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Abstract: The molecular mechanisms of transferred DNA (T-DNA) integration into the plant genome
are still not completely understood. A large number of integration events have been analyzed in
different species, shedding light on the molecular mechanisms involved, and on the frequent transfer
of vector sequences outside the T-DNA borders, the so-called vector backbone (VB) sequences.
In this work, we characterized 46 transgenic alfalfa (Medicago sativa L.) plants (events), generated
in previous works, for the presence of VB tracts, and sequenced several T-DNA/genomic DNA
(gDNA) junctions. We observed that about 29% of the transgenic events contained VB sequences,
within the range reported in other species. Sequence analysis of the T-DNA/gDNA junctions
evidenced larger deletions at LBs compared to RBs and insertions probably originated by different
integration mechanisms. Overall, our findings in alfalfa are consistent with those in other plant
species. This work extends the knowledge on the molecular events of T-DNA integration and can
help to design better transformation protocols for alfalfa.
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1. Introduction

Agrobacterium tumefaciens is the agent of the crown gall disease, determined by the transfer and
permanent integration of bacterial oncogenes into the genome of infected plant cells. This process
is a natural, cross-kingdom genetic transformation [1,2]. The molecular mechanisms at the basis of
the crown gall disease are well elucidated and its molecular machinery has been exploited to transfer
genes of interest into plants, opening the way to the development of plant genetic engineering.

Plant transformation mediated by Agrobacterium tumefaciens is a mature technique, and since the
first reports in the early 80s, numerous plant species have been genetically engineered, initially dicots
and subsequently also monocots. Agrobacterium-based gene delivery has been constantly improved.
Initially, the natural tumor inducing (Ti) plasmid, containing both the virulence (Vir) genes and the
transferred DNA (T-DNA), was disarmed by substituting the oncogenes in the T-DNA with the
genes of interest. Subsequently, the limitations associated with the large size of the Ti vector were
circumvented by the adoption of the binary vector system, in which the disarmed Ti plasmid still holds
the Vir genes (helper vector) whereas the T-DNA is harbored by a second shuttle vector, assembled
using Escherichia coli (binary vector).

The binary vector system is based on the fact that the Vir genes can act in trans, allowing the
excision of the single strand T-DNA (ssT-DNA) from any other vector, present into the bacterium,
in which the T-DNA is delimited by two 25 bp imperfect repeat sequences named Left and Right Border
(LB, RB). The LB and RB sequences are very similar, therefore recognition as initiation or termination
sites of ssT-DNA synthesis depends on surrounding sequences [3].
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While the molecular mechanisms of ssT-DNA synthesis and transfer to plant cells are well known,
those of integration into the plant genome are still not completely understood. A large number of
integration events have been analyzed in different species with the objective of deducing the molecular
events involved (Table 1). Moreover, by using model species (e.g., yeast, Arabidopsis, tobacco, maize) it
has been possible to identify some of the molecules involved in the integration process [4,5]. The main
findings can be summarized as follows:

1. Upon activation of the Vir gene cascade the ssT-DNA is released by the action of VirD1/VirD2
endonuclease complex; such mechanism involves the transfer of the sequence between the RB
(5′-end) and LB (3′-end) to the host cells through a type IV secretion system [6,7].

2. Sequences exceeding the borders and belonging to the so-called vector backbone (VB) are
frequently transferred along with the ssT-DNA [3]; other bacterial DNA may also enter the
plant cell, including plasmid DNA [8,9] and chromosomal DNA [10–12].

3. Coordinated activity of bacterial and host proteins are necessary for infection and T-DNA
integration, the latter largely relying on host factors [13,14].

4. T-DNA integration into the plant genome follows an “illegitimate” model, that is, integration is
random and not directed by sequence identity, but rather by sequence micro similarities between
the borders and the genome [15,16].

5. The ssT-DNA molecules can be directly integrated according to the model of Tinland [17];
however, such model does not explain the production of complex T-DNA insertions. Therefore,
a model whereby the ssT-DNA is converted into double stranded T-DNA (dsT-DNA) prior to
integration was proposed [5,18–20].

6. The presence of the so-called filler DNA, that is, DNA sequences from unknown sources often
found between tandemly repeated copies of T-DNA or between the borders and the gDNA,
points to a role of the double strand break (DSB) repair machinery in T-DNA integration [5].
The dsT-DNA, that seems to be abundant in Agrobacterium infected plant cells [16], can be
recruited by the plant cell’s own DSB repair machinery, thus leading to end joining between
ds-molecules and/or integration; this pathway could represent the most likely route for T-DNA
integration [21]. Notably, Singer et al. [16] observed the formation of complex T-DNA circular
structures in infected cells resembling the observed complex patterns of integration. Recently,
van Kregten et al. [22] demonstrated the involvement of polymerase theta (Pol θ), a DSB repair
enzyme, in T-DNA integration in Arabidopsis: the primer–template switching ability of this
polymerase can explain the presence of filler DNA.

7. The availability of DSBs could be a limiting factor in the integration of T-DNA; however, a role
of other types of lesions, such as single strand breaks (SSBs) cannot be excluded [4]. DSBs can
be repaired either by the non-homologous end joining (NHEJ) pathway or by the homologous
recombination (HR) pathway; the former seems to be the most frequent in plants, although the
results are contradictory and a potential influence of the method of transformation used and of
the cell type and/or developmental stage have been suggested. The evidences on the chromatin
modifications that are essential for the DSB repair response and important for T-DNA integration
have been reviewed, and models of integrations proposed [4].

Genetic engineering has been successfully established in different legume species, including alfalfa
(Medicago sativa L., 2n = 4x = 32) a very important forage crop worldwide, permitting to introduce
several useful traits [23]. However, a molecular analysis of T-DNA integration events in alfalfa has not
been reported. In this work we characterized several transgenic plants (events), generated in previous
works [24–26], for the presence of VB tracts, and sequenced several T-DNA/genomic DNA junctions.
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Table 1. Percentages of transgenic events containing vector backbone (VB) sequences in different
plant species.

Species Agrobacterium Strain Vector VB % * References

Arabidopsis EHA101, GV3101, LBA4404 pTF101.1, pTF::Bin19, pTF::UCD2, pTF:ri,
pSDM1550, pITC15, pMAW2035HYG 0–68 [9,27,28]

Barley AGL0 pVec8-GFP 48 [29]

Barrel medic EHA105 pSIM843 56 [30]

Canola ABI pMON67438 15 [31]

Creeping bentgrass EHA101 pPMI-GFP, pUHVA1, pAHVA1 3 [32]

Corn ABI pMON92726, pMON65153 30–33 [31,33]

Cotton AGL1 pPZP-GFP 31 [34]

Grapevine LBA4404 pGA643, pBH710 29–50 [35,36]

Maize EHA101, GV3101, LBA4404 pTF101.1, pTF::Bin19, pTF::UCD2, pTF:ri 18–55 [27]

Petunia LBA4404 pFLG5972 22 [37]

Potato LBA4404 pSIM108 72 [38]

Rice LBA4404, AGL1, EHA105
pCXa21K, pC30063, pGreen/pSOUP,

pSK100/200, pEU334NA/NB,
pNU393B2, pGA2144

4–60 [39–42]

Sorghum LBA4404, AGL1 PHP32269 4–26 [43]

Soybean ABI pMON83326 40 [31]

Strawberry LBA4404 pBINPLUS, pGUSINT 67–90 [44]

Tobacco LBA4404, GV3101, EHA105 pBSG-1/BSG-2, pBH710 75–80 [8,36]

Tomato LBA4404 pBH710 67 [36]

Wheat AGL1
pCG181-1G+pCS167-1B, pCG185-1G+

pCS167-1B, pCG185-2G+pAL154,
pCG185-3G+pAL154, pCG185-4G+pAL154

8–62 [45,46]

* For each species the lowest and highest value reported in literature are indicated.

2. Results

2.1. Isolation of Sequences Flanking T-DNA Insertions

2.1.1. LB Junctions

The junctions between the LB and the gDNA were characterized in 13/46 events (28%).
Two sequences were amplified from each of two transgenic events (B10 and D9), thus indicating
the integration of two distinct T-DNAs (Figure 1). In two events (B1 and D1a) the junctions were
between VB sequences, linked to an intact LB, and the gDNA (Figure 1): 26 and 346 bp of VB beyond
the LB were transferred in these events, respectively. In one event (B9) the presence of a short inverted
repeat of a T-DNA sequence was found.

Sequences characterized by an intact LB with the adjacent VB without any detectable junction
with gDNA, were amplified in 7/46 events (B7b, B10c, B12, B13, D1b, D4, D6; not shown), indicating
cases of large VB integrations (see below).

Precise junctions involving an intact LB were not found. Deletions of the T-DNA of variable
sizes at the LB-gDNA junctions were identified, ranging from 6 bp (B10a) to 133 bp (D3) (Figure 1).
Filler DNA was detected at the junction site in 6/13 events (46%) with sizes ranging from 3 (D3) to
60 bp (B9) (Figure 1). Filler DNA contained short (7–15 bp) patches of identity with vectors sequences
(Figure S1).
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Figure 1. Analysis of left border (LB) junctions. Color codes are shown in the legend and the pPZP LB 
structure and sequence, in scale, is provided in the upper left corner. From left to right, each junction 
is described by: (1) an alphanumeric code identifying the transgenic event, if multiple junctions are 
isolated from the same event, these are identified by a lowercase letter; (2) a graphical representation, 
in scale, of the rearrangement occurred at the LB, along with the number of the deleted (Δ) or 
inserted (+) bp, in comparison with the expected intact transferred DNA (T-DNA) sequence (in one 
case T-DNA sequences with different orientations were detected, black arrows); (3) the sequence 
showing the 30 bp 5′ and 3′ of the junction; letters in lowercase indicate putative gDNA sequences 
(not verifiable by BLAST analysis, Table S1). Letters in red identify bases belonging to the LB. 

2.1.2. RB Junctions 

The RB junctions with the gDNA were characterized in 12/46 (26.0 %) events, with two 
sequences amplified from the same event in 3 cases (A2, B12, C3), thus indicating the integration of 
two distinct T-DNAs (Figure 2). Precise junctions showing the expected VirD1/VirD2 nicking site 
(A8, C4, C3b, C3a, B10, A11, C8) or 1 bp deletions (A9, A2b) represent the large majority of the cases 
(9/15 or 60%, Figure 2). 

Significant deletions ranged in size from 23 to 126 bp. In two of these events (A2a, B12a), filler 
DNA (27 and 18 bp, respectively, Figure 2) with similarities to vector sequences was detected (Figure 
S1). 

In one case, a junction between a partly deleted RB and a VB sequence linked to an intact LB in 
inverted orientation was found (C1a, Figure 2). Sequences characterized by an intact RB joined to the 
VB without any detectable junction with gDNA, were found in 3/46 events (C1b, C5, C6; not shown), 
indicating cases of large VB integrations (see below). 

Figure 1. Analysis of left border (LB) junctions. Color codes are shown in the legend and the pPZP LB
structure and sequence, in scale, is provided in the upper left corner. From left to right, each junction
is described by: (1) an alphanumeric code identifying the transgenic event, if multiple junctions are
isolated from the same event, these are identified by a lowercase letter; (2) a graphical representation,
in scale, of the rearrangement occurred at the LB, along with the number of the deleted (∆) or inserted
(+) bp, in comparison with the expected intact transferred DNA (T-DNA) sequence (in one case T-DNA
sequences with different orientations were detected, black arrows); (3) the sequence showing the 30 bp
5′ and 3′ of the junction; letters in lowercase indicate putative gDNA sequences (not verifiable by
BLAST analysis, Table S1). Letters in red identify bases belonging to the LB.

2.1.2. RB Junctions

The RB junctions with the gDNA were characterized in 12/46 (26.0 %) events, with two sequences
amplified from the same event in 3 cases (A2, B12, C3), thus indicating the integration of two distinct
T-DNAs (Figure 2). Precise junctions showing the expected VirD1/VirD2 nicking site (A8, C4, C3b,
C3a, B10, A11, C8) or 1 bp deletions (A9, A2b) represent the large majority of the cases (9/15 or 60%,
Figure 2).

Significant deletions ranged in size from 23 to 126 bp. In two of these events (A2a, B12a),
filler DNA (27 and 18 bp, respectively, Figure 2) with similarities to vector sequences was detected
(Figure S1).

In one case, a junction between a partly deleted RB and a VB sequence linked to an intact LB in
inverted orientation was found (C1a, Figure 2). Sequences characterized by an intact RB joined to the
VB without any detectable junction with gDNA, were found in 3/46 events (C1b, C5, C6; not shown),
indicating cases of large VB integrations (see below).



Int. J. Mol. Sci. 2017, 18, 1951 5 of 16
Int. J. Mol. Sci. 2017, 18, 1951  5 of 16 

 

 

Figure 2. Analysis of the right border (RB) junctions. Color codes are shown in the legend and a 
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isolated from the same event, these are identified by a lowercase letter; (2) a graphical representation, 
in scale, of the rearrangement occurred during integration at the RB, along with the number of the 
deleted (Δ) bp, in comparison with the expected intact T-DNA sequence; (3) the sequence showing 
the 30 bp 5′ and 3′ of the junction; letters in lowercase indicate putative gDNA sequences (not 
verifiable by BLAST analysis, Table S1) Letters in red identify bases belonging to the RB. 

2.2. Polymerase Chain Reaction (PCR) Detection of Vector Backbone Sequences 

In order to detect the transfer of VB sequences, a PCR screening was carried out using primers 
designed to cover the whole VB, with overlaps among amplicons (Figure 3 and Table S2). Sequences 
from the VB were detected in 29.7% (11/37) of the transgenic events: 26.6% in A plants, 30.4% in B 
plants, 33% in C plants (Table 2). 

Table 2. Transgenic alfalfa events used for isolating flanking sequences (FS) and assessed for the 
presence of vector backbone (VB) sequences. 

Plant Group No. of Events Agrobacterium 
Strain a Binary Vector FS b VB 

A 15 LBA4404 pPZP-nptII-hemL 6 (40.0%) 4 (26.6%) 
B 13 LBA4404 pPZP-hemL + pZPZ-nptII 8 (61.5%) 4 (30.4%) 
C 9 LBA4404 pPZP-nptII  4 (44.4%) 3 (33.3%) 
D 9 AGL1 pPZP-MsGSAgr  6 (66.6%) nt 

Total 46 24/46 (52.2%) 11/37 (29.7%) 
a Agrobacterium strain used for transformation; b percentage of events (no. of positive/total plants 
tested) in which at least one T-DNA flanking sequence was isolated; nt, not tested. 

Figure 2. Analysis of the right border (RB) junctions. Color codes are shown in the legend and a pPZP
RB model, in scale, is provided in the upper left corner. From left to right, each junction is described
by: (1) an alphanumeric code identifying the transgenic event, if multiple junctions are isolated from
the same event, these are identified by a lowercase letter; (2) a graphical representation, in scale, of
the rearrangement occurred during integration at the RB, along with the number of the deleted (∆)
bp, in comparison with the expected intact T-DNA sequence; (3) the sequence showing the 30 bp 5′

and 3′ of the junction; letters in lowercase indicate putative gDNA sequences (not verifiable by BLAST
analysis, Table S1) Letters in red identify bases belonging to the RB.

2.2. Polymerase Chain Reaction (PCR) Detection of Vector Backbone Sequences

In order to detect the transfer of VB sequences, a PCR screening was carried out using primers
designed to cover the whole VB, with overlaps among amplicons (Figure 3 and Table S2). Sequences
from the VB were detected in 29.7% (11/37) of the transgenic events: 26.6% in A plants, 30.4% in
B plants, 33% in C plants (Table 2).

Table 2. Transgenic alfalfa events used for isolating flanking sequences (FS) and assessed for the
presence of vector backbone (VB) sequences.

Plant Group No. of Events Agrobacterium
Strain a Binary Vector FS b VB

A 15 LBA4404 pPZP-nptII-hemL 6 (40.0%) 4 (26.6%)
B 13 LBA4404 pPZP-hemL + pZPZ-nptII 8 (61.5%) 4 (30.4%)
C 9 LBA4404 pPZP-nptII 4 (44.4%) 3 (33.3%)
D 9 AGL1 pPZP-MsGSAgr 6 (66.6%) nt

Total 46 24/46 (52.2%) 11/37 (29.7%)
a Agrobacterium strain used for transformation; b percentage of events (no. of positive/total plants tested) in which
at least one T-DNA flanking sequence was isolated; nt, not tested.
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Among A plants, three events (A2, A3, A6; Figure 3) were positive for all the primer combinations,
suggesting that two T-DNAs were transferred along with the entire VB (Figure 4d). A9 was negative
for both the primer combinations at the LB (Figure 3), so a model may be hypothesized where a VB
sequence adjacent to the RB was transferred (Figure 4c).

PCR results on B Plants, deriving from a co-transformation experiment, are more difficult to
interpret, due to the fact that some of the primer combinations (LBshort, VB1, VB2, LBext and VBext)
amplify both vectors (Figure 3).

B1 was positive only for LBshort and VB1, but negative for LBext: this indicates two different
integrations events, one of which has only a small residual fragment of VB left in the genome, probably
due to a major rearrangement (Figure 3). Event B7 was negative for RBext (pPZP-nptII) whereas all
the other amplicons, including RBshort (pPZP-nptII), were obtained; this gives an indication for a
model where at least two T-DNA integration events contain VB sequences. Event B10 was negative
for RBshort (pPZP-nptII) and RBext (pPZP-nptII): in this event apparently only one of the two vectors
contributed to the transfer of VB sequences. B13 was negative for RBshort (pPZP-hemL), but positive
for RBext (pPZP-hemL): this may be explained by an alteration of a primer binding site within the
integrated VB sequence (Figure 3).

The results for C plants suggest the complete integration of the whole vector in C1 and C6 (positive
for all the primer combinations). C5 was negative for LBext but positive for LBshort, suggesting that at
least two T-DNA integration events contain VB sequences (Figure 3).

PCR amplification of the A. tumefaciens picA chromosomal gene was negative for all the 37
VB-positive transgenic events (Figure S2), demonstrating that the PCR results for VB integration were
not affected by bacterial contamination of the DNA samples.
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Figure 3. Summary of PCR screening results for the detection of vector backbone (VB) sequences
in selected transgenic events of alfalfa. For the transgenic events produced by a co-transformation
experiments (B1, B7, B10, B13) two columns are present for the amplicons RBshort and RBext to account
for the two binary vectors used in the experiment (pPZP-hemL, pPZP-nptII, Figure S3). +, PCR positive;
−, PCR negative.
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2.3. Southern Blot Analysis

To confirm PCR-based evidence of the transfer of VB sequences, we carried out a Southern blot
analysis on the T1 progenies of selected events. Through the combination of a restriction enzyme not
cutting the VB sequence (NcoI) and the design of two probes hybridizing to the T-DNA and to the VB,
respectively (Figures 4 and 5), we detected restriction fragments containing a T-DNA linked to the
VB sequences.

Int. J. Mol. Sci. 2017, 18, 1951  7 of 16 

 

2.3. Southern Blot Analysis 

To confirm PCR-based evidence of the transfer of VB sequences, we carried out a Southern blot 
analysis on the T1 progenies of selected events. Through the combination of a restriction enzyme not 
cutting the VB sequence (NcoI) and the design of two probes hybridizing to the T-DNA and to the 
VB, respectively (Figures 4 and 5), we detected restriction fragments containing a T-DNA linked to 
the VB sequences. 

 
Figure 4. (a) Southern hybridization of genomic DNA extracted from T1 A plants with probe 
RBINTpr (blue segment) or VBpr (purple segment). The bands that hybridized to both probes are 
marked with a white triangle. Nt: non transgenic; P: binary vector pPZP-hemL-nptII (not linearized); 
L: 1 Kb ladder; (b–d) schemes (not in scale) of the restriction fragments produced by NcoI digestion 
(black vertical dotted lines are NcoI sites); (b) canonical T-DNA processing; (c) wrong initiation at the 
LB and transfer of whole VB along with a single copy of T-DNA; (d) correct initiation at the RB and 
incorrect termination at the LB, resulting in the transfer of the whole VB sequence along with two 
T-DNA copies. The position of the probes and the length of the restriction fragments are indicated. 

In detail, a restriction fragment of 9270 bp for A plants, 9389 or 9137 bp for B plants (pPZP-hemL 
or pPZP-nptII respectively), and 9137 bp for C plants was expected in the case of the model depicted 
in Figures 4d and 5d. In the cases of Figures 4c and 5c, restriction fragments larger than 8083 bp for A 
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4a). The presence of VB sequences linked to the T-DNA was verified by re-probing with the probe 
VBpr, that hybridized to some of the bands previously marked by the RBINTpr probe (Figure 4a). 
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depicted in Figure 4c, was detected in two cases (A3 and A6, Figure 4a). 

Figure 4. (a) Southern hybridization of genomic DNA extracted from T1 A plants with probe RBINTpr
(blue segment) or VBpr (purple segment). The bands that hybridized to both probes are marked with a
white triangle. Nt: non transgenic; P: binary vector pPZP-hemL-nptII (not linearized); L: 1 Kb ladder;
(b–d) schemes (not in scale) of the restriction fragments produced by NcoI digestion (black vertical
dotted lines are NcoI sites); (b) canonical T-DNA processing; (c) wrong initiation at the LB and transfer
of whole VB along with a single copy of T-DNA; (d) correct initiation at the RB and incorrect termination
at the LB, resulting in the transfer of the whole VB sequence along with two T-DNA copies. The position
of the probes and the length of the restriction fragments are indicated.

In detail, a restriction fragment of 9270 bp for A plants, 9389 or 9137 bp for B plants (pPZP-hemL
or pPZP-nptII respectively), and 9137 bp for C plants was expected in the case of the model depicted
in Figures 4d and 5d. In the cases of Figures 4c and 5c, restriction fragments larger than 8083 bp
for A plants, 7877 or 8129 bp for B plants (pPZP-hemL and pPZP-nptII respectively) and 7877 bp for
C plants, were expected, depending on the position of the first NcoI site on the gDNA adjacent to
the LB.

Considering the selected A plants (Figure 4), hybridization with the probe RBINTpr provided an
estimation of the number of T-DNA loci in the plant genome, which was between 2 and 3 (Figure 4a).
The presence of VB sequences linked to the T-DNA was verified by re-probing with the probe VBpr,
that hybridized to some of the bands previously marked by the RBINTpr probe (Figure 4a).
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The expected band of 9270 bp, consistent with the model depicted in Figure 4d, was detected only
in one case (A6 in Figure 4a), whereas a band of about 8083 bp, in agreement with the model depicted
in Figure 4c, was detected in two cases (A3 and A6, Figure 4a).Int. J. Mol. Sci. 2017, 18, 1951  8 of 16 
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Figure 4c. 

The bands observed with probe RBINTpr and not with VBpr were attributed either to 
backbone-free T-DNA integration events or events containing VB sequences not detectable by the 
probe VBpr; a weak band between 2000 and 2500 bp was visible in three cases (lane A2, A6, and A9, 
Figure 4a) but its low intensity and identical size in three events indicates a non-specific 
hybridization. 

An unexpected band of about 10 Kb containing the VB sequence was evidenced with VBpr in 
A6 (Figure 4a), indicating an insertion of VB sequences without T-DNA, which would imply a case 
of T-DNA initiation at the LB and termination at the RB, or a case of model Figure 4c with deletion of 
the T-DNA. A9 was negative with the probe VBpr, in agreement with the PCR results (Figure 3). 

Considering B and C plants (Figure 5a) the hybridization with the probe NPTIIpr provided an 
estimation of the number of T-DNA loci in the plant genome; however, in the case of B plants, 
derived from an experiment of co-transformation, we visualized only the T-DNA from one of the 

Figure 5. (a) Southern blot of genomic DNA extracted from T1 B and C plants with probe NTPIIpr
(blue segment) and VBpr (purple segment). The bands that hybridized to both probes are marked
with a white triangle. Nt: non transgenic; P1: binary vector pPZP-hemL (linearized); P2: binary
vector pPZP-nptII (linearized); L: 1 Kb ladder; (b–d) schemes (not in scale) of the restriction fragments
produced by NcoI (black vertical dotted line) digestion ; (b) a canonical T-DNA processing; (c) wrong
initiation at the LB and transfer of the whole VB along with a single copy of the T-DNA; (d) correct
initiation at the RB and an incorrect termination at the LB, resulting in the transfer of the whole VB
sequence along with two T-DNA copies. The position of the probes and of the restriction sites, and the
length of the restriction fragments are indicated.

Interestingly, event A6, whose transgenic parent A6 was positive for all the VB amplicons
(Figure 3), seemed to have inherited two distinct integration events characterized by the complete
transfer of VB sequences, according to both the models depicted in Figure 4c,d.

Notably, event A2, which was positive for all the VB amplicons (Figure 3), showed two bands
when re-probed with VBpr, with sizes larger than 8083 pb, compatible with the model depicted in
Figure 4c.

The bands observed with probe RBINTpr and not with VBpr were attributed either to
backbone-free T-DNA integration events or events containing VB sequences not detectable by the
probe VBpr; a weak band between 2000 and 2500 bp was visible in three cases (lane A2, A6, and A9,
Figure 4a) but its low intensity and identical size in three events indicates a non-specific hybridization.

An unexpected band of about 10 Kb containing the VB sequence was evidenced with VBpr in
A6 (Figure 4a), indicating an insertion of VB sequences without T-DNA, which would imply a case of
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T-DNA initiation at the LB and termination at the RB, or a case of model Figure 4c with deletion of the
T-DNA. A9 was negative with the probe VBpr, in agreement with the PCR results (Figure 3).

Considering B and C plants (Figure 5a) the hybridization with the probe NPTIIpr provided an
estimation of the number of T-DNA loci in the plant genome; however, in the case of B plants, derived
from an experiment of co-transformation, we visualized only the T-DNA from one of the two vectors
used (Figure 5, P1 and P2 lanes). The observed number of restriction fragments was between 1 and 2
in the tested events.

VB sequences linked to the T-DNA was revealed by the VBpr probe in events B1, B13, B7, and C6
(Figure 5a), confirming PCR results. C6 showed two restriction fragments, the shortest of which
compatible with the model depicted in Figure 5d; this agrees with PCR results for C6 (Figure 3).
The larger band (>8083) fits the model depicted in Figure 5c.

Interestingly, in one case (B7, Figure 5a) a restriction fragment compatible with the model depicted
in Figure 5d was detected after hybridization with VBpr, but not by hybridization with NPTIIpr. Likely,
in this event from co-transformation, only the hemL-containing T-DNA is linked to VB sequence,
but not the nptII-containing T-DNA, as supported by the PCR results (Figure 3). The same hypothesis
can explain the results observed for events B1 and B13 (Figure 5), that showed different bands in the
two hybridizations.

3. Discussion

In the alfalfa transgenic events analyzed in this work, we observed an average frequency of VB
integration of 29.7% (Table 2). This percentage is considerably lower compared to what previously
reported in the literature for M. truncatula (56%) [30] and other species (up to 90% in strawberry) [44]
(Table 1).

Interestingly, Oltmanns et al. [27] in an experiment of genetic transformation of Arabidopsis and
maize used different origins of replications for the binary vector and different strains of Agrobacterium,
showing that the frequency of VB integration can be influenced by multiple factors: plant species,
binary vector, strain, transformation method, target tissue. Other works, where single factors where
kept constant, support this evidence [31,47,48]. As a consequence, the different experiments reported
in the literature are difficult to compare. For instance, with the strain LBA4404, one of the two strains
used in this work, VB integration frequencies between 0% and 90% have been reported (Table 1).

Oltmanns et al. [27] observed that launching the T-DNA from the Agrobacterium chromosome
strongly reduced the frequency of integration of sequences exceeding the LB and RB. In fact, in the
case of incorrect termination at LB, long ssT-DNA are released (theoretically as long as the entire
Agrobacterium chromosome) and although the transfer of very long single strand sequences is possible,
it is less frequent than the transfer of the relatively short T-DNA. In other words, a negative correlation
between the size of the T-DNA and the frequency of VB integration exists [27]. Indeed, in our work
the longest T-DNA showed the lowest frequency of VB integration (26.6%, Table 2 and Figure S3);
however, this hypothesis was not statistically testable.

The current model of VB inclusion in the transferred T-DNA mainly relies on the different nature
of the sequences surrounding the LB and RB. In particular, the LB can be recognized either as initiation
or termination signal during T-strand production generating the two types of insert structures depicted
in Figure 4c,d. On the contrary, the RB is not efficient as termination signal, because it is surrounded
by the so called “overdrive” sequence, that strongly promote the initiation process [3,42].

In this work, the pPZP201BK-derived binary vectors have nopaline derived borders, with
overdrive at RB [49] and both types of T-DNA structure inclusive of VB sequences (see above) were
expected, as demonstrated in some transgenic events by Southern hybridization analysis.

Interestingly, Wenck et al. [9] hypothesized that an unbalanced ratio of the Vir genes versus the
number of borders may result in an inefficient nicking by the VirD1/VirD2 complex, thus increasing
the chance of VB integration. The binary vectors used in this work features a pVS1 origin, that ensures
from 7 to 10 copies per Agrobacterium cell [27]. In the binary systems the helper plasmid is usually
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present in one or two copies per cell, so in our experimental conditions we likely had a Vir/border
ratio between 2:7 and 1:10.

Particularly, Vain et al. [50] showed that the single addition of a virG gene, whose function is to
act as transcriptional activator of the entire Vir pathway, abolished VB integration in rice.

In this work, we were able to isolate at least one sequence flanking the insertion site from about
52% of the events analyzed (Table 2), a success rate in line with that reported for the TAIL-PCR
procedure [51].

The analysis of the flanking sequences revealed that the RB is less affected by rearrangements
compared to the LB, in agreement with previous observations in other species [32,35,42,52–54]. All the
intact LBs were associated with adjacent VB sequences (Figure 1), whereas intact RBs, showing precise
junction with gDNA, were isolated in about half of the cases (Figure 2).

Insertions characterized by intact or partially deleted borders without filler DNA and not showing
complex T-DNA structure (e.g., tandem repeats) can be explained by the model based on the integration
of ssT-DNA [17]. In short, the LB (3′ end) first anneal to a short stretch of complementary gDNA and
is subsequently trimmed, originating the frequently observed deletions at LB; in a second step the RB
(5′ end), that is still bound to the VirD2 protein, anneals to the gDNA and VirD2 may assists ligation
before being released [5].

We observed the presence of filler DNA up to 60 bp in a few integration events, more frequently
associated with the LB than with the RB; in both cases it was never detected along with intact
borders (Figures 1 and 2). The filler DNA showed patch similarity with vector sequences (Figure S1).
The presence of filler DNA can be associated with the DSB repair (DSBR) model of integration.
According to Tzfira et al. [5], the ssT-DNA is first converted into dsT-DNA and, in proximity of a
DSB in the gDNA, the four double strand ends can be processed by exonucleases, so that the single
strand stretches can anneal in areas of microsimilarity and ligate. During synthesis-dependent repair,
template switch can occur, which explains the presence of filler DNA. These mechanisms may explain
the complex insertions characterized at LB (B9, Figure 1) and at RB (C1a, Figure 2).

Recently, the involvement of polymerase theta in T-DNA integration was unequivocally
demonstrated in Arabidopsis, showing that the DSB repair mechanism is the main route to T-DNA
integration; the model proposed explains the nature of filler DNA and does not involve the synthesis
of dsT-DNA [22]. However, other mechanism can also play a role, and differences can exist among
plant species.

4. Materials and Methods

4.1. Plant Materials

Forty six transgenic plants (events) were analysed in this work (Table 2); they were obtained from
different transformation experiments using the alfalfa genotype RSY1 selected from the RegenS-Y
germplasm [55]; the binary vectors were based on pPZP201BK [49], and the A. tumefaciens strains
were either LBA4404 (plants A–C) or AGL1 (plants D) [24–26]. According to the vectors used in
the transformation experiments, the plants were divided into four groups: A, transformed with the
pPZP-nptII-hemL vector (15 events); B, co-transformed with the pPZP-nptII and pPZP-hemL vectors
(13 events); C, transformed with the pPZP-nptII vector (9 events); and D, transformed with the
pPZP-MsGSAgr vector (9 events).

4.2. Isolation of Sequences Flanking T-DNA Insertions

Total gDNA was extracted from young, fully expanded leaves collected from the 46 transgenic
lines (events), using the GeneElute Plant Genomic DNA Miniprep Kit (SIGMA, St. Louis, MO, USA).
Amplification of the T-DNA flanking sequences was carried out on the 46 gDNAs by hi-TAIL PCR
according to the protocol of Liu and Chen [51]. Primer for this work were purchased from SIGMA
and their sequences are reported in Table S3. Two combinations of Longer Arbitrary Degenerated
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(LAD) primers were tested (LAD1 + LAD3, LAD3 + LAD4) [51] to increase the chance of successful
amplification of the T-DNA flanking regions and to find the optimal combination with three nested
T-DNA-specific primers. Three LB nested primers (LBn1, LBn2, LBn3) were designed for B, C and D
plants at position -669, -374 and -170 respectively, assuming as base zero the base immediately 5′of the
VirD2 nicking site (Figure 1); similarly, three LB nested primers were designed for A plants (LBnA1,
LBnA2, LBnA3) at position -276 ,-170 and -60, respectively (Figure S3).

Three RB nested primers (RBn1, RBn2, RBn3), were designed for B, C and D plants at positions
-469, -356 and -154, respectively (Figures 2 and S3); for A plants the primers LBn1 (-637), LBn2 (-343)
and RBn3 (-155) were used to amplify at RB.

For each transgenic line, the second and third nested hi-TAIL PCR reaction were subjected to
electrophoresis in 1.5% agarose gels. The third nested reactions were purified (Wizard SV Gel and
PCR Clean-up System, Promega, Madison, WI, USA) when the expected shift of amplicon sizes from
the nested PCRs was observed; the amplicon was cloned in the pGEM-T vector (pGEM-T Vector
Systems, Promega, Madison, WI, USA) and double strand sequenced (Macrogen, available online:
www.macrogen.com). The software AlignX (Thermo Scientific, Waltham, MA, USA) was used to
identify the junction between the LBs or RBs and the plant genome. These flanking sequences were
subsequently used to validate the gDNA sequences by searching the NCBI databases (Available online:
https://blast.ncbi.nlm.nih.gov/Blast.cgi); only BLAST results having a similarity equal or greater than
70% with the query were considered for validation (Table S1).

4.3. PCR Detection of Vector Backbone Sequences

Specific primer pairs covering the VB (Figures 3 and S3) were designed using the software
Primer3 [56]. Only transgenic events belonging to group A, B and C were included in this analysis.
The primer combinations and the thermal cycling conditions are shown in Table S2; the expected
amplicons are graphically described in Figure 3. PCR reactions were carried out in 50 µL using 1×
Buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.4 µM primers, 1U Taq (SIGMA) and 30 ng genomic DNA.
For difficult amplicons, PCR reactions were carried out with Phusion polymerase (Thermo Scientific)
in 50 µL using 1× Buffer GC, 3% DMSO, 0.2 mM dNTPs, 0.5 µM primers, 1 U of polymerase and
100 ng genomic DNA.

To check for any Agrobacterium contamination of the gDNA samples a PCR was carried out with
the primers PICAFOR and PICAREV (Table S3), specifically designed to amplify a 432 bp fragment
within the picA locus of the Agrobacterium chromosome [57]. Thermal cycling conditions were 94 ◦C
for 10 min, 40 cycles at 94 ◦C for 30 s, 66 ◦C for 30 s and 72 ◦C for 30 s.

PCR reactions were subjected to electrophoresis in 1.2% agarose gel.

4.4. Southern Hybridization Analysis

Eight transgenic events (A2, A3, A6, A9, B1, B7, B13, C6) were selected on the basis of the PCR
screening for VB sequences and crossed with the unrelated genotype “Classe” used as pollen donor.
Total genomic DNA was extracted from 20 seedlings for each cross and screened by PCR for the
presence of the transgenes as reported [24,26].

One PCR-positive T1 plant per cross was selected and 30 µg of genomic DNA used for Southern
hybridization analysis following standard procedures [58]. Genomic DNA was digested overnight with
NcoI-HF (NEB), resolved by electrophoresis in a 0.7% agarose gel overnight at 40 volts, depurinated by
incubation in 0.25 M HCl, blotted by capillarity onto a nylon membrane (Hybond-N+, GE Healthcare,
Chicago, IL, USA) and crosslinked at 80 ◦C for 2 h.

Two membranes were obtained, one containing the T1 samples A2, A3, A6, and A9, and one
containing the T1 samples B1, B7, B13 and C6. The probes RBINTpr (319 bp), NPTIIpr (312 bp) and
VBpr (257 bp) were generated by PCR using the primers RBINT For/Rev, NPTIIsh For/Rev and VB1
For/Rev, respectively (Table S3) using standard procedures [58]; their position is indicated in Figures 4
and 5.

www.macrogen.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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The membrane carrying group A samples was hybridized overnight with dCTP, α-32P
(3000 Ci mmol−1, PerkinElmer, Waltham, MA, USA) radiolabelled probe RBINTpr, whereas the membrane
with B and C samples was hybridized with the probe NPTIIpr. The membranes were then exposed
7 days at −80 ◦C to a Kodak Biomax ML film (Kodak, Rochester, NY, USA). The membranes were
subsequently stripped in a boiling solution of 0.1% SDS and both re-hybridized with the radiolabeled
probe VBpr. The lane of the two membranes containing the Gene Ruler 1 Kb DNA ladder (Thermo
Scientific) was cut and hybridized separately.

5. Conclusions

The T-DNA integration research has shifted from analyzing flanking sequences to identifying
the molecules involved in the integration process [5] that are, at large, those belonging to the DNA
repair pathway. Although eukaryotes share common DNA repair mechanisms and significant progress
was made in model organism (yeast, mammals and plants), there are species-specific differences that
require to enlarge the number of organisms studied [59–62].

In alfalfa, no information was available on the patterns of DNA integration and VB transfer in
Agrobacterium-mediated transformation, possibly because the lack of a genome sequence for this species
has hindered these investigations. However, important biotechnological tools have been developed in
the closely related, diploid model species M. truncatula (2n = 2x = 16), for which a genome sequencing
project was completed [63] and a program of insertional mutagenesis was carried out [64,65].

In this work, we have characterized a number of transgenic alfalfa events, previously produced in our
lab [24–26]. By sequencing insertion sites we showed that, as previously reported in other species [42],
multiple mechanisms are probably involved in T-DNA integration in alfalfa. We also demonstrated
the transfer and integration of VB sequences through Agrobacterium genetic transformation and their
sexual transmission to progenies.

The quality of the insertions has received large attention worldwide by the scientific community
and the regulatory bodies, with the aim of improving precision and minimizing the possible risks of
the genetic modification of crop plants [66].

Possible ways to improve the quality of insertions in the alfalfa genome can be envisaged:

(a) Launching the T-DNA from the Agrobacterium chromosome may reduce the risk of transferring
sequences belonging to the binary vector (including antibiotic resistance genes for bacterial
selection); however, engineering the bacterial chromosome adds complication to the procedures,
and a decrease in the transformation efficiency may result [27]; it should also be considered that
rare cases of transfer of sequences belonging to Agrobacterium chromosome are documented [10–12];

(b) Increasing the number of LBs and VirG gene or including negative selectable marker genes in the
VB would improve the correct processing of the borders and allow counter selection of events
that include VB sequences [3,30,36,50,67];

(c) Using plant-derived sequences for vector construction (e.g., plant-derived SMGs, cisgenesis) [68–70]
can relieve the perceived risk of genetically modified plants. The application of new breeding
techniques such as genome editing is also offering new tools for precise modification of the
alfafa genome.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1951/s1.
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