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Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University,
Shanghai, China

Epidemiological studies suggest associations between diabetes mellitus and some
cancers. The risk of a number of cancers appears to be increased in diabetes mellitus.
On the other hand, some cancer and cancer therapies could lead to diabetes mellitus.
Genetic factors, obesity, inflammation, oxidative stress, hyperglycemia, hyperinsulinemia,
cancer therapies, insulin and some oral hypoglycemic drugs appear to play a role in the
crosstalk between diabetes mellitus and cancers. This review summarized the
associations between various types of diabetes and cancers and updated available
evidence of underlying mechanisms between diabetes and cancers.
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INTRODUCTION

The link between diabetes and cancer has been proposed for more than 100 years (1). The risk of
cancers appears to be increased in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus
(T2DM) (2). Cancer was also reported to be the second most common cause of death for people
with T1DM (3). On the other hand, approximately 8%-18% of patients with cancer have diabetes
(4). Further, previous studies have suggested that diabetes is associated with increased risk of cancer
mortality (5, 6). However, the underlying mechanisms between various types of diabetes and
cancers have not yet been summarized. This review summarizes the associations between various
types of diabetes and cancers, and updated available evidence underlying mechanisms between
diabetes and cancers.
INCIDENCE AND MORTALITY OF CANCERS IN PATIENTS WITH
DIABETES MELLITUS

T1DM
A five-country study of cancers in patients with T1DM has reported that T1DM was correlated with
the risk of several common cancers. For non-sex-specific cancers, the estimated hazard ratio (HR)
and 95% confidence intervals (CIs) for overall cancer were 1.15 (1.11, 1.19) among men and 1.17
(1.13, 1.22) among women when compared to the general population (7). Cancer incidence of liver,
pancreas, kidney, esophagus, stomach, lung, thyroid, squamous cell carcinoma, and leukaemia
significantly increased for both sexes with T1DM (7–10). Incidence of non-Hodgkin’s lymphoma
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and colon cancer significantly increased for men (7); while
incidence of the ovary, esophagus, endometrium, vulva and
vagina, and thyroid cancer significantly increased for women
(7, 11, 12). On the contrary, incidences of prostate cancer and
testis cancer significantly decreased in men with T1DM in
comparison with the general population (7, 13). Women with
T1DM had significantly lower risk for breast cancer, melanoma,
and Hodgkin’s lymphoma (7, 10). Previous cohort studies also
reported an overall increased standardized mortality ratio for
cancers among patients with T1DM compared with the general
population (14).

Several studies generated inconsistent findings. Some early
studies found no significant associations between T1DM and a
range of site-specific cancers (15). Previous large cohort studies
conducted in the UK suggested that neither the risk of urinary
bladder cancer nor mortality from urinary bladder cancer was
increased in patients with T1DM or T2DM (11, 16). This is in
line with the results found in other study undertaken in Sweden
(9, 17). Similarly, some studies found no significant association
between the risk of breast cancer and T1DM in women (11, 17).
In addition, cohort studies undertaken in the UK (11, 18) and the
USA (19) reported that no significantly increased all-cause
cancer mortality was found in patients with T1DM when
compared to the general population. But, there was evidence of
heterogeneity in risk of some cancers by country, and T1DM
duration (7). Thus, study population selection (e.g., ethnicity, age
range, and gender), study design, publication bias, other
demographic and socioeconomic factors should be considered
when interpreting these results.

T2DM
A comprehensive meta-analysis has concluded that the presence
of T2DM is associated with approximately 10% increase of the
risk to develop cancer (5). Previous studies have provided
substantial evidence of associations between T2DM and risks
of cancer in hepatocellular, biliary tract, gallbladder, pancreas,
gastrointestinal, kidney, bladder, lung, thyroid, breast, ovarian,
endometrial, oral, leukemia, glioma, and melanoma (5, 20–25).
Among them, the highest risks has been demonstrated for
colorectal cancer (26), hepatocellular cancer (27), or pancreatic
cancer (28).

On the contrary, some cancers showed a null or decreased
risk in diabetic patients in some studies, including brain, buccal
cavity, esophageal, lung, breast, urinary bladder, and laryngeal
cancer (20). It is worth noting that numerous studies that were
conducted in Americans and Europeans indicated a reduced risk
of prostate cancer in patients with T2DM (29, 30). Moreover, the
protective effect was more evident for patients with more than 10
years T2DM duration (13). Indeed, men with diabetes had lower
levels of testosterone (31) than those without, and testosterone
has been demonstrated to be associated with an elevated risk of
prostate cancer (32). Additionally, studies with genome-wide
association analyses indicated that HNF1B gene variants would
not only drive haplotype-carrying people to diabetes, but also
protect them from prostate cancer (33). However, studies in
Asians reported contradicting results, and large meta-analyses
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suggested that there was a positive association between T2DM
and prostate cancer in Asians (30, 34).

Previous large meta-analyses have estimated that diabetes is
associated with 25%-41% increased risk of mortality from any
cancer (35, 36). In a prospective cohort conducted in US adults,
diabetes was related to increases in any cancer mortality of 7% in
men and 11% in women, respectively (29). In an analysis of 19
Asian cohorts followed for up to 21 years, T2DM was related to a
26% increase in the risk of cancer mortality (6). Significant
positive associations between T2DM and mortality from
cancers were observed for the cancers of stomach, colorectum,
oral cavity, gallbladder, bile duct, liver, pancreas, ovary,
endometrium, breast, thyroid, prostate, lung, kidney, bladder,
and lymphoma (6, 22, 37). Controversially, some studies
reported a null association between T2DM and the risk of
death from cancers of the lung, bladder, stomach, cervix,
esophagus, as well as leukaemia (6, 38), suggesting that the role
of diabetes in these site cancer needs further clarification.

Type 3c Diabetes (T3cDM) or
Pancreoprivic Diabetes
Type 3c diabetes (T3cDM) or pancreoprivic diabetes is caused by
various diseases of the exocrine pancreas (39). The diverse causes
of T3cDM include pancreatic carcinoma, acute and chronic
pancreatitis, cystic fibrosis, trauma or pancreatectomy,
fibrocalculous pancreatopathy, hemochromatosis, idiopathic
forms, and rare genetic disorders. Pendharkar et al. showed
that the prevalence of diabetes in individuals with exocrine
pancreas diseases was approximately 0.11% (40). Ewald N et al.
reported that approximately 9.2% of patients with diabetes were
identified as T3cDM (41).

A comprehensive meta-analysis showed that the relative risk
of pancreatic cancer was negatively associated with the diabetes
duration, with the highest risk of pancreatic cancer found among
patients whose diabetic history within less than 1 year (42). It
indicates that diabetes may have resulted from undiagnosed
pancreatic cancer (43). Indeed, T3cDM occurs in up to 30% of
patients with pancreatic cancer (44). On the other hand,
successful treatment of pancreatic cancer could improve
hyperglycemia for patients with T3cDM due to pancreatic
cancer (45). Additionally, the risk of pancreatic cancer has
been increased 10- to 20-fold in patients with chronic
pancreatitis, which is the most common cause of T3cDM; this
risk has been increased 33-fold in patients with the combination
of chronic pancreatitis and diabetes mellitus (46). A previous
study estimated that approximately 10% T3cDM patients had
pancreatic cancer (41).

Animal studies found the presence of hyperinsulinemia
(47) and insulin secretory impairments (48) in pancreatic
cancer models. Indeed, euglycemic glucose clamp studies
demonstrated that both the insulin sensitivity and beta-cell
function were markedly impaired in patients with pancreatic
cancer (45, 49). T3cDM secondary to pancreatic cancer
seems to be related to the mediators released by cancer (50).
Adrenomedullin was identified as one of the key mediators
for beta-cell toxicity in a cell-line study of pancreatic
February 2022 | Volume 13 | Article 800995
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cancer (51). Further, a clinical study reported that the levels of
adrenomedullin are higher in patients with pancreatic cancer-
induced diabetes in comparison to general population (52). In
addition, the upregulation of connexin and S100A8/A9 in
pancreatic tissues could attenuate the glucose utilization (53,
54). Furthermore, interleukin-1b and tumor necrosis factor
(TNF)-a are found abundant in a tumor microenvironment in
diabetes due to pancreatic cancer (55), which somehow explains
the impaired beta-cell function observed in patients with
pancreatic cancer (56).
CANCER TREATMENT AND DIABETES

Chemotherapy
Most chemotherapeutic agents result in the cell cycle or cellular
DNA damage and thus leading to apoptosis disproportionately in
rapidly dividing cells. A number of studies reported that patients
who received chemotherapy such as Tegafur-uracil (UFT) (57),
paclitaxel (58), or interferon alpha (59) had developed fulminant
T1DM or autoimmune-mediated T1DM. Mouse studies indicated
that interferonalphacauses autoimmunediabetes bypromoting the
maturation of conventional dendritic cells and the activation of B
cells. Further, interferon alpha could directly damage pancreatic
beta cell functions by inducing cytokines and enhancing their
susceptibility to invasion by diabetogenic T cells (60). Diabetes is
also a rare complication of UFT use. UFT could cause fulminant
T1DM through immune suppression or an immunological
reaction, and the effects of thymidine phosphorylase (57).

Glucocorticoid
Glucocorticoids are a commonly used treatment for cancers of
blood system (61). Additionally, they are used to treat cancer pain,
chemotherapy-induced side-effects such as nausea and vomiting,
and cancer-related cachexia (62, 63). Furthermore, they have an
ancillary role in treatment of inflammatory complications of cancer
therapy and autoimmune conditions of immunomodulatory
therapies (64). Steroid-induced diabetes mellitus has been
recognized as a complication of glucocorticoid use for over 50
years (65).Aprevious study found that patientswithpreviouslywell
controlled T1DM treatment with 60mgprednisone daily for 3 days
led to deterioration of glycemic control despite average 70%
increase of insulin dosage (66). It is likely that glucocorticoid
administration causes hyperglycemic states or diabetes mellitus
by impairing pancreatic beta-cell functions and insulin sensitivity
(67). An in vitro study observed impaired insulin secretion of
prednisone-treated INS-1E cells in response to a glucose
challenge. On the contrary, this phenomenon was reversed in the
presence of prednisonewith the glucocorticoid receptor antagonist,
RU486 (68). Glucocorticoids could induce insulin resistance
through several mechanisms. For example, glucocorticoids
increase the levels of serum fatty acids by regulating the
expression of PEPCK gene in adipose tissue and liver and
controlling glyceroneogenesis. It is well known that an increase in
fatty acids interferes with glucose utilization and results in insulin
resistance (69). Moreover, glucocorticoids decrease insulin
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sensitivity by directly interfering with components of the insulin
signaling cascade, such as glycogen synthase kinase-3, glycogen
synthase and GLUT4 translocation (67, 70).

Targeted Cancer Therapies
Targeted cancer therapies attempt to treat cancer by targeting the
changed cellular pathways that drive unregulated growth. This
treatment can somehow impair insulin sensitivity since some
altered cellular pathways are linked to the actions of insulin. For
instance, the anti–insulin like growth factor 1 receptor (IGF-IR)
inhibition has been long proposed as a treatment strategy of
various cancers (71, 72). A phase I dose escalation study of the
Anti-IGF-IR monoclonal antibody CP-751,871 in patients with
refractory solid tumors reported that the treatment with CP-
751,871 increased serum glucose levels (73). It is likely that the
levels of growth hormone (GH) increase after IGF-1 blockade,
thereby leading to an increase in insulin resistance (74). In
addition, mammalian target of rapamycin (mTOR) inhibitors
have been used for multiple types of cancer such as breast cancer
and renal cell carcinoma. Data from clinical trials suggested that
a treatment with mTOR inhibitors was associated with a high
incidence of hyperglycemia and new-onset diabetes, ranging
from 13% to 50% (75). The mechanisms responsible for
hyperglycemia with mTOR inhibitors are likely due to the
combination of impaired insulin secretion and insulin
resistance (76, 77). Hyperinsulinemia and hyperglycemia were
also seen after administrations target the proteins in the same
pathway, including PI3 kinase and Akt in mice (78).

Cancer Immunotherapy
Cancer immunotherapies, including immune checkpoint
inhibitors, adoptive cell therapy, oncolytic viruses, and cancer
vaccines, manipulate the immune system to recognize and attack
cancer cells. These therapies have the potential to lead to toxicity
profiles for endocrine system. For instance, insulin-dependent
diabetes has been reported in patients treated with anti-
programmed cell death protein 1 (PD-1) or anti-programmed
cell death ligand-1 (PDL-1) antibodies (79). The prevalence of
diabetes was estimated at 0.4%-0.9% in this population (80–82).
Animal studies also indicated that anti-PD-1 or anti-PDL-1
antibody injection triggered onset of diabetes in mice (83, 84).
But, to date, the exact mechanism is poorly known. Histologic
analysis of the pancreas found massive destructive insulitis in
mice receiving anti-PD-1 or anti-PD-L1 antibodies.
MECHANISMS UNDERLYING THE
ASSOCIATION BETWEEN DIABETES
MELLITUS AND CANCERS

Genetic Background
Genetic factors have been identified as contributing to the
associations between diabetes and some cancers. For instance,
individuals who have a family history of pancreatic cancer often
have a higher risk of developing pancreatic cancer (85). Indeed,
several studies reported that the glucose-raising allele of MADD
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rs11039149, MTNR1B rs1387153, FTO rs8050136 per allele,
glucokinase regulator rs780094 of T2DM were positively
associated with the risk of pancreatic cancer (86, 87).

Common Risk Factors
Obesity
It is well known that most patients with prediabetes or T2DM have
overweight or obesity (39). A large cohort study which included
900,000 individuals with an over 16-year duration of follow-up
reported that severe obesity was associated with a significantly
increased mortality from cancers of the liver, pancreas, colon and
rectum, kidney, non-Hodgkins lymphoma, esophagus, and multiple
myeloma. The greatest influences were observed in cancers of liver,
colon and rectum, and pancreas (88). Additionally, a lower incidence
of obesity-related cancers (89) and a significant reduction of cancer-
related medical care (90) were found in bariatric surgery patients
when compared with morbidly obese controls.

Obesity may act as an important confounder or an effect
modifier in the relationship between T2DM and cancer (4).
Obesity was associated with increased risk of cancers probably by
mechanisms that involve cellular proliferation, inflammation, and
hormonal balance (91), which have also been supposed for the
relationship between T2DM and cancer. Taking pancreas for
example, Butler et al. studied the effects of obesity and diabetes
mellitus on pancreatic ductal pathology and found that the
replication of pancreatic duct was increased ten-fold in specimens
obtained from obese nondiabetics compared with lean
nondiabetics, and duct epithelial replication was increased four-
fold in lean diabetics in comparison with lean nondiabetics. These
results suggest the independent effects of diabetes andobesity on the
risk of the development of pancreatic exocrine neoplasia (92).

Inflammation and Oxidative Stress
Inflammation is a key element in the link between diabetes mellitus
and cancer (93). T2DM is associated with insulin secretory defects
related to inflammation (39). Chronic inflammation, which is
characterized by high levels of oxidative stress and reactive
oxygen species (ROS), activation of pro-inflammatory pathways,
and abnormal adipokine production, may establish a micro-
environment thereby promote tumor cell growth, enhance
metastasis, increase angiogenesis and impair the function of
natural killer cells and macrophages (94).

Oxidative stress plays an important role in the crosstalk between
cancer and diabetes. Hyperglycemia could increase superoxide
production (95). Furthermore, insulin could stimulate reactive
oxygen species (ROS) production (96). It has been confirmed that
oxidative stress has a strong influence on a number of genes
expression and signal transduction pathways that have an
important role in tumorigenesis (97). ROS have been demonstrated
to interfere with cell proliferation and apoptosis by activating
cytokine-dependent activation of nuclear factor (NF)-кB pathways
(98). NF-кB was demonstrated to be hyperactivated in colorectal
cancer (99), breast, bloodneoplasms, andpancreas cell lines (97, 100).

Hyperglycemia
Epidemiological data have shown that hyperglycemia is related to
higher risk of colorectal, liver, gastric, lung and pancreatic cancer
Frontiers in Endocrinology | www.frontiersin.org 4
(101, 102). The phenomenon termed “the Warburg effect” partly
explains why hyperglycemia favors tumorigenesis (103). Normally,
cells differentiates rely on mitochondrial oxidative phosphorylation
to provide the energy to cellular processes, while cancer cells tend to
use a less efficient glycolytic pathway for proliferation (103, 104).
Cancer cells therefore require increased glucose uptake to generate
sufficient energy hence meet their proliferation needs (105). The
cancer predisposition associated with diabetes may result from
imbalance of signal transduction pathways that manage the
utilization of nutrient and fuels (106).

Hyperglycemia stimulates the production of advanced
glycation end products (AGEs). AGEs often interact with their
specific receptor, RAGE, activate NF-кB and generate ROS in
cells, thereby accelerating oxidative stress that leads to increased
proinflammatory signaling (107). Activation of the AGEs
pathway has been demonstrated to promote tumor
transformation of epithelial cells (108). Clinical tests also
confirmed a positive association between the AGE/RAGE
interaction and risk of gastric cancer (109), pancreatic cancer
(110), and melanoma (111). In addition, Han et al. reported that
hyperglycemia stimulates proliferation of pancreatic cancer cell
via the induction of epithelial growth factor (EGF) expression
and transactivation of the EGF receptor (112). Furthermore,
hyperglycemia has been supposed to damage the lung structure,
which is the basis for lung cancer (113). Moreover,
hyperglycemia is responsible for DNA damage, which is the
first stage of tumorigenesis (114).

Hyperinsulinemia
Several epidemiological studies have shown that hyperinsulinemia
is associated with an increased risk for several cancers, including
cancers of the endometrium, ovarian, breast, colon, pancreas, and
kidney (115, 116). Indeed, both in vitro and in vivo studies
demonstrated that insulin and insulin receptor (IR) played a key
role in cancer biology (117). In hyperinsulinemic states, the hepatic
IGF-1 production increased due to the upregulation of the growth
hormone receptor (GHR) and augment of GHR signaling (118).
Epidemiological studies and meta-analyses suggested that higher
IGF-1 levels were correlated with an increased risk of colorectal,
lung, premenopausal breast and prostate cancer (119). Animal
studies confirmed that IGF-1 administration increased the cancer
cells proliferationand their capacity to spread in secondary sites.On
the contrary, knock-out of the Igf-1 gene inhibited growth of the
tumor (120). In addition, IGF-2 overexpression has been also
associated with colon cancer development in mouse models
(121). Insulin, IGF-1 and IGF-2 could activate the PI3K/Akt/
mammalian target of rapamycin (mTOR) signaling pathway,
thereby promoting the development of cancers (122).

Exogenous Insulin and Insulin
Analog Therapy
There is some evidence that patients with insulin therapy have a
higher incidence of cancers when compared to patients with no
insulin use (123), including cancers in colorectum, breast,
pancreas, liver, kidney, stomach and respiratory system (124,
125). A retrospective study showed that patients treated with
insulin agents such as human insulin, aspart, lispro and glargine
February 2022 | Volume 13 | Article 800995
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exhibited a dose-dependent increased risk of cancer development
(126). An animal study showed that insulin administration
increased colonic epithelial tissue proliferation, thereby
promoted colon cancer growth (127). The possible mutagenic
effects of insulin or insulin analog and increased levels of IGF-1
might be the potential biological plausibility for the increase risks
of cancers (128, 129). It should be kept in mind that insulin
analogs may have a metabolic action and a mitogenic action
altered from that of human insulin (130). Further, compared to
insulin, the mitogenic pathways may be more activated when
using long-acting analogues (131). However, some previous large
randomized controlled trial study (132), cohort study (133), and
systematic review (134) concluded that insulin (analog)
treatment does not impact the risk of cancer overall and some
site-specific cancers.

Oral Hypoglycemic Drugs
Metformin
Numerous clinical studies and meta-analyses have demonstrated
that diabetes exposure to metformin was associated with a
significantly decreased cancer incidence and mortality (135–
137). Moreover, the addition of metformin ameliorates the
increased risk of cancer in patient therapy with sulfonylurea or
insulin (138). Studies in animal models and in cancer cell lines in
vitro complemented these results that metformin could inhibit
development of cancer (139). The potential mechanism is that
metformin may inhibits the mTOR in an adenosine
monophosphate (AMP)-activated protein kinase (AMPK)-
dependent manner, concomitant reduces insulin levels, and
increases insulin sensitivity (139, 140). Metformin could also
inhibit tumorigenesis by modulating several other targets such as
STAT3, TP, p53, etc. (140). In addition, metformin has been
demonstrated to enhance the activity of several cancer drugs
such as platinum compounds (140). Recently, the METAL
(METformin in Advanced Lung cancer) study provided
evidence that metformin plus erlotinib in second-line
treatment of patients with stage IV NSCLC prolonged median
progression-free survival (141). Moreover, Morgillo et al.
demonstrated that metformin increases the antitumor activity
of MEK inhibitors in human LKB1-wild-type non-small cell lung
cancer cell (NSCLC) lines by reducing the NF-kB (p65)-
mediated transcription of MMP-2 and MMP-9 and through
downregulation of GLI1 (142).
Glucagon-Like Peptide-1 Receptor Agonist and
Dipeptidyl Peptidase-IV Inhibitor
Incretin-based therapy, including dipeptidyl peptidase-IV (DPP-
IV) inhibitor and glucagon-like peptide-1(GLP-1) receptor
agonist is increasingly used in T2DM. Elashoff et al. reported
that the use of DDP-IV inhibitor sitagliptin or the GLP1 analog
exenatide was associated with a significant increase in the
incidence of pancreatic cancer (143). Indeed, Matveyenko et al.
observed that sitagliptin induced replication and apoptosis of
beta-cell, pancreatic ductal metaplasia, and a four-fold increase
in duct cell proliferation, suggesting that sitagliptin is the risk
factor for the development of pancreatic cancer (144).
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Furthermore, animal studies showed that exendin-4, the GLP-1
analog, increased duct cell replication and the development of
dysplastic pancreatic intraepithelial neoplasia lesions (145). In
addition, liraglutide, a GLP-1 receptor agonist, was associated
with increased risk of thyroid c-cell focal hyperplasia, indicating
an increased risk of medullary cell thyroid cancer (146).
However, a meta-analysis suggested that there is no exact
evidence that the risk of pancreatic cancer in patients on
incretin-based therapies is significantly higher than that in
patients on other therapies (147, 148).

Sodium-Glucose Linked Transporter 2
(SGLT 2) Inhibitors
A meta-analysis suggested that the risk of bladder cancer might
be increased in patients with SGLT2 inhibitors, especially with
empagliflozin (149). However, this association was not
confirmed by other authors (150, 151). Scafoglio C et al. even
suggested that SGLT2 inhibitors may be useful for cancer therapy
(152), as SGLT2 inhibitor was associated to increased tumor
necrosis and hence induced tumor shrinkage (152). Indeed,
canagliflozin was demonstrated to inhibit cancer growth by
inhibiting the complex I of the mitochondrial respiratory
chain (153).

Sulfonylureas (SUs)
Previous studies have indicated that patients treated with
sulfonylureas therapy have an increased incidence of cancer
and risk of cancer mortality (154, 155), particularly in
pancreatic (138) and breast cancer (156). However, some
randomized controlled trials showed no statistically significant
difference in the risk of cancer between the use of SUs and other
treatments (157).

Thiazolidinediones (TZDs)
TZDs have potent insulin-sensitizing activity used to improve
lipid and glucose metabolism through the activation of
peroxisome proliferator-activated receptors (PPARs) (158). In
2005, the PROactive Study firstly proposed the positive
association of bladder cancer with pioglitazone use in patients
with T2DM (159). However, pioglitazone bladder cancer
concerns have been largely attenuated by recent evidence
(160). Lv et al. demonstrated that the activation of PPARg
induced cell cycle G2 arrest and inhibition of bladder cancer
cells proliferation by inhibiting the PI3K-Akt pathway in vitro
(161). Additionally, PPAR-g activation has been found to inhibit
the growth of other tumor cells such as colon, breast and lung
cancer cell lines through induction of apoptosis (162, 163).
Ciaramella et al. investigated the anti-tumor effects of
pioglitazone in NSCLC cell lines and found that pioglitazone
reduced proliferative and invasive abilities and induced apoptosis
of NSCLC cells by inhibiting MAPK/AKT cascade as well as on
the TGFb/SMADs system (164). Indeed, Mazzone et al. indicated
that the TZDs treatment was associated with a lower risk of
developing lung cancer in patients with diabetes (165). A meta-
analysis also suggested that TZDs were associated with a
significantly lower risk of colorectal and breast cancer (166,
167). In addition to anti-proliferative effects, TZDs can also
February 2022 | Volume 13 | Article 800995
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enhance cytotoxic effects of some anticancer therapies such as
cisplatin and oxaliplatin by increasing the expression of
apoptosis-inducing factor (AIF) and suppressing survivin (168).
CONCLUSION

There is a complicated association between diabetes mellitus and
cancers. In summary, the risk of a number of cancers and cancer
mortality is increased in T1DM and T2DM. On the other hand,
some kinds of cancer and cancer therapies are associated with the
increased risk of diabetes mellitus. Additionally, genetic factors,
obesity, inflammation, oxidative stress, hyperglycemia,
hyperinsulinemia, cancer therapies, insulin and some oral
hypoglycemic drugs appear to play a role in the crosstalk
between diabetes mellitus and cancers (Figure 1). Thus, we
suggest that cancer screening should be conducted in patients
with diabetes, and precautions for diabetes should be taken in
patients suffering from cancer. Further researches are merited to
explore on the associations between these different diseases.
Frontiers in Endocrinology | www.frontiersin.org 6
AUTHOR CONTRIBUTIONS

Both authors have met the requirements for authorship. BZ and
SQ summarized and edited the manuscript. Both authors have
read and approved the final manuscript.
FUNDING

This work was supported by the National Key R&D Program of
China (No.2018YFC1314100, SQ), the National Natural Science
Foundation of China (82100903, BZ), and the Shanghai Sailing
Program (21YF1435200, BZ).
ACKNOWLEDGMENTS

The authors would like to acknowledge Professor Li Ming Wen
(School of Public Health, University of Sydney, Australia) for
their kind support for editing and proofreading this manuscript.
FIGURE 1 | Schematic representation of mechanisms underlying the association between diabetes mellitus and cancers. DPP-IV, dipeptidyl peptidase-IV; GLP-1,
glucagon-like peptide-1.
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