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Purpose: To generate the first open dataset of retinal parafoveal optical coherence
tomography angiography (OCTA) imageswith associatedground truthmanual segmen-
tations, and to establish a standard for OCTA image segmentation by surveying a broad
range of state-of-the-art vessel enhancement and binarization procedures.

Methods: Handcrafted filters and neural network architectures were used to perform
vessel enhancement. Thresholding methods and machine learning approaches
were applied to obtain the final binarization. Evaluation was performed by using
pixelwise metrics and newly proposed topological metrics. Finally, we compare the
error in the computation of clinically relevant vascular network metrics (e.g., foveal
avascular zone area and vessel density) across segmentation methods.

Results: Our results show that, for the set of images considered, deep learning archi-
tectures (U-Net and CS-Net) achieve the best performance (Dice = 0.89). For applica-
tionswheremanually segmented data are not available to retrain these approaches, our
findings suggest that optimally oriented flux (OOF) is the best handcrafted filter (Dice
= 0.86). Moreover, our results show up to 25% differences in vessel density accuracy
depending on the segmentation method used.

Conclusions: In this study, we derive and validate the first open dataset of retinal
parafoveal OCTA images with associated ground truth manual segmentations. Our
findings should be taken into account when comparing the results of clinical studies
and performing meta-analyses. Finally, we release our data and source code to support
standardization efforts in OCTA image segmentation.

Translational Relevance: This work establishes a standard for OCTA retinal image
segmentation and introduces the importance of evaluating segmentation performance
in terms of clinically relevant metrics.

Introduction

Anumber of studies have demonstrated that pheno-
types of the retinal vasculature represent impor-
tant biomarkers for early identification of pathologic
conditions such as diabetic retinopathy,1 cardiovascu-

lar disease,2 and neurodegenerative disease.3 There-
fore information regarding structural and functional
changes in the retinal blood vessels can play a crucial
role in the diagnosis and monitoring of these diseases.

Optical coherence tomography angiography
(OCTA) is a novel noninvasive imaging modality
that allows visualization of the microvasculature in
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vivo across retinal layers. It is based on the principle of
repeating multiple OCT B-scans in rapid succession at
each location on the retina. Static tissues will remain
the same, whereas tissues containing flowing blood
cells will show intensity variations over time. OCTA
can provide angiograms at different retinal depths and,
unlike fluorescein angiography, does not require any
dye injection, which may carry the risk of adverse
reactions.4 OCTA diagnosis potential has already been
established in the context of neurovascular disease,
diabetes mellitus before development of retinopa-
thy, and, more recently, in chronic kidney disease
(CKD). In Yoon et al.,5 microvascular characteristics
calculated from OCTA images are compared between
Alzheimer’s disease patients, mild cognitive impair-
ment (MCI) patients, and cognitively intact controls.
Results showed a decrease in vessel density (VD) and
perfusion density (PD) of Alzheimer participants
compared with the MCI and controls, opening to the
possibility that changes in the retinal microvasculature
may mirror small vessel disease in the brain, which is
currently not possible to image clinically.

Multiple studies on diabetic retinopathy have
demonstrated that measurements from the foveal
avascular zone (FAZ), for example, area and acircu-
larity, in OCTA images are discriminant features in
diabetic eyes compared to healthy individuals, even
before retinopathy develops.6,7 Finally, a recent study
on renal impairment8 demonstrated the potential of
OCTA to find associations between changes in the
retina and CKD. OCTA scans revealed a close associa-
tion betweenCKDand lower paracentral retinal vascu-
lar density in hypertensive patients.

Measurements used in these studies are based
on quantifying phenotypes such as vessel density
(VD), fractal dimension (FD), and percentage area
of nonperfusion (PAN), extracted from binary masks
of OCTA images.9,10 However, the accuracy of
these measurements and their reproducibility relies
on the quality of the image segmentation. Because
manual segmentation of blood vessels is a time-
consuming procedure that requires interrater and
intrarater repeatability, there is a necessity to estab-
lish a fast automatedmethod not affected by individual
subjectivity. The development of automated segmenta-
tion algorithms for OCTA images is a novel research
field and no consensus exists in the literature about
the best approaches. For example, in Alibhai et al.11
and Krawitz et al.,12 OCTA phenotypes are calculated
on manually traced vessels. Simple thresholding proce-
dures are used in Nesper et al.,9 Onishi et al.,13 and
Hwang et al.14 Hessian filters followed by threshold-
ing are applied to the original image to enhance vessels
structure in Kim et al.15 and Zhang et al.16 Frame

averaging to enhance vessels has been proposed in
Schmidt et al.17 before applying Sobel filter, hysteresis
thresholding method, and opening and closing proce-
dures for FAZ detection. In Jesus et al.,18 circum-
papillary microvascular density (cpmVD) is computed
without the use of a segmentation method. The
annular area around the optic disc was converted into
a rectangular shape region, and a third-order median
filter was applied to the vector representing column
means of that region. Finally, a spline over the local
maxima is used to estimate the value of the cpmVD.
A convolutional deep neural network approach was
proposed in Prentašic et al.,19 and more recently U-Net
and CS-Net architectures were adapted to OCTA in
Mou et al.20 However, how these different approaches
compare to each other is not known. Furthermore,
it is currently unknown how these methods perform
when it comes to preserving network connectivity
in the segmentation. This is a key aspect that can
enable advanced vascular network phenotyping based
on network science approaches.21,22

In this work, we take advantage of OCTA images
from the PREVENT cohort https://preventdementia.
co.uk/, an ongoing prospective study aimed to predict
early onset of dementia.23 Previous studies have shown
OCTA imaging as a source of biomarkers for neurode-
generative disease,24,25 and together with MRI scans,
OCTA images are being investigated in PREVENT.
We derive and validate the first open dataset of retinal
parafoveal OCTA images with associated ground truth
manual segmentations. Furthermore, we establish a
standard for OCTA image segmentation by survey-
ing a broad range of state-of-the-art vessel enhance-
ment and binarization procedures.We provide themost
comprehensive comparison of these methods under a
unified framework to date. Furthermore, we report on
the importance of preserving full network connectiv-
ity in the segmentation of angiograms to enable deep
vascular phenotyping and introduce two new network
structure evaluation metrics: the largest connected
component ratio (LCC) and the topological similar-
ity score (TopS). Our results show that, for the set of
images considered, the U-Net and CS-Net architecture
achieve the best performance in Dice score (both 0.89),
but the latter reaches a better performance in TopS.
Among the handcrafted filter enhancement methods
from those considered, optimally oriented flux is the
best in both pixelwise and network metrics. Our results
demonstrate that methods with equal Dice score (e.g.,
adaptive thresholding and OOF) can perform substan-
tially different in terms of LCC or TopS. Further-
more, we compare the relative error in the computation
of clinically relevant vascular network metrics (e.g.,
foveal avascular zone area and vessel density) across

https://preventdementia.co.uk/
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Figure 1. (A) Extraction of images from each clinical region of interest: superior, nasal, foveal, inferior, and temporal. (B) Examples (arrows)
of horizontal artifacts in OCTA images.

segmentation methods. Our results show up to 25%
differences in vessel density and 24% in FAZ area
depending on the method employed and that U-
Net outperforms all other methods when investigat-
ing the FAZ. These findings should be considered
when comparing the results of clinical studies and
performing meta-analyses. Finally, we release our data
and source code to support standardization efforts in
OCTA image segmentation.

Methods

Data Acquisition andManual Segmentation

Imaging was performed using the commercial
RTVue-XR Avanti OCT system (OptoVue, Fremont,
CA). Consequent B-scans, each one consisting of
304 × 304 A-scans, were generated in 3 × 3 mm
and 6 × 6 mm fields of view centered at the fovea.
Maximum decorrelation value is used to generate en
face angiograms of superficial, deep, and choriocapil-
laris layers. In this work, we selected images only of the
superficial layer (containing the vasculature enclosed
in the internal limiting membrane layer (ILM) and
the inner plexiform layer (IPL)) with 3 × 3 mm field
of view from left and right eyes of participants with
and without family history of dementia as part of
a prospective study aimed to find early biomarkers
of neurodegenerative diseases (PREVENT). From the
initial 17 participants, we extracted five subimages, one
from each clinical region of interest (ROI): superior,
nasal, inferior, temporal, and foveal (Fig. 1A), and a
target of 55 ROIs among the best quality images was
set for the purpose of this study. Criteria for the exclu-
sion were based on major visible artifacts, such as

very poor signal to noise ratio, stretching and quilt-
ing defects.26 The final 55 ROIs were selected from 11
participants (nine females and two males, aged 44–59,
not presenting any ocular disease), and split into train-
ing (30 ROIs) and test (25 ROIs). Two foveal regions in
the training set presented fragmented avascular zone.27

Manual Segmentation

A number of challenges need to be overcome in
OCTA manual segmentation: images suffer from poor
contrast, low signal to noise ratio and can contain
motion artifacts generated during the scan acquisi-
tion. The most common visible artifacts are vertical
and horizontal line distortions, as shown in Figure 1B.
Furthermore, the fact that images are constructed from
the average of a volume means that, in our segmen-
tation, we cannot distinguish vessels going past each
other at different depths. In general, bigger vessels
appear brighter and easier to trace; however, the small-
est capillaries are challenging to segment and therefore
are affected to subjective interpretation by any given
rater.

Previous OCTA studies have performed manual
continuous blood vessel delineation with or without
consideration of vessel width.19,20 Given the sources
of uncertainty previously described, this approachmay
overinterpret vessel connectivity and suffer from repro-
ducibility issues that remain currently unexplored in
the literature. Instead, we adopted a more conservative
approach and performed pixelwise manual segmen-
tation selecting all pixels enclosed in the vasculature
(using the ITK-SNAP software).28 A previous study
performing pixelwise segmentation29 did not assess the
reproducibility of the segmentations and could not
resolve the finest capillaries in the scans.
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Automated Image Segmentation Methods

Vessel enhancement approaches consist of filters
that improve the contrast between vessels and
background. We chose four well-known handcrafted
filters for blood vessel segmentation, based on imple-
mentation availability and previous applications to
the enhancement of tubular-like structures in retinal
images: Frangi,30 Gabor,31 SCIRD-TS,32 and OOF.33
All of these filters require parameter tuning. In our
case, from a range of possible configurations, we
selected the optimal set of parameters that gave the
best performance when compared to the manual
segmentation (see Supplementary Table S1).

Although handcrafted filters work in many cases,
often real images do not satisfy their assumptions (e.g.,
locally tubular structure and gaussian intensity profile).
To overcome this issue, probabilistic and machine
learning frameworks have been proposed.29,19 In this
study, we considered the latter by adopting three deep
learning architectures. We used a pixelwise convolu-
tional neural network (CNN), U-Net, and the more
recently proposed CS-Net.20 The design of the CNN
for pixelwise classification is based on the one proposed
in Prentašic et al.19 for OCTA segmentation. It consists
of three convolutional layers with rectified linear unit
activation (ReLU), each followed by maxpooling. To
reduce the risk of overfitting, dropout is used before
the last fully connected layer. Cross-entropy and adam
optimizer were used during the learning process. For
each training image we randomly extracted the same
number of vessel and background pixels to balance the
classes. A patch containing the pixel to classify and its
61 × 61 neighborhood is used as input to the network.
More than 200,000 patches were used during the train-
ing. Finally, the probability of belonging to a vessel
or background is then used to generate the enhanced
grayscale image (see Supplementary Table S2).

Developed for biomedical image segmentation, U-
Net is a fully convolutional neural network character-
ized by a contracting path and an expansive path that
confer to the network its U shape. It has proved to
be fast and accurate, even with few training images.
The architecture consists of modules of two repeated
convolutional layers with ReLU activation function
followed by maxpooling for the encoder path, upsam-
pling and two repeated convolutional layers for the
decoder path (see Supplementary Table S3). The lowest
resolution is 8 × 8 pixels, with binary cross-entropy
used as loss function and SGDas optimizer. From each
ROI, 1000 patches of size 32× 32 are extracted to train
the network, for a total of 30,000 training inputs.

Finally, the recently proposed CS-Net was tested
using the same sub-patches procedure previously

described. As U-Net, this architecture is character-
ized by a contractive and an expansive path. However,
between those paths, two other elements are present:
the spatial and channel attention module. The first
uses spatial correlation to acquire global contextual
features; the latter uses changes in intensity across
channels to extract features. Adam optimizer andMSE
loss are used to train the model. Given our initial
sample size, data augmentation (flipping horizontally
or vertically) has been used in all the three archi-
tectures with the 10% of training inputs used as
validation set.

Vessel enhancement is often followed by a thresh-
old step to obtain the vessel binary mask. However,
modern methods employ the enhanced vasculature
as a preliminary step for more advanced binariza-
tion algorithms, such as machine learning (ML) classi-
fiers. In this work we use adaptive thresholding as
baseline binarization procedure, a method that takes
into account spatial variations in illumination34 in a
specified neighborhood of the pixel. We compared this
approach with other binarization methods, support
vector machines (SVMs), random forest (RF), and k-
nearest neighbors (k-NN) as a binarization procedure
in the case of Frangi, Gabor, SCIRD-TS. A two-step
binarization procedure, suggested in Li et al.,35 has
been used in the case of OOF, a global threshold for
larger vessels and adaptive threshold for the smallest
ones. Finally, a global thresholding, based on the shape
of the pixel intensity histogram, is used to binarize
the probability maps obtained from the CNN archi-
tecture, adaptive thresholding is applied to the output
of U-Net, and the Otsu method36 in the case of CS-
Net. After all binarization procedures, morphological
opening is performed to remove small disconnected
pixel structures. In each of the ML binary classifiers,
we used seven features to characterize pixels: intensity-
based features extracted from a 3 × 3 pixel neighbor-
hood (intensity value, range, average, standard devia-
tion, and entropy) and geometric features (the local
curvature information provided by the hessian eigen-
values).37

Segmentation Evaluation

Cohen’s kappa coefficient is a robust statistic for
testing interrater and intrarater variability.38

ConsideringPr(a) andPr(e) as the observed agree-
ment and the chance agreement, respectively, it can be
computed as

κ = Pr (a) − Pr (e)
1 − Pr (e)

. (1)
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In our study Pr(a) is the accuracy in pixel classifi-
cation (vessel vs background) and Pr(e) is the sum of
the probability of both raters randomly selecting vessel
pixels and the probability of both of them randomly
selecting background pixels for a given ROI.

For the ROIs in the test set, pixelwise compari-
son between manual and automated segmentation was
performed using accuracy, precision, recall along with
Dice similarity coefficient defined as

Dice = 2TP
2TP + FP + FN

, (2)

here TP, FP, FN represent true positive, false positive,
and false negative, respectively.

Furthermore, for the evaluation of the global
quality of segmentation, we used the CAL metric
proposed in Gegundez-Arias.39 It is based on three
descriptive features:

• connectivity (C), to assess the fragmentation
degree between segmentations, described mathe-
matically by the formula

C (S,SGT ) = 1 − min
(
1,

|#CSGT − #CS|
#SGT

)
, (3)

where #CS and #CSGT are the number of
connected components in the segmented and
ground truth image, while #SGT is the number of
vessel pixels in the mask;
• area (A), to evaluate the degree of overlapping,
defined as

A (S,SGT ) = #((δα (S) ∩ SGT ) ∪ (S ∩ δα (SGT ))
# (S ∪ SGT )

,

(4)
where δα is a morphological dilation using a disc of
radius α;
• length (L), to capture the degree of coincidence,
described by

L (S,SGT ) = #
((

ϕ (S) ∩ δβSGT
)) ∪ (

δβ (S) ∩ ϕ (SGT )
)

# (ϕ (S) ∪ ϕ (SGT ))
, (5)

where φ indicates a skeletonisation procedure and
δβ is a morphological dilatation using a disc of
radius β.

Considering vessel width and closeness between
capillaries in OCTA images, we set α and β both equal
to 1. The product of C, A, and L, (CAL) results sensi-
tive to the vascular features and takes values in the
range [0,1], with the 0 denoting the worst segmentation
and 1 the perfect segmentation.

Despite CAL contains a connectivity component,
its effect is weighted by the values of area (A) and
length (L) metrics. Hence, we introduce a new metric,

namely the largest connected component ratio (LCC),
with the aim of penalizing those methods that do not
retrieve connections of the vascular network. LCC is
defined as

LCC = 1 − min
(
1,

|#LCCS − #LCCGT |
#LCCGT

)
, (6)

where #LCCS and #LCCGT are the lengths, in terms
of number of pixels, of the largest connected compo-
nent in the skeleton of the segmented and ground truth
images.

The closest to 1 the LCC ratio is, the more similar
is in structure the largest connected component of
the segmented image compared to the ground truth.
Using LCC in conjunction with Dice score, we provide
information about pixelwise similarity and connectiv-
ity. Indeed, a single pixel difference does not affect
Dice; however, it may drastically change the number of
connected components, affecting the LCC ratio.

To evaluate the topological accuracy of segmenta-
tions, we use the concept of persistent homology and
Betti numbers for angiograms described in Hu et al.,40
by introducing the topological similarity score (TopS)
defined as

TopS = 1 − min

(
1,

∣∣β1S − β1GT
∣∣

β1GT

)
, (7)

where β1 is the first Betti number associated with the
image and indicating the counts of one-dimensional
holes, we compute the similarity between topological
structures.

Finally, popular biomarkers in the literature for
OCTA images include vessel density, FAZ area,
and FAZ acircularity index. We investigate how the
segmentationmethod affects thesemetrics by reporting
the relative error against ground truth measurements.
Vessel density is defined as the number of white pixels
over the total number of pixels. To compute FAZ area
and acircularity index, we convert the skeleton of the
image into a graph object where the largest loop (face)
in the network is identified as the FAZ.41 This method
takes into account a continuous boundary; therefore
images with disconnected contour will show greater
FAZ area.

Results

Interrater and Intrarater Agreements

The ground truth dataset contains 55 ROIs
segmented by one rater (rater A). Rater A (Y.G.)
segmented 20 images twice to assess the intrarater
agreement. Another set of 20 images was segmented
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Table 1. Segmentation Performances (Best Method Per Column in Bold)

Method Dice Acc Rec Pre CAL LCC TopS VD

Adaptive thres (AT) 0.86 0.89 0.89 0.92 0.83 0.83 0.70 14%
Frangi + AT 0.83 0.86 0.83 0.93 0.83 0.88 0.72 21%
Gabor + AT 0.77 0.81 0.78 0.87 0.75 0.76 0.59 24%
SCIRD-TS + AT 0.71 0.76 0.74 0.82 0.66 0.68 0.46 25%
OOF 0.86 0.88 0.87 0.92 0.85 0.94 0.80 10%
Frangi + k-NN 0.84 0.87 0.85 0.91 0.86 0.91 0.59 14%
Frangi + SVM 0.85 0.88 0.85 0.93 0.87 0.94 0.76 15%
Frangi + RF 0.85 0.88 0.86 0.92 0.87 0.94 0.75 13%
Gabor + k-NN 0.82 0.84 0.80 0.92 0.84 0.84 0.37 21%
Gabor + SVM 0.83 0.85 0.78 0.94 0.85 0.84 0.45 24%
Gabor + RF 0.83 0.85 0.80 0.93 0.85 0.87 0.45 22%
SCIRD-TS + k-NN 0.72 0.77 0.76 0.82 0.74 0.90 0.35 19%
SCIRD-TS + SVM 0.75 0.79 0.78 0.84 0.75 0.75 0.54 19%
SCIRD-TS + RF 0.74 0.78 0.77 0.83 0.75 0.80 0.65 19%
CNN 0.83 0.86 0.85 0.91 0.85 0.94 0.70 14%
U-Net 0.89 0.91 0.87 0.97 0.90 0.93 0.67 17%
CS-Net 0.89 0.91 0.91 0.93 0.90 0.93 0.83 6%

by rater B (E.B.) to determine the interrater reliability.
Results show good agreements (for each pair k > 0.7)
with an average of 0.8 for the intrarater agreement and
0.77 between operators, which demonstrates that the
proposed approach to segmentation is reproducible.

Automated Approaches for Pixelwise
Classification

Segmentation performances according to the
metrics proposed are shown in Table 1. U-Net and
CS-Net outperform all the other methods, by reaching
a Dice score of 0.89. Among the handcrafted filters,
OOF and Frangi filters achieve good performances
with an average Dice score of 0.86 and 0.85, respec-
tively. Our baseline method, adaptive thresholding
without vessel enhancement, achieves comparable
Dice performance. However, it encounters difficulties
resolving network connectivity as shown by the LCC
and TopS metrics compared to Frangi and OOF.
The use of machine learning methods as binarization
procedure can improve performance compared to
thresholding after Frangi, Gabor and SCIRD-TS both
in terms of pixelwise and network structure accuracy.
Deep learning architectures reach the best results in
LCC ratio (CNN, 0.94, U-Net and CS-Net, 0.93)
together with the OOF (0.94). The highest TopS score
is reached by the CS-Net and OOF, 0.83 and 0.80,
respectively. Moreover, the same two methods achieve
the two lowest vessel density error (6%, and 10%).
Investigating the enhanced images (Fig. 2) we noticed

that each method suffers from different deficiencies.
Frangi filter clusters nearby vessels, losing important
information contained in the microvasculature. Gabor
filter enhances centerlines, performing poorly on
the detection of vessel edges. SCIRD-TS remodels the
vasculature making it more regular and equally spaced.
OOF retrieves the smallest capillaries but overenhances
noise in the foveal region. Figure 3 shows segmentation
results after applying each vessel enhancement method
and best binarization procedure. Figure 4 shows whole
image segmentations with the best handcrafted and
learned filters.

Foveal Avascular Zone

Foveal images are characterized by the presence of
a predominantly dark area free from blood vessels
called the foveal avascular zone (FAZ). We noticed that
handcrafted filters have difficulties with those images,
overenhancing noise in the central region (Supple-
mentary Fig. S1A). This can lead to vessel detection
in the FAZ when segmentation by simple threshold-
ing is applied. Machine learning methods were less
affected by this issue since they learned from the
ground truth data. Motivated by this finding, we inves-
tigated segmentation performance on the 5 different
ROIs. Table 2 shows that, except for CS-Net, the
foveal region has consistently the lowest Dice score
across segmentation methods. Visual inspection of our
segmentations (see Supplementary Figs. S1B, S1C)
reveals that incorrect detection of the boundary of the
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Figure 2. Example of vessel enhancement. Original, ground truth and images after vessel enhancement by using Frangi, Gabor, SCIRD-TS,
OOF, CNN, U-Net, CS-Net.

Figure 3. Vessel segmentation in superior parafoveal OCTA image. Original, ground truth images followed by binary images after vessel
enhancement by using Frangi (+RF), Gabor (+RF), SCIRD-TS (+SVM), OOF, CNN, U-Net, and CS-Net.

Figure 4. Whole image segmentation by using the best three methods, OOF, U-Net, and CS-Net. Optovue RTVue XR Avanti scan logo on
the bottom left corner was removed from the original image.
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Table 2. Dice Score Per ROI (Superior (S), Nasal (N),
Inferior (I), Temporal (T), and Foveal (F)) and FAZ Error
Metrics

Method F S N I T FazE AIE

Adaptive thres (AT) 0.84 0.87 0.88 0.88 0.86 14% 5%
Frangi + AT 0.79 0.86 0.86 0.85 0.85 12% 9%
Gabor + AT 0.75 0.78 0.80 0.75 0.77 13% 10%
SCIRD-TS + AT 0.71 0.73 0.75 0.67 0.71 14% 7%
OOF 0.84 0.86 0.88 0.86 0.85 24% 11%
CNN 0.82 0.84 0.85 0.84 0.83 6% 6%
U-Net 0.87 0.90 0.90 0.90 0.89 5% 4%
CS-Net 0.89 0.89 0.90 0.89 0.88 14% 5%

FAZ leads to important errors in FAZ area (FazE) and
acircularity index (AIE) (see Table 2).

Discussion and Conclusions

Retinal image analysis has demonstrated great
potential for the discovery of biomarkers of eye-
related disease and, more generally, systemic disease
that undirectly affects the eye. Recently, OCTA imaging
has enabled the visualization of the smallest capillar-
ies in the retina without the need of a contrast agent.
However, its potential for the assessment of patho-
logic conditions and the reproducibility of studies
based on it relies on the quality of the image analy-
sis. Automated OCTA image segmentation is an open
problem in the field. In this study, we generate the
first open dataset of retinal parafoveal OCTA images
with associated ground truth manual segmentations.
We pay special attention to segmenting the images in
a reproducible way and demonstrate good inter- and
intra-rater agreement. We present a comparison of
state-of-the-art vessel enhancement and binarization
procedures under a unified computational framework
and make the source code available. By introducing
two novel metrics, we evaluate segmentation quality
measures to guide the identification of the algorithm
that not only provides the best agreement with the
manually segmented images but also achieves the best
preservation of their network structure.

Our study shows that CS-Net reaches the best
performances in almost all the considered evaluation
metrics, suggesting this method as the best segmenta-
tion approach for parafoveal OCTA image segmenta-
tion. Interestingly, OOF achieves segmentation perfor-
mances in line with the neural network architec-
tures without the requirement of extensive manually
segmented images for training purposes. Our results
highlight challenges in the segmentation of the FAZ:

(a) handcrafted filters suffer from noise enhancement
in this region, indicating the necessity of masking
that area or the use of denoising preprocessing proce-
dures and more sophisticated binarization methods
when those filters are applied and (b) disconnections
in FAZ boundaries can arise from poor signal-to-
noise ratio, this can affect its detection and the associ-
ated clinical metrics. Frame averaging and morpho-
logical operations can help in overcoming this issue
as image preprocessing approaches.17 Moreover our
study underlines how clinically relevant metrics used
to analyze OCTA images are sensitive to the segmen-
tation method. Results show up to 25% differences in
vessel density accuracy depending on the method used,
with differences up to 11% for methods with identi-
cal results in terms of pixelwise segmentation Dice and
accuracy, suggesting that precaution should be taken
when comparing the results of clinical studies and
performing meta-analyses. Limitations of our study
include the small sample size, the use of only superfi-
cial layer, and retinal scans captured by a single OCTA
device. Future work will involve the investigation of
the deep retinal layer and the optic nerve, and the
assessment of robustness of our results across OCTA
technologies from multiple manufacturers.

Source Code and Data Availability

OCTA images and rater A (Y.G.) segmentations
are available at https://doi.org/10.7488/ds/2729.
Handcrafted filter code was implemented in
MATLAB R2018b (Version 9.5). Python 3.6.9
was used to build ML methods. Keras library
with Tensorflow backend was used to implement
the CNN and U-Net, and Pytorch for CS-Net.
Gudhi library was used to compute the topolog-
ical metric.42 The source code is available at
https://github.com/giaylenia/OCTA_segm_study.
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