored the HSPCs and HSCs, including LT-HSCs 

and ST-HSCs, but A7-VAV-T could not restore the 

injured HSCs in the irradiated lung (Figure 4A, 4B). 

To determine the source of these restored HSCs, the 

PE red fluorescence of the HSPCs and HSCs in the 

lung of MTG-T mice was measured, and it showed 

that most of the restored HSCs were donor-origin (Figure 

4C). To investigate the function or gene expression in 

these donor-derived lung cells, the Epi+PE+ and 

Epi+PE- cells in the MTG-T lung were sorted (Figure 

4D), and HSPCs from donor were used as control. The 

Epi+PE+ and Epi+PE- cells both expressed SP-C 

(alveolar type II epithelial cell marker) and AQP-5 

(alveolar type I epithelial cell marker), which 

confirmed the epithelial characteristics of the PE+ cells 

in the lung (Figure 4E). Fgf3 and FLT3 (HSC specific 

genes, [32, 33]) were expressed in the Epi+PE+ cells, 

suggesting that the cells were derived from donor 

HSCs. Fgf10 (Fibroblast growth factor 10) and SOX6 

(SRY-Box Transcription Factor 6), which are involved 

in damage repair [34, 35], were only expressed in the 

Epi+PE+ cells, not in Epi+PE- cells, indicating that 

these PE+ epithelial cells were repaired cells (Figure 

4E). These data further suggested that upon irradiation, 
HSCs from donor BM may migrate to the lungs of the 

recipients and some of them can be transdifferentiated 

into lung epithelial cells to repair the lung injury. 

DISCUSSION 
 

Lung is one of the several moderately radio-sensitive 

organs, and lung epithelial cells are fairly sensitive to 

radiation rays [36, 37]. Radiation-induced lung injury is 

a common complication of acute radiation syndrome and 

chest tumor radiotherapy. Its occurrence is often related 

to the production of reactive oxygen species (ROS), 

enhancement of signal transduction such as tumor 

necrosis factor ɑ, transforming growth factor β and other 

cytokines. These radiation-triggered factors can result in 

early radiation pneumonitis [38] and late radiation-

induced pulmonary fibrosis [39], in which pulmonary 

fibrosis is often associated with lung aging [40]. In 

radiation- induced aging, some small molecules such as 

ABT263 and piperlongumine have been explored for 

novel senolytic agents in aged HSCs of mice or in vitro 

lung fibroblast cells [41–43]. However, for high dose 

radiation diseases, reduction of the acute radiation 

pneumonitis and late pulmonary fibrosis is of great 

importance, especially in the current world facing 

potential nuclear risk. Bone marrow transplantation is 

one of the most important methods for the therapy, 

which could restore hematopoiesis and enhance the 

repair of damaged tissues and organs [44]. But which 

group of cells in bone marrow contribute to the repair 

and how the repair is achieved are still unclear. Many 

studies showed bone marrow MSCs retain their multi-

lineage differentiation capacity; however, studies have 

also shown that MSCs actually enhance the progression 

of lung injuries, suggest that MSCs may have dual 

effects and that may limit the application of MSCs [45]. 

 

Plasticity of HSCs is the ability of HSCs to differentiate 

into a variety of non-hematopoietic tissues. Trans-

differentiation represents the irreversible conversion of 

cells from one differentiated cell type to another. Since 

1998, there have been many exciting discoveries 

indicating that stem cells derived from the BM can 

differentiate into mature, non-hematopoietic cells of 

multiple tissues, including epithelial cells of the lung [46, 

47, 14–24], although opposing results were reported by 

several groups [25–27]. Despite the controversy, these 

positive results suggest that stem cells derived from the 

bone marrow may become valuable tools for cell 

replacement strategies and regenerative medicine in the 

future. But it needs more accurate methods and models to 

verify the existence of transdifferentiation. 

 

To track the fate of bone marrow stem cells (BMSCs), 

researchers usually transplant BMSCs from a donor to a 

recipient that differs genotypically or phenotypically. 

To date, the most commonly used donor specific 
markers are the Y chromosome (in sex-mismatched 

transplantations) and transgenes [48]. Another approach 

to identify donor-derived cells is to use normal mice 
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with genetic polymorphisms that can be detected in all 

daughter cells. The transgenic mice with GFP, EGFP 

and RosamT/mG are mice with genetic fluorescent 

markers [28, 49, 50]. But the genetic stability and 

fluorescence strength in the mice might be different, 

and there might be gene silence occurred. GFP 

transgenic mice are derived from the CMV enhancer of 

chicken β-actin promoter, no convincing evidence has 

shown that all transplanted BM cells or HSCs express 

high intensity of GFP fluorescence [51]. Likewise, 

whether the background auto-fluorescence is expressed 

in the newly differentiated cells is also uncertain, so it is 

difficult to detect the fluorescence signal in the 

recipient. However, the high intensity and stable 

expression of red fluorescence from RosamT/mG mice 

 

 
 

Figure 4. HSC transplantation replenished radiation-induced lung HSC depletion and the repaired epithelial cells were of 
donor origin. (A) Flow cytometry chart of HSPC residency in the lung cells of each group, including Ctrl, IR, A7-VAV-T, HSCT. (B) HSPC and 

HSC cell number in the lung in each group, HSCT restored the HSPC and HSC (LT-HSC and ST-HSC), but A7-VAV-T can’t restore the injured 
HSCs in irradiated lung. (C) PE red fluorescence of the HSPCs and HSCs in the lung of Ctrl, MTG-T and MTG group. (D) To investigate the 
function or gene expression in the donor-derived lung cells, the Epi+PE+, Epi+PE- cells in the MTG-T lung were sorted after exclusion of blood 
Mix cells, Epi markers include E-Cadherin, SP-C and T1-α, and HSPCs from donors were used as control for the experiment. (E) Different gene 
expression including SP-C (alveolar type II epithelial cell marker) and AQP-5 (alveolar type I epithelial cell marker), Fgf3 and FLT3 
(hematopoietic stem cell specific genes), Fgf10 and SOX6 (repair genes related) in Epi+PE+, Epi+PE- cells from recipients and HSPC cells from 
the donors. N≥4. *: p<0.05; **:p<0.01; ***: p<0.001; ****: p<0.0001. 
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used in our study provides a reliable system. The 

genetically modified mice RosamT/mG with a dual 

fluorescents brought new opportunity to track the fate of 

BM stem cells. All the cells from the mice express high 

intensity red fluorescence of tdTotamo (Supplementary 

Figure 1). Therefore, in this study RosamT/mG mice were 

used as HSC donor to explore the transdifferentiation 

repair potential in radiation-induced tissue damage. 

 

As the major and most important stem cells in BM, 

HSCs are one of the widely studied stem cells. The 

labeling and purification of HSCs also developed over 

time. In the 1990s, Weissman et al performed LSK 

markers to label HSPCs, and later, CD34 and Flk2 were 

introduced to distinguish long term and short term 

HSCs [52, 53]. Around 2000s, SLAM family (CD41, 

CD48 and CD150) was used to enrich the HSCs since 

SLAM is stable and widely expressed in different mice 

[54, 55]. Thus, in our study, CD48-CD150+ LSK were 

used for purification and sorting of LT-HSCs. 

 

To confirm HSC transdifferentiation, it needs to satisfy 

one or more of the following criteria: (i) the donor 

derived cell stains with tissue-specific markers; (ii) the 

donor derived cell does not stain with a monoclonal 

antibody to hematopoietic CD45; and (iii) the cell 

exhibits distinctive morphology, indicative of a 

differentiated, nonhematopoietic cell fate [25, 56]. 

 

With these guidelines, we validated the HSC 

transdifferentiation from several aspects, including 

donor derived transgenic tdTomato/PE red fluorescence 

and genetic marker of Y chromosome in the recipient 

mice, cell morphology of confocal colocalization 

between donor cells and recipient cells, with exclusion 

of the interference of blood cells and cell fusion. First, 

we validated that HSCs from normal mice repaired the 

tissue injury induced by irradiation, including saving 

life of lethally irradiated mice, alleviating radiation-

induced inflammatory response and fibrosis, recovering 

of vascular permeability. With HSC transplantation 

from male RosamT/mG mice to female mice, PE red 

fluorescence and Y chromosome from donor mice were 

detected in recipient lung epithelial cells and endothelial 

cells. The lung epithelial cell marker including E-

cadherin, SP-C of alveolar type II cells, T1-α of alveolar 

type I cells were stained by exclusion of hematopoietic 

cells (lineage cells, CD45 blood cells, macrophage and 

megakaryocytes) and endothelial cells (CD31). CD31 of 

endothelial cells were stained by exclusion of 

hematopoietic cells and lung epithelial cells [57]. Ddx3y 

representing Y chromosome was detected in the female 

recipient lung epithelial cells and endothelial cells. The 
co-localizaiton of donor derived PE fluorescence and 

recipient lung tissue cells were also observed by 

confocal microscopy. These data suggested that donor 

derived HSCs might differentiate to lung epithelial or 

endothelial cells. To exclude the co-localization by cell 

fusion, single cell confocal and image flow cytometry 

were performed. The transdifferentiated donor derived 

lung epithelial cells were proved to be single cells and 

single nucleus from the results. Last, the donor-derived 

epithelial cells were verified from HSC origin and 

characterized of epithelial cells and repaired cells. 

These data suggested that HSC transdifferentiated to 

lung pneumonocytes, which contributes to the repair of 

the lung injury imposed by radiation. 

 

Controversies about the transdifferentiation of 

hematopoietic stem cells are mainly resulted from 

different animal systems and methodologies that 

researchers applied, such as the type and age of donor 

mice, the limitations of the analysis methods, and the 

status of the recipients (the source and degree of injury). 

The use of older mice may limit the ability of HSC 

transdifferentiation. Studies have shown that younger 

mice have stronger differentiation ability than old mice 

[58]. The purification of HSCs is another critical point. 

The marker used by Krause's team (which supported 

transdifferentiation) at that time might not be very 

accurate (PKH26+Fr25Lin- marker) for HSCs [14], so 

the extensive transdifferentiation phenomenon detected 

might be false positive. Kotton DN et al used SP cells to 

mark HSCs, they didn’t observe the reconstitution [59]. 

Third, the injury of recipients may be an essential point 

for triggering transdifferentiation. The type and degree 

of injury may affect the transdifferentiation ability of 

HSCs, and there might be a threshold injury required for 

triggering transdifferentiation [60–62]. So donor- 

derived cells were undetectable in recipient mice 

without irradiation. 

 

Up to all, we speculate that the transdifferentiation of 

hematopoietic stem cells may not be a normal 

physiological phenomenon, but more likely to be one of 

the repair mechanisms of tissues and organs in the  

non-physiological injury of the body, and the 

transdifferentiation may be limited to certain tissues 

such as the lung tissue that possesses special structure. 

Lung tissue acts as the barrier of blood gas exchange 

and provides oxygen and fresh arterial blood for the 

body. There are abundant capillaries in lung tissue. 

Recently, the lung has been identified as one of the 

organs for platelet production and as an organ for 

storing hematopoietic stem and progenitor cells [63, 

64]. So we conjecture that in the case of radiation 

damage (including hematopoietic and non-

hematopoietic damage), after HSC transplantation, the 

donor HSCs reconstitute the hematopoietic system first, 

and subsequently, the repaired HSC might enter the 

injured lung, thereby initiating lung repair cascade. In 

addition, the increase of lung growth factors (such as 
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Fgf10) and transcription factors (such as SOX6) might 

promote the transdifferentiation of HSC to lung 

epithelial or endothelial cells through paracrine or 

nuclear transcription (Figure 5 illustrates the cartoon of 

HSCs transdifferentiation to pneumonocytes for 

irradiated lung repair). Nevertheless, the mechanism 

responsible for HSC transdifferentiation remains to be 

resolved in our future study. 

 

 
 

Figure 5. A cartoon illustrating HSCs transdifferentiation to pneumonocytes for irradiated lung repair. The cartoon illustrates 
HSCs transdifferentiate into the lung cells under certain injury such as irradiation. Irradiation induced lung bronchial epithelial cell structure 
destruction, inflammatory cell infiltration and fibrous hyperplasia and impaired HSC residency in the lung. After HSCT, donor HSCs migrate 
into the injured lung, and some of them can be transdifferentiated to lung epithelial and endothelial cells to repair the injury imposed by 
irradiation. 
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In summary, we conclude that donor HSCs from bone 

marrow may migrate to the injured lung of the recipient, 

and some of them can be transdifferentiated to lung 

epithelial and endothelial cells to repair the injury 

caused by radiation. Future study is still warranted to 

illustrate the underlying mechanism for HSC 

transdifferentiation. 

 

MATERIALS AND METHODS 
 

Mice and HSC transplantation 

 

C57BL/6, Atg7f/f;Vav-iCre, RosamT/mG mice were used as 

donors, CD45.1 mice were used as recipients in this 

study. Atg7f/f;Vav-iCre mice were generated by crossing 

Atg7f/f mice (kindly from Dr. Komatsu, Japan and breded 

in our lab) [65, 66] and Vav-iCre mice (purchased from 

the Jackson Laboratory). RosamT/mG mice were kindly 

from Dr. Yulong He lab in Hematology Center of Cyrus 

Tang Medical Institue, Soochow University of China. 

The recipients and donor mice were all 6-8 weeks while 

experiments. Before HSC transplantation, the recipient 

CD45.1 mice were irradiated with 60Co γ-ray lethal dose 

of 9 Gy. HSC (CD48-CD150+LSK) from the donor mice 

were sorted by FACS (BD FACS Aria III, USA) and a 

total of 2000 HSC were transplanted into one recipient 

mouse within 4 hours after irradiation. For lung damage 

repair detection, C57BL/6 and Atg7f/f;Vav-iCre mice 

were as HSC donors (HSCT and A7-VAV-T), non-

irradiated CD45.1 were used as negative control(Ctrl), 

irradiated CD45.1 mice positive control (IR). For trans-

differentiation study, male RosamT/mG mice were used as 

HSC donors (MTG-T), non-irradiated CD45.1 were used 

as negative control (Ctrl), RosamT/mG mice were used as 

positive control (MTG). All experimental procedures 

with animals were approved by Soochow University 

Institutional Animal Care and Use Committee. Reagents 

used in this study were listed in Supplementary Table 1. 

 

Lung damage repair detection 

 

For lung damage repair detection, C57BL/6 and Atg7f/f; 

iVav-Cre mice were as HSC donors. Survival of each 

group (Ctrl, IR, HSCT and A7-VAV-T) was recorded. 

For other experiments, eight weeks after transplantation 

(the IR group was 7 days after irradiation), the mice 

were sacrificed. Lung coefficient was calculated by lung 

weight to mice weight. The pathological changes of lung 

in each group were observed by HE staining. RNA of 

lung tissue was extracted and the relative expression 

levels of inflammatory factors IL-1β, IL-6, TNF-α, IL-

10 in lung tissues of each group were quantified using 

Q-PCR (LightCycler 480 II, Roche, Switzerland) to 

measure radiation-induced inflammatory response. 

Primer sequence were seen in Supplementary Table 2. 

ALP was measured to assess lung vascular permeability 

after radiation by biochemical test. Lung tissue cell (SP-

C of alveolar type II cells, T1-α of alveolar type I cells, 

CD31 of endothelial cells) percentage alteration was 

examined by flow cytometry (Beckman Coulter, USA). 

 

PE fluorescence detection by flow cytometry 

 

To test whether donor derived cells are present in 

recipient tissue, flow cytometry was performed to detect 

the red tdTomato or PE fluorescence in recipient mice. 4 

months after HSCT, the recipient mice were sacrificed, 

cardiac perfusion were performed in mice in order to 

remove the influence of blood cells in circulation. Bone 

marrow, heart, liver, lung, kidney, small intestine of mice 

in each group were taken and digested into single cells by 

collagenase, dispase II and DNase I incubation in 37° C 

for 1 h. Antibodies of blood cells (marked as Mix) 

including lineage (CD3, CD8, B220, Gr-1, TER119), 

macrophage (CD11b, F4/80), megakaryocyte 

(CD41/CD61) and CD45 were stained to subsequently 

exclude the influence of blood cells. After exclusion of 

these cells, PE (tdTomato) fluorescence in tissue single 

cells were detected by flow cytometry (Beckman 

Coulter). PE fluorescence in alveolar type II cells (SP-C), 

alveolar type I cells (T1-α), other epithelial cells (E-

Cadherin), endothelial cells (CD31) was also measured. 

 

Y chromosome detection 

 

To test whether donor-derived Y chromosome are present 

in recipient tissue, Ddx3y represented Y chromosome 

was examined by PCR in recipients lung epithelial cells 

and endothelial cells. Lung epithelial cells (Epithelial 

marker+/blood Mix marker-/CD31-) and endothelial cells 

(blood Mix marker-/CD31+) were sorted by FACS, DNA 

of these cells were extracted and then Ddx3y was 

amplified with PCR and detected by nucleic acid 

electrophoresis. Epithelial markers for sorting include 

SP-C, T1-α and E-Cadherin. Ddx3y primer sequence 

were seen in Supplementary Table 2. 

 

Confocal microscope and image flow cytometry 

 

Confocal microscope (Olympus FV1000MPE, Japan) 

and imaging flow cytometry (Amnis ImageStream 

MarkII, Merck Millipore, USA) were utilized to analyze 

the co-expression between donor marker (tdTomato-red 

fluorescence) and lung epithelial cell markers. For 

confocal microscope, frozen section of lung tissue was 

made after the cardiac perfusion of mice. Lung epithelial 

cell and endothelial cell markers (including Pan-keratin, 

T1-α, SP-C, E-Cadherin and CD31) conjugated with 

FITC and DAPI were stained respectively and observed 
in laser confocal microscope. The co-localization of PE 

and recipient lung cells were inspected. For image flow 

cytometry, lung tissue was digested into single cells and 
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stained with lung epithelial and endothelial cell marker 

(including T1-α, SP-C and CD31) conjugated with APC, 

DAPI, and exclusion with blood cells (described as 

above Mix and CD45). The co-localization of PE 

fluorescence and lung epithelial/endothelial cells were 

quantified by the image flow wizard software. 

 

Statistical analysis 

 

Statistical analyses were performed using SPSS version 

22.0. The statistical significance of the observed 

differences was determined by unpaired t tests. Data 

were expressed as mean ± standard error of the mean 

(SEM). P<0.05 was considered to indicate a statistically 

significant difference. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. PE red fluorescence in donor HSCs and HSCT regenerated the hematopoiesis in the irradiated mice. 
(A) PE red fluorescence in HSC of donor RosamT/mG mice. (B) HSCT recovered the bone marrow injury induced by irradiation in HE pathology. 
(C) HSCT regenerated the peripheral blood cells including WBC (white blood cells), RBC (red blood cells), PLT (platelets), LYM (lymphocytes), 
BASO (basophilic granulocytes), NEUT (neutrophile granulocytes), EOS (eosinophilic granulocytes) and MONO (monocytes). N≥4. *: p<0.05; 
**:p<0.01; ***: p<0.001; ****: p<0.0001. 
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Supplementary Figure 2. HSCT repaired the tissue injury but not through trans-differentiation. (A–D) The tissue appearance and 
coefficient including liver, intestine, heart and kidney in each group. (E–H) The tissue HE pathological section in each group. (I) The PE red 
fluorescence in Blood Mix- CD45- tissue cells in each group. (J) Representative images of Ddx3y expression in each group. N≥4. **:p<0.01; ***: 
p<0.001; ****: p<0.0001. 
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Supplementary Figure 3. Co-localization of donor derived PE fluorescence and recipient lung cells. (A) Co-localization of PE and 

T1-α in recipient Mix-CD45-CD31-T1-α lung cells by image flow cytometry. (B) Co-localization of PE and Pan-Keratin in recipient lung tissues 
by confocal microscope. (C) Co-localization of PE and E-Cadherin in recipient lung tissues by confocal microscope. N≥4.  
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Supplementary Tables 
 

 

Supplementary Table 1. Reagents used in this study. 

Reagents Brand company Catalog No 

CD45 PerCP cy5.5 Invitrogen 45045182 

CD45 APC/cy7 Invitrogen 47045182 

Lineage antibody(CD2,CD3, 

CD5, CD8a, TER119, Gr-1, 

B220) FITC 

BioLegend B220:103205; Ter119:116206; CD4:100406; 

CD8a:100706; CD2:100105; CD3:100204; 

CD5:100606; Gr-1:108406 

CD41 FITC BioLegend 133904 

CD61 FITC BioLegend 11061182 

CD11b FITC BioLegend 101206 

F4/80 FITC BioLegend 123108 

CD48 FITC Invitrogen 11048182 

CD150 APC BioLegend 115918 

Sca-1 PerCP cy5.5 Invitrogen 45598182 

c-Kit APC/cy7 Invitrogen 47117282 

SP-C APC Bioss BS10067R 

T1a APC Bioss BS10673R 

E-Candherin APC BioLegend 147308 

CD31 APC/cy7 BioLegend 102528 

PI BD Biosience 51-66211E 

CD48 APC BioLegend 103412 

CD150 BV421 BD Biosience 566298 

SP-C Abcam ab211326 

CD31 Abcam ab28364 

E-Cad Abcam ab11512 

Goat anti rabbit(AF488) Abcam ab150077 

Pan-Keratin   Cell Signaling Technology 4523s 

DAPI Beyotime C1002 

Sca-1 AF700 Invitrogen 56598182 

Collagenase  Sigma C2674 

DNase I Sigma D5025 

Dispase II Sigma D4693 

MicroElute RNA Kit Omega R6831 
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Supplementary Table 2. Primers used in this study. 

Primer target  Forward sequences Reverse sequences 

IL-1β GGAGAACCAAGCAACGACAAAATA TGGGGAACTCTGCAGACTCAAAC 

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC 

IL-10 CCAAGCCTTATCGGAAATGA TTTTCACAGGGGAGAAATCG 

TNF-ɑ CCACCACGCTCTTCTGTCTAC AGGGTCTGGGCCATAGAACT 

SP-C ATGGAGAGTCCACCGGATTAC ACCACGATGAGAAGGCGTTTG 

AQP5 TCTTGTGGGGATCTACTTCACC TGAGAGGGGCTGAACCGAT 

Fgf3 GCGCCTATAGCATCCTGGAGATTAC GATCCGTTCCACAAACTCACACTCT 

FLT3 GAGCGACTCCAGCTACGTC ACCCAGTGAAAATATCTCCCAGA 

Fgf10 GAGAAGGCTGTTCTCCTTCACCAAG CTTTGACGGCAACAACTCCGATTTC 

SOX6 AATGCACAAACCTCACTCT AGGTAGACGTATTTCGGAAGGA 

GAPDH AGCTTGTCATCAACGGGAAG TTTGATGTTAGTGGGGTCTCG 

β-actin TCGTGCGTGACATCAAAGAGA GAACCGCTCGTTGCCAATA 

Ddx3y CCAATAGCAGCCGAAGTAGTGGTAG TTAGGGTACAACCAAGCAGGAAGTG 

 


