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ABSTRACT

Motivation: Recent research underlines the importance of fine-
grained knowledge on protein localization. In particular, sub-
compartmental localization in the Golgi apparatus is important,
for example, for the order of reactions performed in glycosylation
pathways or the sorting functions of SNAREs, but is currently poorly
understood.

Results: We assemble a dataset of type Il transmembrane proteins
with experimentally determined sub-Golgi localizations and use this
information to develop a predictor based on the transmembrane
domain of these proteins, making use of a dedicated protein-
structure based kernel in an SVM. Various applications demonstrate
the power of our approach. In particular, comparison with a large set
of glycan structures illustrates the applicability of our predictions on a
‘glycomic’ scale and demonstrates a significant correlation between
sub-Golgi localization and the ordering of different steps in glycan
biosynthesis.

Contact: roeland.vanham@wur.nl

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

A crucial aspect in protein functioning is correct localization within
the cell, and a variety of mechanisms, often based on special
targeting sequences, exist to ensure proper delivery of proteins.
The initial development of predictors such as PSORT I (Nakai
and Kanehisa, 1991) has resulted in a wide array of methods to
predict protein sub-cellular compartment localization on the basis of
sequence information (Emanuelsson, 2002; Gardy and Brinkman,
2006; Schneider and Fechner, 2004). Although the usefulness
of general localization predictors is without doubt, fine-grained
models of cellular processes require insight into sub-compartmental
localization of proteins, e.g. in plasma membrane microdomains
(Buist et al., 2006) or sub-nuclear compartments (Lei and Dai, 2005).

The biologically important secretory pathway consists of among
others ER and Golgi, the latter of which is compartmentalized into
cis-, medial- and trans-Golgi and Trans Golgi Network (TGN). Sub-
Golgi localization is important for various processes. In particular,
N-glycans influence protein conformation, stability and biological
activity (Lehle er al., 2006) and the sequence of additions and

*To whom correspondence should be addressed.

trimmings of N-glycans to and from glycoproteins is governed by the
sub-Golgi location of glycosyltransferases and glycosidases (Colley,
1997). Most of these enzymes are type II transmembrane proteins,
which contain a single pass transmembrane domain (TMD); in
addition, they consist of a cytoplasmic N-terminus and a luminal
stem domain which links the TMD to the luminal C-terminal
catalytic domain (Breton et al., 2006). Various regions have been
implicated specifically as localization signal sequence, depending on
the enzyme being investigated: the length of the TMD (Saint-Jore-
Dupas et al., 2006), the cytoplasmic N-terminal domain (Zerfaoui
et al., 2002), and the combined cytoplasmic, transmembrane and
stem (CTS) regions (Grabenhorst and Conradt, 1999). Experimental
exchange of the CTS domains has been shown to result in altered
enzyme locations with which the glycosidase assembly line could
be redesigned for the production of specific glycan structures
(Czlapinski and Bertozzi, 2006).

A second type of biologically important type II proteins for which
sub-Golgi localization is highly relevant are Golgi SNARESs, which
are involved in vesicle trafficking; the localization of t-SNAREs
determines which vesicles (containing corresponding v-SNARES)
can dock (Puthenveedu and Linstedt, 2005). Experimental
localization of these and other proteins in the Golgi is relatively
easy but sub-Golgi localization requires complicated experimental
approaches and consequently, many proteins are annotated as
Golgi-localized without known sub-Golgi localization.

Different mechanisms have been proposed for Golgi and post-
Golgi localization: (1) the TMD length can play a role according
to the bilayer thickness model for Golgi retention, which proposes
that the shorter TMD of Golgi proteins prevents them from entering
cholesterol-rich transport vesicles destined for the plasma membrane
(Webb et al., 1998); (2) alternatively, the formation of oligomers
within the Golgi may prevent protein movement into transport
vesicles (Colley, 1997). A predictor has been previously developed
for Golgi versus post-Golgi localization, based on hydrophobicity
and frequency of different residues within the TMD of type II
membrane proteins (Yuan and Teasdale, 2002). Here we develop
a predictor specifically for the sub-compartments within the Golgi
part of the secretion pathway: cis-, medial- and trans-Golgi and the
TGN. It is known that the composition of ER, Golgi and plasma-
membranes differs (Mitra et al., 2004; van Meer et al., 2008)
and likewise the membrane composition of the different sub-Golgi
compartments may vary; we therefore reasoned that the TMD of
type Il membrane proteins may contain signatures that help identify
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their preferred location, even though these TMD characteristics
themselves may not be the single driving force that targets these
proteins to their location.

Our approach takes the following steps: (1) assembly of
an exhaustive dataset of experimentally determined sub-Golgi
localization for type II transmembrane proteins; (2) development
of a predictor based on this dataset; we specifically assess whether
the TMD contains enough information to develop such a predictor;
and (3) application of the predictor to several glycosylation-
related enzymes and SNAREs. Because the available amount of
type II transmembrane proteins with known sub-Golgi localization
is small, we followed an innovative approach where we use
additional homologous sequences in the training set of our predictor.
As prediction algorithm we chose the support vector machine
(SVM) algorithm which can incorporate sequence information via
the kernel function. A variety of string-based kernel functions
exist, ranging from bag-of-words kernels (mainly useful for
document classification) to dedicated kernels for protein sequence
analysis, most notably substring spectrum kernels (which count the
occurrence of substrings) and variations e.g. including gaps (Lodhi
et al., 2002). We tailor the definition of the kernel such that it
fits the nature of our biological problem, i.e. prediction based on
TMD sequence. Since the TMD has a well-defined alpha-helical
structure it is rational to take this into account when defining a kernel.
This approach is an example of applying structure-based features in
kernel functions, which to our knowledge has not previously been
explored in depth. Our results show that this approach indeed can
be used to predict sub-Golgi localization, and we provide several
examples of valuable applications of our predictions.

2 METHODS

2.1 Localization dataset and prediction of type IT
membrane proteins

Based on literature search and on entries in the general localization
database Locate (http://locate.imb.uq.edu. au/cgi-bin/display.cgi) (Aturaliya
et al., 2006; Sprenger et al., 2008) a dataset of protein sequences with
known sub-Golgi localization was assembled. Because our main interest
for sub-Golgi localization prediction is related to type II transmembrane
proteins, a first filtering step was to apply transmembrane (TM) helix
prediction to these sequences using TMHMM (Krogh ef al., 2001). Only
sequences predicted to be of the type II transmembrane signature (i.e. with
exactly one TM helix predicted and of ‘N-term in / TM / C-term out’
topology) were retained. Since the number of type Il transmembrane
proteins with experimentally verified sub-Golgi localization information
is rather small, no distinction was made between different species.
Subsequently, these sequences were aligned with Muscle (Edgar, 2004)
and clustered based on sequence identity, in order to prepare a non-
redundant dataset for training and testing. Clustering was performed using
the minimum variance method implemented in the R function hclust
(Murtagh, 1983). The number of clusters was selected by assessing the
inter-cluster sequence identity, which was found to rise sharply above 31
clusters.

For each cluster, additional sequences were obtained based on ENSEMBL
families (Flicek ef al., 2008) if available, and otherwise via BLAST. In both
cases, matching over the full-length amino-acid sequence was required, as
well as a minimum sequence identity of 70%. On these additional sequences,
the same TM-prediction-based filter as described above was applied, but
these predicted TMD sequences were only used for training, not for testing
or validation.

2.2 Amino acid grouping

Different groupings of amino acids were tested in the definition of kernel
features: (1) amino acids with similar dipole and volumes of side chains were
clustered following (Shen et al., 2007) into the following 7 groups: AGYV,
ILFP, YMTS, HNQW, RK, DE and C; (2) we also tested using all 20 amino
acids separately; and (3) a grouping of most similar amino acids based on a
transmembrane substitution matrix (Ng et al., 2000), resulting in the groups
VIM, YF, DE, TS with all other amino acids separately. Because the grouping
based on dipole and volume resulted in the best predictor performance, only
SVM results using this approach are presented here.

2.3 Kernel function and Support Vector Machine
(SVM)

String-based triads: An important choice when applying SVM is how to
define the string kernel that describes the protein sequence. We took as a
starting point the conjoint triad string kernel, as recently proposed in the
context of protein interaction prediction (Shen et al., 2007). To adapt this to
the biological problem at hand, we reasoned that in addition to sequential
triplets, triplets consisting of residues with a fixed linear spacing between
one another might be important, because this determines alignment of such
triplets to specific sides of the transmembrane helix. Thus, we redefined triads
to accommodate a fixed spacing of either O (the original triad definition) or
1, 2 or 3 (non-sequential triads).

3D-structure based triads: Because the results of applying the above
defined string-based kernels indicated the importance of taking into account
structural features of the TMD (see Results), a final kernel was designed
based on observed residue-residue contacts in 3D models of the TMD
helix. These models were obtained by carrying out structure calculations in
CNS (Brunger et al., 1998). CNS topologies were generated with the CNS
script generate_seq.inp. Dihedral angle restraints were defined for backbone
angles phi, —65° +20° and psi —40° 4= 20°, respectively, and hydrogen bond
restraints were defined between each O(i)-N(i+4) pair (lower and upper
bound 2.3 and 3.5 A, respectively) and O(i))-HN(i+4) pair (lower and upper
bound 1.7 and 2.5 A, respectively). The anneal.inp CNS-script was used,
which applies a high-temperature torsion-angle dynamics phase (1000 steps
of 15 fs integration time step at 50 000K) followed by a torsion angle
dynamics cooling phase from 50 000K to OK (1000 steps of 15 fs) and a
second cartesian dynamics cooling phase from 2000K to OK (3000 steps of
5 fs). Ten structures were calculated for each TMD and sorted according to
the total energy, and the lowest energy structure was used to obtain the kernel-
features. Side-chain—side-chain contacts were counted using a distance cutoff
of 3.5A and each triplet of amino acids within this distance cutoff was counted
as one occurrence of a triad, again using the amino acid grouping defined
above. No sequential spacing effects were applied a priori in this case.

As SVM implementation SVMlight (Joachims, 1999) was applied. Using
the observed string- or structure-based triads, for each type of triad v;
(i ranging from 1 to 343 in the case of the grouping of the amino
acids into 7 groups) a normalized count was defined as d;=(f;—min)/max,
where f; is the raw count and min (max) is the minimum (maximum)
over all f;. Since the number of training examples was relatively small
compared to the dimension of the feature space, a linear kernel was
expected to be powerful enough. Leave-one-out cross validation was
applied to optimize the parameter C (trade-off between training error
and margin), for which a grid [1,2,3,4,5,6,7,8,9,10,15,20,25,30] was used.
For the sake of completeness, the radial basis function (RBF) kernel
was also tested, where the additional y parameter was optimized on
a grid [500,200,100,50,10,5,1,0.1,0.01,0.001,0.0005,0.0001]. To obtain an
unbiased performance estimation, an independent ‘leave-one-out’ loop,
following the nested cross-validation setup, as described previously, was used
(Varma and Simon, 2006). Note that this setup avoids erroneously optimistic
estimates obtained by simply using cross-validation to optimize the SVM
parameters. The ‘leave-one-out’ was performed cluster-wise, meaning that
all sequences in one cluster were removed simultaneously.
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Table 1. Test data sets

Dataset Nr. Reference / source
Human-mouse 2x81  http://www.genome.jp/kegg/glycan/GT.html
orthologs ftp://ftp.informatics.jax.org/pub/reports/ HMD_
HumanSequence.rpt
Arabidopsis-rice 2x35 (Dunkley et al., 2006);
orthologs Inparanoid (Remm et al., 2001)
Sialyltransferases 134 (Harduin-Lepers et al., 2005)
SNAREs 145 (Yoshizawa et al., 2006)

2.4 Test sets and applications

The predictor was applied to several small-scale (proteins with multiple
localization, type I membrane proteins, and a multi transmembrane domain
protein) and large-scale protein test sets (see Table 1). The set of predicted
SNAREs from 40 genomes was classified previously based solely on their
SNARE domain (Yoshizawa et al., 2006). From these, we obtained the
145 cases that are predicted orthologs to human and yeast SNAREs with
known cis-Golgi or TGN localization (these include some syntaxins, sec22
and vamp4). Approximately half of these sequences have only one of the
predicted localizations (cis-Golgi or TGN) among the top 5 homologous
sequences according to the analysis in Yoshizawa et al., whereas the other
half have both cis-Golgi and TGN among the top 5 predictions.

In addition, reaction patterns for 97 glycosyltransferases were obtained
as described previously (Kawano et al., 2005). These proteins were filtered
using TMHMM and WoLF PSORT (Horton et al., 2007) (to obtain type
II Golgi-localized proteins). Glycan structures were obtained from KEGG
(Hashimoto et al., 2006). For each of those, a penalty score was calculated
based on the reaction patterns observed for those structures and the predicted
localizations for the associated enzymes. To calculate this score, for each two
subsequent edges connecting monosaccharides in the glycan structure, the
predicted localization of the associated enzymes was mapped, and a penalty
score of +1 was assigned each time the second enzyme was predicted in an
earlier compartment than the first one. The penalty score for each structure
was normalized using the total number of edge-pairs, giving a value between
0.0 and 1.0. These penalties were compared with the scores for random
enzyme-localizations, where the randomization was constructed such that for
enzymes catalyzing the same reaction the number of different localizations
was the same as in the real predictions.

3 RESULTS
3.1 Localization dataset and TMD prediction

In total, a dataset of 102 proteins with known sub-Golgi localization
was obtained. For 64 of these, the relevant type Il transmembrane
topology was predicted by TMHMM. Five of those were discarded
based on multiple locations reported in the literature. The remaining
59 sequences were clustered in order to remove redundant sequences
prior to training, which would otherwise result in unjustified high
performance of the resulting predictor. Figure 1A shows the inter-
cluster sequence identity as a function of the number of clusters;
based on this analysis 31 clusters were selected (Table 2 and
Supplementary Table S1), because the maximum similarity between
clusters rises sharply when using more clusters. The number of
clusters with cis, medial, trans and TGN localization was 12, 6,
4 and 9, respectively (Fig. 1B). Of the 31 clusters, 18 clusters had
only one entry and 13 clusters had multiple entries with consistent
localization, indicating that within these limited sets the available
data is consistent. This is reassuring given the fact that experimental
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Fig. 1. Clustering type II transmembrane sequences with known sub-Golgi
localization. (A) Maximum value for sequence identity between different
clusters versus number of clusters. (B) Distribution of the various cases over
cis (c), medial (m), trans (t) and TGN, for the full dataset (top) and the
clustered dataset (bottom panel); for the latter, the combinations of cases
used in the three separate predictors are shown. N¢jys, number of clusters.

Table 2. Sub-Golgi localization dataset®

Species Cluster members

Cis (107)

Glycine max «-1,2 mannosidase I (0; 0)

Human BCMA peptide (0; 2);
B-1,4 N-acetylgalactosaminyltransferase 2 (1; 21)

Mouse Tmed10 (0; 1)

Pig UDPN- acetyl-D- galactosamine:polypeptide
N-acetylgalactosaminyltransferase (0; 41)

Rat alpha-mannosidase IB (0; 17)

Yeast anplp (1; 0); hoclp (0; 2); mnn10p (0; 2); mnnllp

(0; 2); mnn9p (0; 4); ochlp (0; 0)
Medial (117)

Arabidopsis B1,2-xylosyltransferase (0; 0)

Mouse Lactosylceramide «-2,3-sialyltransferase (1; 13);
mannoside acetyl-glucosaminyltransferase 1 (1; 20);
fukutin related protein (0; 12)

Human Fukutin (1; 19); 8-3GalT6 (1; 5)

Trans (86)

Guinea pig nucleoside diphosphatase (0; 20)

Human SGalT (1; 10); heparan sulfate 6-O-sulfotransferase
(1;17)

Rat GD3 synthase (0; 12)

TGN (89)

Arabidopsis Syp42 (1; 2); AtVTIla (0; 7)

Human STX6 (0; 7)

Mouse mannoside acetylglucosaminyltransferase 3 (1; 16);

GES30 (1; 0); Vtila (1; 5); Ndst2 (1; 0); vamp4
(1; 7); syntaxin 16 (0; 30)

“@For each cluster, one entry is listed; additional number of proteins with experimental
localization information in cluster, and additional number of training sequences obtained
from ENSEMBL or via BLAST are indicated in brackets. For full table including
references see Supporting Information Table 1.

determination of the sub-Golgi localization is difficult. For most of
the clusters, additional training sequences were obtained based on
sequence similarity (see Methods).

We determined the distribution of TMD length for the type II
TMD’s in our dataset and compared these with results for all
plasma-membrane located type II proteins from the Locate database.
This confirmed the suggestion in the literature that Golgi localized
proteins have shorter TMD lengths than plasma proteins (Fig. 2).
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Fig. 2. Histogram of occurrence of predicted TMD lengths for type II
transmembrane proteins, for (A) Golgi (red) and plasma membrane (green)
and (B) 4 different sub-Golgi localizations: cis (red), medial (green), trans
(blue), TGN (purple; colour online).

In the sub-Golgi set, however, there is no clear distinction between
the various compartments. Differences may be artifacts of TMHMM
(Cuthbertson et al., 2005), although a comprehensive comparison
between various TM-predictors showed that TMHMM was among
the best performing tools (Moller et al., 2001). Note that the length
of the TMD-helix may not be directly related to the thickness of the
lipid bilayer as the TMD may be inserted in the membrane under an
angle (Killian and Nyholm, 2006).

3.2 Support Vector Machine (SVM)

To obtain a multiclass classification, three separate predictors were
built: one for cis versus the other three localizations, one for
cis or medial versus trans or TGN, and one for TGN versus
the other three localizations. This particular ordering was chosen
because cis and TGN are the locations with the highest number
of cases, and this ordering coincides with the biologically relevant
order cis—medial—trans—TGN. In addition, it requires only three
separate predictors, in contrast to the approach of testing each
location separately versus the other locations. The cis/medial versus
trans/TGN predictor was used to test the performance of the various
string kernels. Importantly, the error estimates that we provide
are based on a nested cross-validation for the SVM parameter
optimization, which precludes over-optimistic estimates based on
a ‘single’ cross-validation-based optimization. As shown in Table 3,
the highest accuracies were obtained for the linear string kernel using
triads with a spacing of 3 or 2 between the subsequent residues in
the triad (69 and 73%, respectively). Notably, this spacing coincides
with the average rise in one helical turn, which is 3.6 amino acid
(spacing of 2.6). In Figure 3, we illustrate the relation between the
best performing kernel and the structure of an «-helical TMD region,
by indicating for a helical structure some triplets based on a spacing
of 2 for which the constituent residues are indeed proximal in 3D
space.

Because the linear kernels suggested a relationship between
amino acids on the same face of the «-helical TMD, we also
defined a kernel based purely on observed side-chain—side-chain
contacts in modeled structures of the TMD regions. Figure 4
illustrates how the features for this kernel were obtained. This
final predictor improved overall performance to 76%, while in
comparison to the string kernels its accuracy was also more balanced
in the sense that accuracy for cis/medial and for trans/TGN was
comparable (Table 3). Importantly, we tested that this spatial
structure-based kernel captures more than only linear sequence
similarity by analyzing a simple predictor based on sequence identity

Table 3. Performance for cis/medial versus trans/TGN prediction

Kernel Accuracy (%)
Cis/medial Trans/TGN All

Sequence-based

Spacing 1 64.0 43.0 55.2
Spacing 0 73.4 58.5 67.2
Spacing 3 64.2 76.6 69.4
Spacing 2 64.3 84.3 73.0
Structure-based 78.5 72.6 76.1

Sequence-based kernels are designated by the spacing used to defined the triads (0-3);
the structure-based kernel is defined using observed contacts in modeled transmembrane
helices (see Methods for details). Accuracies are reported for cis/medial, trans/TGN and
for all sequences.

Fig. 3. String kernel based on triads with spacing of two amino acids in-
between captures structural effects. Two triads (blue and red, respectively;
colour online) formed by residues with two residues in-between in the
amino acid sequence are shown here for one particular «-helical structure
with sequence SLLYQLIS, using three different points of view for the
same structure. For both triads the constituent residues are visibly close
in 3D-space.

Sequence: [ ]

VVAGSVCFMLILYQYAGP .—% L]
[ \l
-

Restraints: h-bond | i+4

dihedrals g, ¢

Met9-Leu12-Tyr15=MLY

.
Amino acid grouping: C:I Meto L X

[
MLY = YTY .‘"\.<1:"
ﬂ normalization 27 29% i

AAA 1.0 :::- e
AAC 0.25 L 54"
Tyri5s .i:].
YIY 0.5 -
YYA0.25 Pro18

Fig. 4. Flow diagram illustrating the construction of the contact-based kernel
(for details, see Methods). Observation of one specific triplet is indicated,
consisting of Met9, Leul2 and Tyrl5. As indicated, the distance between
Tyrl5 and Prol8 is larger than the cutoff of 3.5 A, meaning that Met9, Tyr15
and Pro18 do not form a triplet (colour figure online).

between the TMD regions. This predictor uses the localization of
the protein whose TMD has the highest sequence identity to the
TMD of the test protein, after removing all sequences that are in
the same cluster as the test protein (an approach similar to the
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cross-validation procedure applied to the SVM-predictor). When
applying this simple sequence-based predictor to the cis/medial
versus trans/TGN prediction, the performance is only 42% (13 out
of 31), and especially ‘medial’ turns out to be difficult to predict
based on sequence identity. Note that the average TMD-sequence-
identity within the clusters is 79% (4/—20%), whereas the average
highest sequence-identity among clusters is only 35% (4-/—3%).

In addition, randomly assigning class labels to each set of
clustered sequences and retraining the SVM-predictor resulted
in much lower performance (47% accuracy), and the same was
true for randomly shuffling the features for every protein, while
keeping the labels to their experimental values (49% accuracy). This
demonstrates that the performance obtained by the SVM-predictor
is non-trivial.

Based on its superior performance, the contact-based kernel was
subsequently applied to develop the two other predictors, cis versus
medial/trans/TGN and TGN versus cis/medial/trans. Table 4 shows
that the performance of those predictors is comparable to that of
the cis/medial versus trans/TGN predictor. For each of these three
predictors we also tested an RBF instead of linear kernel, which
gave comparable results (data not shown).

The simplest way to combine these three predictors is by using
combinatorial logic, e.g. if for a given sequence the cis/medial versus
trans/TGN predictor returns ‘cis/medial’ and the cis versus the rest
predictor returns ‘not cis’ then the prediction would be ‘medial’.
This procedure could lead to inconsistencies, if, for example, in the
above case also, ‘TGN versus the rest’” would be predicted ‘TGN’.
Such inconsistency occurred only once within our data set; for the
remaining cases, Table 5 shows the confusion table. Overall, 19
cases out of 31 are correctly predicted, leading to a (cross-validated)
prediction accuracy of 61%, which is a reasonable performance for
a four-class classification problem.

3.3 Applications

3.3.1 Small scale test sets

Proteins with multiple localizations As a small-scale test,
the predictor was applied to the 5 cases out of the dataset that
have multiple localizations according to the literature (and which
were not used for training or cross-validation). This resulted
in the prediction ‘medial’ for three of them (human «1,3-1,6
mannosidase II, human N-acetyl glucosaminyltransferase I and
human «2,3sialyltransferase) and ‘cis’ for Arabidopsis xyloglucan
galactosyltransferase, which are all among the experimentally found
localizations. For only one case, the yeast guanosine diphosphatase
(cis/medial), the predictor incorrectly predicted ‘zrans’ localization.

Type I membrane proteins In contrast to type II membrane
proteins, the N-terminal domain of type I proteins is located in
the Golgi, and as a consequence, the helical structure of their
TMD has an opposite orientation in the membrane. If the lipid
bilayers of the different sub-Golgi compartments are symmetrical,
then the orientation of the TMD helix in the membrane will not
make any difference for the interactions between the helix and
membrane lipids. In that case our predictor should function equally
well for type II and type I proteins. Of the 14 type I transmembrane
proteins for which we could find an experimentally verified sub-
Golgi localization, 7 were correctly placed by our predictor, giving
50% accuracy. In only one of the 7 mispredicted cases cis-Golgi and
TGN were swapped by the predictor. Compared with an expected

Table 4. Prediction results for three predictors

Predictor Accuracy
Cis Medial trans TGN All
Cis vs. other 48.1 91.3 76.0 92.0 72.8
Cis/medial vs. 75.0 85.6 86.1 66.7 76.1
trans/TGN
TGN vs. other 83.5 92.5 94.4 61.3 80.2

Table 5. Confusion table for combined predictor

Experimental Predicted

Cis Medial Trans TGN
Cis 6 3 1 2
Medial 0 5 0 1
Trans 0 0 3 0
TGN 1 2 1 5

accuracy of 25% for a random 4-class predictor, this shows that our
predictor is reasonably accurate for type I proteins as well, indicating
at most a minor role for membrane asymmetry.

Multiple transmembrane domain proteins It is not obvious
how to handle proteins (15 in total) with multiple transmembrane
domains in our dataset. For one protein, however, protein M from
the avian coronavirus infectious bronchitis virus, it is known that the
first of its membrane spanning domains is involved in its targeting to
the cis-Golgi (Machamer et al., 1993). Our model correctly predicts
this cis-Golgi localization. Interestingly, mutagenesis experiments
indicated that several polar residues lining one face of the helix
would be important for the Golgi localization (Machamer et al.,
1993), which is in line with the idea behind our structure-based
kernel, and indeed most of the triplets found for protein M contain
one or more of those previously identified residues.

3.3.2 Large scale applications

Human glycosyltransferases  On a larger scale, the predictor
was applied to a set of human glycosyltransferases and their mouse
orthologs. This resulted in a consistent prediction across human—
mouse ortholog pairs in over 70% of the cases (57 out of 81 cases).
In addition, differences between ortholog pairs were ‘intermediate’
in the sense that in only 7 of the mismatch cases one of the
pair was predicted ‘cis’ and the other ‘trans’ or ‘TGN’. Most
mismatches involved directly adjacent compartments, e.g. ‘cis’ was
mostly mixed with ‘medial’ and not with ‘trans’. Of course, not all
cases where the prediction was consistent over the two of a pair
are necessarily correct, but because functional differences between
orthologous human and mouse glycosyltransferases can be expected
to be small, it is reassuring that the predictor is reasonably consistent;
the 30% inconsistent predictions would be expected to reflect the
error rate of the predictor. Importantly, comparison with a simple
sequence-similarity-based predictor again showed that this is not
trivial: when for each mouse sequence a prediction is obtained by
looking for the human TMD with the highest sequence identity, in
only 23% of the cases this is identical to the prediction for the real

1783



A.D.J.van Dijk et al.

human ortholog of that mouse sequence. The predictions for the
human and mouse glycosyltransferases and glycosylhydrolases are
shown in Supplementary Table S2.

Plant type Il membrane proteins A similar test was performed
for Arabidopsis — rice orthologs. Of the 35 pairs of type II
transmembrane proteins, 19 pairs had a consistent predicted
localization, again indicating a reasonable accuracy for our predictor.

Animal sialyltransferases  To illustrate how our approach could
be helpful in function prediction, it was applied to a set of putative
animal sialyltransferases (Harduin-Lepers et al., 2005). For 55 out
of a total of 136 sequences that passed the type II transmembrane-
filter, the predicted localization was ‘trans-Golgi’ or ‘TGN’ and
for 52 cases a ‘medial’ localization was predicted. This overall
pattern is in accordance with the expected late localization of
these enzymes. Again, the predicted localizations were reasonably
consistent between orthologs (in 23 out of 26 families the same
localization was predicted for the majority of sequences in that
family). Note that the set of enzymes used here were predicted to
be sialyltransferases based on sequence similarity only. Our sub-
Golgi localization prediction might be taken as indication that the
cis-predicted proteins (29 x) have other enzymatic activities.

SNAREs SNAREs provide specificity in transport vesicle—target
membrane fusion. They contain an N-terminal SNARE domain and
a C-terminal TMD and the predicted function of Golgi-SNAREs
depends critically on their localization (ER-Golgi transport or post-
Golgi transport). We compared our TMD-based predictions with
previous predictions based on homology of the SNARE domain and
found exact overlap in 49% of the cases. This number raised to
70% when only requiring matching of early (cis/medial) versus late
(trans/TGN). Our predictions turn out to match much better with
the unambiguous SNARE-domain-based predictions as compared
to the ambiguous SNARE-domain-based predictions (57% exact
correspondence versus 34% exact correspondence); for details, see
Methods. This suggests that our predictor is helpful in discriminating
between those ambiguous cases.

3.3.3  Consistency of predicted localizations with glycan structures
As ‘glycomic’ type of application of our predictor, we assessed
the consistency of predicted localizations of glycosyltransferases
with available glycan structures in KEGG (Hashimoto et al.,
2006). The link between the glycan structures and the predictor is
formed by ‘reaction patterns’ that reflect the substrate specificity
of glycosyltransferases which can be mapped onto the glycans.
Sequences and reaction patterns were obtained as described
previously (Kawano et al., 2005) and after filtering with TMHMM
and WoLF PSORT 37 enzymes remained.

Out of 10460 glycan structures, we could analyze 3651 with
at least one pair of connected edges that both were associated
with one of the 37 enzymes. Our assumption then was that the
observed order of synthesis of the glycan (subsequent addition of
monosaccharide units) should match the predicted localization of
the glycosyltransferases involved. A penalty score was calculated
for each glycan to reflect whether the predicted ordering of those
enzymes indeed matches the ordering observed in the structure
(with value 0.0 for perfect ordering throughout the structure and
1.0 for consistent wrong ordering). The average penalty score
of the predicted localizations (0.116) was much lower than the
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Fig. 5. Assessing consistency of predicted localization with observed
glycan structures in KEGG. (A) Distribution of penalty scores for random
location assignments (histogram); arrow indicates the value for the predicted
localizations. (B) Examples of glycan structures with low penalty score (top
panel) and high penalty score (bottom panel). Order of synthesis is from left
to right.

value of 0.375 one would expect in the case of a random
homogenous distribution of localizations (0.25*0.0 (cis) + 0.25*%0.25
(medial) +0.25%0.5 (trans) +0.25%0.75 (TGN)). A total of 91 out of
100 random location assignments gave a higher average penalty
score than the actual predictions, indicating that with p~0.1 our
predictions matched better to the observed glycan structures in
KEGG. Note that simplifications in our approach are that edges are
only considered pairwise, and that we do not explicitly deal with
retrograde Golgi-transport.

Figure 5 shows the observed average penalty scores for random
location assignments and for our predictor. In addition, two examples
of predictions are shown, one with low and one with high penalty
score. We also assessed for each of the enzymes whether it
consistently was found in pairs of correctly ordered edges. For 24
out of 37, this was the case, giving an accuracy estimate of 65%
which is close to the 61% found by cross-validation. Only in 8 of
the 100 random trials the number of consistently correctly ordered
enzymes is higher than 24, and on average this number is only 17
(+/—5). Note that the penalty score reflects both the accuracy of
our predicted localizations and the more general fact of how well
the glycan structures reflect the specific ordering of synthesis steps.
Thus, our results here both provide additional validation for our sub-
Golgi localization predictions as well as additional evidence for an
‘assembly line’ concept of glycan biosynthesis.

4 DISCUSSION AND CONCLUSION

Attention in experimental protein localization studies is shifting
towards increasing resolution. Here we aim to support this by a
computational analysis and show that our contact-based predictor
confirms that the TMD of type II transmembrane proteins influences
sub-Golgi localization. In contrast to a clear correlation between
TMD-length and Golgi versus post-Golgi localization, no relation
was observed between TMD-length and sub-Golgi localization.
However, the form of the linear sequence-based kernel function that
gave best prediction results coincided with predicted properties of
the TMD in its a-helical conformation, where residues separated in
sequence by 2-3 amino acids are proximal in 3D space. Indeed, by
directly defining the kernel based on observed contacts in modeled
3D-structures, an even better performance was obtained. We propose
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that such structure-based features can be of more general use in
protein classification predictions.

There are some reports in the literature about the importance of
combinations of residues at specific sides of the transmembrane
domain for Golgi localization (Machamer et al., 1993; Sousa et al.,
2003). Based on the properties of our best performing kernel
function, we expect these to be of general importance and to
reflect a physical mechanism of interactions with lipids or other
membrane proteins. Note that we currently used results from one
particular transmembrane domain predictor, TMHMM, and it might
be possible to improve somewhat the performance of our method by
incorporating results from additional predictors such as the recently
developed consensus approach MemO (Davis et al., 2006).

A possible extension of our work is to also consider other domains
in the sequence, using e.g. motif-occurrence or HMMs. In addition,
it is clear that the currently available amount of data is very small,
preventing a full assessment of our approach. In particular, it is
difficult to give a precise estimate of its predictive performance. For
this reason, our work is best seen as the first of a kind, providing
directions for further research. Extending the dataset would enable
further analysis aimed at understanding the mechanism behind sub-
Golgi localization. Our current results already indicate that the
transmembrane domain contains information that is not captured
simply by sequence similarity, but by using a larger dataset it might
be possible to directly extract those features that are most important
for the localization. This could be performed using feature-selection
algorithms (Saeys et al., 2007) and might result in insight into
the roles of, for example, specific protein-lipid or protein—protein
interaction sites. One would also expect that the current analysis,
which only focuses on the TMD, is related to the stability of
type II transmembrane proteins within their correct membrane
environment, whereas analysis of, for example, the cytoplasmic
N-terminal region might result in further understanding of the
localization mechanism itself.

An interesting extension and application of our prediction
algorithm is to combine it with existing approaches for analyzing
the reaction paths leading to specific glycans (Hossler et al., 2006;
Kawano er al., 2005), which currently do not consider localization
information. Here, we already showed that there is a significant
correlation between localization and ordering of the different steps in
glycan biosynthesis. This demonstrates the potential of our predictor
and paves the way towards further exploration and prediction of
glycosyltransferase pathways.
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