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A growing body of evidence indicates that dietary polyphenols could be used as an

early intervention to treat glucose-insulin (G-I) dysregulation. However, studies report

heterogeneous information, and the targets of the intervention remain largely elusive.

In this work, we provide a general methodology to quantify the effects of any given

polyphenol-rich food or formulae over glycemic regulation in a patient-wise manner

using an Oral Glucose Tolerance Test (OGTT). We use a mathematical model to

represent individual OGTT curves as the coordinated action of subsystems, each one

described by a parameter with physiological interpretation. Using the parameter values

calculated for a cohort of 1198 individuals, we propose a statistical model to calculate

the risk of dysglycemia and the coordination among subsystems for each subject,

thus providing a continuous and individual health assessment. This method allows

identifying individuals at high risk of dysglycemia—which would have been missed

with traditional binary diagnostic methods—enabling early nutritional intervention with

a polyphenol-supplemented diet where it is most effective and desirable. Besides, the

proposed methodology assesses the effectiveness of interventions over time when

applied to the OGTT curves of a treated individual. We illustrate the use of this method in a

case study to assess the dose-dependent effects of Delphinol® on reducing dysglycemia

risk and improving the coordination between subsystems. Finally, this strategy enables,

on the one hand, the use of low-cost, non-invasive methods in population-scale

nutritional studies. On the other hand, it will help practitioners assess the effectiveness

of an intervention based on individual vulnerabilities and adapt the treatment to manage

dysglycemia and avoid its progression into disease.

Keywords: dysglycemia risk, glycemia, precision preventive medicine, early disglycemia diagnosis, delphinol

polyphenols, quantitative diagnostic, oral glucose tolerance test (OGTT)
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1. INTRODUCTION

Disequilibrium in glucose-insulin (G-I) homeostasis
(dysglycemia) is a widespread condition in modern society
and is associated with poor dietary habits and poverty (1–
4). Dysglycemia may progress through insulin resistance
and glucose intolerance to type 2 diabetes mellitus (T2DM),
and increase the risk for cardiovascular diseases and other
comorbidities. Non-pharmacological preventive interventions
such as diet supplemented with (or rich in) polyphenols may be
crucial to avoid the progression of a dysglycemic condition into
a disease state (5–10).

Polyphenols constitute a category of more than 500
compounds divided into six subclasses (http://phenol-
explorer.eu/). In particular, anthocyanin-rich foods and extracts
are becoming a mainstay in fighting early dysglycemia and its
related health conditions (11–13). Current research suggests
that polyphenolic molecules’ effects on glucose metabolism
are pleiotropic, multi-targeted, and synergistic (9, 10, 14–
21). However, despite the abundance of knowledge about
molecular targets and mechanisms of action affected by the
intake of polyphenols, there is no consensus on which types
of polyphenolic compounds target which mechanisms and to
what extent. Hence, there is a need for quantitative methods
to address such questions and follow the effects of any given
polyphenolic formula over glycemic regulation to advance

FIGURE 1 | Different glucose-insulin (G-I) curve shapes are masked under the current clinical criteria of normality. Current clinical criteria classify an individual as

healthy (A,B) or non-healthy (C,D) based on threshold values for their OGTT response (see Methods and Supplementary Table S1). Red markers and horizontal

lines in both glycemia-insulinemia represent current criteria of normality for an OGTT, including basal (pre-prandial), final (2-hr) and all-time maxima. Different colours

represent selected individual subjects in the healthy (A,B) and non-healthy (C,D) cohorts whose glycemia curves are similar, but having different insulinemia curves

(subjects 370/402 and 94/406), or similar insulinemia curves but different glycemia curves (subject 251/377 and 784/715). (E) G-I dynamics during an OGTT can be

represented by a compact compartmental mathematical model (23), where the main physiological processes in G-I dynamics are represented as subsystems.

Compartments are represented by coloured boxes (orange for glucose pools in the lumen of the digestive system, magenta for blood concentrations and green for the

liver compartment). Rate constants and parameters for each physiological process are indicated alongside their respective process arrows or compartments. General

related processes, which account for subsystems, are shown as blue boxes.

towards standardisation and comparison, particularly in clinical
cohort results. Furthermore, such methods must be sensitive
enough to detect subtle changes to keep track of the nutritional
treatment since dietary interventions are often subtle and long
term (22).

Mathematical modelling has long been used to quantify the
G-I function. We recently presented a model (23) representing
G-I dynamics as a set of separate coordinated subsystems,
each characterised by quantitative physiological parameters.
Parameters are obtained in a patient-wise manner from a low-
cost, non-invasive, routine Oral Glucose Tolerance Test (OGTT)
with insulinemia measurements at 5-time points, instead of
the standard 2 points (cf. Figures 1A–D for examples of these
curves). The model considers five compartments for describing
G-I dynamics through coordinated subsystems coupled via
parameters with physiological meaning, as represented in
Figure 1E. Such compartments represent the insulinemia (I),
and the concentration or amount of glucose in different
compartments: in the stomach S, in the upper intestinal tract
J (jejunum) and L (ileum), and the bloodstream (glycemia) G.
Relevant subsystems are highlighted with light blue. Thus, the
effects of a polyphenolic intervention on G-I dynamics may
be dissected and compared among individuals or cohorts using
this model.

In this work, we propose a general methodology to assess
glycemic health status and dysglycemia risk in a patient-wise
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FIGURE 2 | Schematic representation of the proposed methodology for a

patient-wise assessment of nutritional and general interventions to reduce

dysglycemia risk. First, individuals undergo an OGTT with five measurements

for glycemia and insulinemia (5-point OGTT-I). Second, use the mathematical

model and parameter fitting strategy of Contreras et al. (23) to obtain

physiologically meaningful indexes to assess both the function and

coordination among subsystems. Third, contrast individual values with those

obtained in a cohort study. Here we evaluate whether a patient belongs to the

healthy or non-healthy ranges and her/his overall risk of progressing to

dysglycemic states. Fourth, using this assessment, practitioners may select

suitable treatments or interventions, such as polyphenol-rich diets or

supplementation, for targeted alteration of particular physiological subsystems

and parameters. Finally, repeating the OGTT-I and monitoring over time

enables the assessment and dynamic adaptation of interventions, for example

adjustment of diet and polyphenolic supplementation targeting different

subsystems according to the individual patient’s response.

manner and apply it to quantify the effectiveness of polyphenolic
supplementation in the diet at a cohort or individual level.
The novel aspects of the present work are related to (a) the
application of the mathematical model presented in Contreras
et al. (23) on a large cohort, (b) the statistical analysis of cohort
parametric values obtained by fitting the model to each subject’s
glycemia and insulinemia OGTT curves, (c) the development
of non-dimensional numbers (NDNs) able to express each
patient’s own OGTT dynamics in a comparable dynamic scale,
independent of each subject’s status and particularities, (d) the
definition and calculation of normal, undesirable and abnormal
ranges for each parameter, (e) the development of a statistical
model to assign dysglycemia risk to individuals based on
current definitions of glycemic health, (f) the description of the
correlation between parameters/NDNs and the dis-coordination
found in non-healthy states, (g) the application of the former
findings to nutritional interventions involving a polyphenol-rich
supplement (Delphinol R©), and (h) the dose-dependent effects of
Delphinol R© on each of the OGTT parameters (all from a clinical
point of view).

We organise our paper and its contributions as follows: First,
we show that G-I health status encompasses a “healthy/non-
healthy” continuum and that current binary diagnostic criteria
would fail to identify individuals with a high risk of dysglycemia.
We then use the mathematical model and parameter-fitting
strategy in Contreras et al. (23) to obtain physiological values
characterising the G-I status of a Chilean cohort (n = 1198) and
provide a parameter-based definition of glycemic health. Then,
using non-dimensional analysis, we assess the coordination
between subsystems and explore how it varies between healthy
and non-healthy individuals. Finally, we propose a statistical
model to quantify the risk of dysglycemia given a single OGTT-I
curve. Altogether, the method here proposed encompasses four
steps, as described in Figure 2: (1). Individuals shall undergo
a 5-point OGTT. (2). Using their curves and the model of
Contreras et al. (23), we obtain their physiological parameters
and non-dimensional numbers. (3). Using the cohort-derived
values for parameter ranges, we assess the health status of
each subsystem separately. (4). Using the statistical model, we
assess the effectiveness of the treatment on reducing the risk of
dysglycemia. As a proof of concept of this strategy, we followed
individuals undertaking a polyphenol supplemented diet to show
how to obtain early indicators of the dietary supplementation
effects over glycemic control. Altogether, we provide evidence
that this method is suitable to assess and follow nutritional
interventions since it can detect subtle changes in the G-I
subsystems, which otherwise would require invasive testing to
be spotted.

2. MATERIALS AND METHODS

2.1. Description of the Cohorts and
Laboratory Analyses
In the observational study, we analysed individuals of both
sexes, aged 18 to 65 years, undergoing a first-time 5-point
OGTT analysis at Mutual de Seguridad (Santiago, Chile) or
Fundación Médica Clínica San Cristóbal (Santiago, Chile), as
part of a routine endocrino-metabolic evaluation ordered by
their physicians. Exclusion criteria were a previous prediabetes
or diabetes diagnosis or medically declared insulin resistance,
chronic pharmacological therapy, bodymass exceeding 30 kg/m2,
lactating or pregnant women, cigarette smokers, or individuals
with a history of drug or alcohol abuse. Medications affecting
hepatic activity 28 days prior to the study, known allergies to
medications, renal insufficiency and prediagnosed food allergies
were also exclusion criteria.

We analysed the 5-point OGTT-I glycemia-insulinemia
curves of selected individuals (n = 1198), with a median
age of 33 (95% CI: [18, 64]). For OGTT, blood samples
were taken at fasting level (basal, overnight) and every 30
min, for 2 h after the ingestion of 75 g glucose in 296
mL liquid (Trutol, Thermoscientific, Waltham, MA, USA.),
consumed within less than 5 min. During the test, individuals
were only allowed to ingest water. The analysis techniques for
blood glucose and insulin were GOD-PAP colourimetry and
chemiluminescence, respectively.
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Individuals were classified as healthy if: (i) fasting glycemia
and insulinemia are lower than 100 mg/dL and 15 µU/mL,
respectively; (ii) glycemia values do not exceed 160 mg/dL and
do not persist above 140 mg/dL after 2 h; (iii) insulinemia
values do not exceed 100 µU/mL and do not persist above
60 µU/mL after 2 h. Consequently, the initial cohort was
divided into groups of clinically “healthy” (n = 407) and
“non-healthy” (n = 791) individuals. Individuals among the
“healthy” cohort had a basal glycemia of 86.4 mg/dL (95%
CI: [73.2, 97.2]) and a basal insulinemia of 4.32 µU/mL
(95% CI: [2.02, 11.76]). Individuals among the “non-healthy”
cohort had a basal glycemia of 91.0 mg/dL (95% CI: [75.3,
115.0]) and a basal insulinemia of 8.30 µU/mL (95% CI:
[2.00, 29.02]). Approximately 80% of the cohort were female
individuals, with ages ranging between 18 and 65 years.
Nevertheless, no statistically significant sex-related differences
were found (further details in Supplementary Figures S1, S4, S5,
Supplementary Tables S2, S3, S6, S7).

For the case study on the effects of Delphinol R© on the G-I
dynamics, we studied OGTT-I curves of a group of individuals
showing early symptoms of impaired G-I regulation, defined
as having (i) fasting glycemia or insulinemia higher than 100
mg/dL and 15 µU/mL, respectively, or (ii) glycemia values
exceeding 160 mg/dL or persisting above 140 mg/dL after 2 h;
or (iii) insulinemia values exceeding 100 µU/mL or persisting
above 60 µU/mL after 2 h. Under these criteria, all subjects
would have been classified as non-healthy using the general
cohort classification criteria. We screened for individuals aged
18 to 50 years, not having been previously diagnosed with
prediabetes or diabetes, and with a body mass index (BMI)
lower than 35 kg/m2 and higher than 25 kg/m2. Exclusion
criteria were defined as fasting glucose higher than 126 mg/dL,
use of hypoglycemic medication, current or past use of fibrates
or statins during the past three months, lactating or pregnant
women, cigarette smokers, or individuals with a history of drug
or alcohol abuse or following any special diet. As with the general
cohort, medications affecting hepatic activity 28 days prior to
the study, known allergies to medications, renal insufficiency and
prediagnosed food allergies were also used as exclusion criteria.

Clinical examination of subjects was performed at trial start
and in weekly intervals until completion, measuring weight,
height, waist circumference (at midpoint between the lowest
rib and the iliac crest). Subjects were advised to avoid eating
large food portions, especially carbohydrates, and refrain from
strenuous exercise on days prior to their visit to the clinic.
Volunteers were instructed to refrain from taking supplements
including vitamins, not to change dietary or exercise habits,
beginning from 7 days prior to participation in the trial. Acute
non-prescription medications were permitted, but were required
to be reported. Study participants were instructed to turn up at
the clinic in the early morning (8 AM) having fasted overnight, at
least 8 h, previous to each appointment. At this occasion fasting
blood was drawn for subsequent analysis of basal blood glucose
and insulin, followed by a 5-point OGTT as described previously.

The study was planned to comprise four different
appointments for each subject with a period of one week
between appointments, with an OGTT performed on each

occasion. The first appointment consisted on an evaluation
following the protocol described above, to determine control
conditions with no treatment. A glass of 100 mL water (but
no capsule) was given to each subject 15 min previous to this
first OGTT in order to replicate the conditions of any given
polyphenol dose in the next appointments. In each of the
following appointments, subjects were given each time one
different pre-prandial dose of Delphinol R© (60, 120, and 180
mg), in randomised order, to be consumed with 100 ml of water
15 min before an OGTT. Neither the subjects nor the healthcare
personnel taking the OGTT samples and measurements were
aware of the dose contained inside each capsule. These dose levels
were selected based on clinical results from Hidalgo et al. (24),
who used a single 200 mg dose of Delphinol R© in 10 volunteers,
in order to investigate the effect of lower pre-prandial doses.
Taking into account the size effect reported by these researchers
on OGTT curves, we decided to use a 3.5-larger cohort to
assess the effect of lower doses using the method proposed in
this study. We used a commercially available Delphinol R© food
supplement from MNL-Group, Chile, a standardised maqui
berry extract with a minimum content of 25% delphinidins
and 35% total anthocyanins (polyphenolic composition in
Supplementary Table S18), batch 13156, manufactured in
2013 by Anklam Extrakt, Germany, and encapsulated by
Barnafi Krause Farmaceutica S.A., Chile. Capsules contained
Delphinol bearing 31.5% delphinidin glycosides and 39.4%
total anthocyanins (HPLC). All volunteers (n = 36) gave their
informed consent to use their non-identifiable and confidential
OGTT data in this study (Ethical Committee of Mutual de
Seguridad, Santiago, Chile, resolution case #78).

2.2. Mathematical Model for the G-I
Dynamics
We used a mathematical model to represent continuously the
observed OGTT G-I curves (23). The model considers five
compartments for describing G-I dynamics through coordinated
subsystems coupled via parameters with physiological meaning,
as represented in Figure 1E. Such compartments represent the
amount (or concentration) of glucose in different compartments:
in the stomach S, in the upper intestinal tract J (jejunum) and L
(ileum), and in the bloodstream (glycemia) G. The last variable
accounts for the insulinemia I. All magnitudes involved in the
model are expressed in SI units; conversion factors for glycemia-
related variables are 180 mg/dL = 10 mM, while for insulinemia
1 µU/mL= 6.945 pM.

To analyse the collective contribution groups of parameters
involved in the G-I dynamics we used non-dimensional analysis
(25–27). The number of independent 5 numbers depends on
the physical dimensions involved and the number of model
parameters. The chosen scale variables were the basal levels
of glycemia and insulinemia, the amount of glucose ingested,
and an internal timescale that accounts for the ratio of
incretion influence on pancreatic glucose perception versus the
specific rate of glucose appearance in the bloodstream due to
intestinal absorption. A complete mathematical description of
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FIGURE 3 | Parametric definition of health. Schematic representation of the

determination of normal, undesirable, and abnormal ranges for a given

parameter/NDN. These ranges are defined using the parameter/NDN

distributions of the healthy and non-healthy cohorts, using the central 90%

confidence interval of the healthy cohort distribution as limit of the non-healthy

range and the point of equal probability density as the threshold between

normal and undesirable ranges. Threshold values are reported in Table 1.

the model non-dimensionalisation procedure is provided in the
Supplementary Material, Section 4.

Statistical analysis and parameter-fitting were performed
in MATLAB version R2020a, using the Global Optimization
and Statistics toolboxes, partially executed on the Chilean
National Laboratory for High-Performance Computation
(NLHPC) servers. Other exploratory and statistical analyses
were performed using the DMAKit-Lib Python library (28).
Model equations and parameters/NDNs are described in the
Supplementary Material, Section 4.

2.3. Statistical Analysis of
Parameters/NDNs
After obtaining parameters/NDNs for each individual, we
obtained histograms of parameters/NDNs and assessed their
distribution and ranges in healthy and non-healthy cohorts
using log-logistic distributions. We then assessed differences
in parameter/NDN distributions between cohorts using a
Kolmogorov-Smirnov test. We determined the ranges of 90%
left and right tails of the healthy population and compared
the percentage of subjects in these ranges between healthy and
non-healthy cohorts using a t-test. Significant differences were
used to demonstrated shift towards the analysed tails of the
distribution in non-healthy. We used the assigned shift trends to
colour rows associated to each tail in Supplementary Tables S14,
S15. To determine the healthy (“normal”) ranges for each
parameter/NDN, we calculated the central 90% confidence
interval of the healthy cohort distribution. Abnormal and
undesirable ranges were determined as described in the text
and Figure 3.

Pairwise correlation coefficients were calculated for each
parameter pair, collected into a correlation matrix, and used

to generate graph representations of correlated groups of
parameters/NDNs using the software GePhi, considering only
those with absolute correlation coefficients larger than 0.4
(Figure 4B). Louvain’s algorithm was applied to the structure of
graphs to identify groups of highly correlated parameters, which
were plotted and coloured differently in Figure 4B.

2.4. Sensitivity Analysis of Fitted
Parameters
Considering that the parameter-fitting algorithm of Contreras
et al. (23) involved heuristic steps, the fitting procedure was
repeated at least five times for each patient in order to
check the accuracy and uniqueness of parameter values in a
particular range. Additionally, for each patient, a sensitivity
analysis was performed in which the ten experimental G-I
measures were varied up and down by 10% of its original
value. This allowed us to determine parameters that were
sensitive to errors in measurements and those that remained
majorly unaffected. Conversely, this served to determine
which parameters were well-defined by experimental points,
and thus invariant, and which could be more variable for
each patient.

2.5. ROC Curve Analysis and Optimal
Classification Thresholds
Receiver operating characteristic (ROC) curves were built for
each parameter/NDN, using separately the empirical histograms
and the fitted distributions. We then derived a cut-off value for
each parameter/NDN in both cohorts. For this, we calculated the
optimal thresholds for classification of parameter/NDN values as
healthy or non-healthy based on the maximum Youden’s J index
(Supplementary Table S12). Subsequently, the value of each
individual’s fitted parameter was used to classify the individual
as healthy or non-healthy, depending on the relative position of
the parameter value above or below the threshold.

2.6. Logistic Models for Dysglycemia Risk
Probability
We constructed logistic regression models to determine which
parameters/NDNs most influence clinical classification. To
determine which parameter/NDNs are related to non-healthy
states, we performed a Wald test, testing whether the relevant
logistic regression coefficient was zero (null hypothesis) or
different from it (alternative hypothesis). The test statistic
(the estimated logistic regression coefficient divided by its
standard error) follows the Standard Normal distribution, and
its square follows the chi-squared distribution with 1 degree
of freedom. To select the best combination of explanatory
variables, we iteratively eliminated the parameter/NDN with
the largest p-value in the Wald test for its coefficient in the
regressionmodel, continuing until all remaining coefficients were
significant (p<0.05) in the Wald test. We built a full model
with all parameters and NDNs and their pairwise interactions
as predictors, and derived a simple model by eliminating all
coefficients with non-significant p-values in the Wald test as
described. We also constructed a quadratic model with all
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FIGURE 4 | Pairwise correlation visualisation reveals covariating parameters/NDNs and local coordination between subsystems mediated by the incretin potency

NDN (5N ). Coordination or independence between parameters can be quantified through their pairwise correlation coefficients; The higher the independence between

Parameter/NDN, the lower their correlation coefficient. (A) Heatmap representing pairwise correlation between all model parameters/NDNs obtained for the general

cohort. Cells are coloured according to the value of the pairwise correlation coefficient. The low colour saturation in cells indicates a general absence of redundancy

between parameters/NDNs. (B) Visualising the correlation between parameters/NDNs in graph representations reveals communities of coordinated subsystems

(represented in different colours). Each graph node (coloured circles) represents one parameter/NDN, and the node size is proportional to the number of other

parameters/NDNs that are correlated to the node’s parameter/NDN. Graph edges connect correlated parameters/NDNs, and their width is proportional to the

absolute value of the correlation coefficient between connected nodes. Independent parameters have no connections between them. Three of these

parameters/NDNs communities (pink, green, cyan) are loosely associated, mainly through the central 5N node, while the fourth community is completely independent

from the others (orange). Four parameters are non-correlated, including fasting glycemia and insulinemia, which remarks that basal levels do not directly reflect the

health of any internal physiological system by themselves. Parameters/NDNs are more correlated in the non-healthy state, reflecting the loss of degrees of freedom

and the strain to achieve glycemic control in non-healthy individuals.

parameters and NDNs and their squared values as predictors and
eliminated all non-significant parameters in a similar fashion, to
obtain a quadratic model. Several model performance indexes
were calculated and tabulated (Supplementary Table S12) to
characterise the obtained models. Finally, we used the Matthews
correlation coefficient (MCC) to assess the overall quality of the
binary classification and the Akaike information criterion (AIC)
to select the most appropriate model.

3. RESULTS

3.1. OGTT Curves Form a Continuum
Between Healthy and Non-healthy States
Current clinical criteria classify individuals as healthy or non-
healthy based on threshold values for their OGTT responses.
However, this classification disregards “healthy” individuals
with a higher risk or tendency towards dysglycemia, who
are those individuals where a diet rich in or supplemented
with polyphenols may be the most suitable measure to avoid
progression into a disease state. To illustrate how blurry this
boundary is, we plotted glycemia and insulinemia OGTT
curves from two cohorts classified as “healthy” or “non-
healthy” according to current clinical criteria of normality
(Figures 1A–D, respectively). The OGTT G-I curves and their
interrelation describe how glycemic homeostasis is achieved by
the physiological control system in each patient.

We observe a continuum of curves among individuals
of the same cohort, suggesting that cut-off threshold
values fail to describe other physiologically distinct states.
Furthermore, we observe that glycemia and insulinemia
profiles of the same individual are not always correlated;
several possible shapes of insulinemia curves are possible for
a given glycemia curve, and vice versa (cf. different colours in
Figures 1A–D). These data suggest that G-I dynamic control
is achieved through different mechanisms, supporting the
idea that vulnerability to dysglycemia depends on individual
circumstances and individual physiology. Besides, current binary
diagnostic criteria fail to detect individuals at high risk of
dysglycemia, who, however, would profit the most from dietary
interventions/supplementation.

3.2. Parameter Sensitivity Shed Light on
Predominant Mechanisms to Achieve
Glycemic Control
To provide statistical grounds to our methodology, we first
obtained physiological parameters governing each subsystem for
all individuals in both cohorts mentioned above (cf. Figure 1E
and Supplementary Table S13) using their 5-point OGTT-I
curves. For this, we used the parameter-fitting strategy described
in Contreras et al. (23). Next, to determine to what extent any
parameter defines the shape of individual OGTT G-I curves, we
performed a parameter sensitivity analysis for each individual
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in the healthy or non-healthy cohorts. Parameter sensitivity is
a measure that allows quantifying how perturbations in the
value of a parameter (i.e., physiological changes) affect the shape
of the modelled OGTT curves. We classified “sensitive” and
“insensitive” parameters based on whether they affect the height
and shape of OGTT curve profiles in a patient-wise manner.
Thus, sensitivity reflects how parameters influence G-I curve
shapes for each individual or, in physiological terms, which
subsystems are mainly responsible for the glycemic response in
a given subject.

Furthermore, parameter influence on the shape of G-I
curves may depend on an individual’s health status rather than
being general for all subjects. To assess whether a parameter’s
relative influence is affected by the G-I status, we compared
parameter sensitivities in healthy and non-healthy cohorts.
This is necessary for determining putative differences in the
management of glycemic control from a quantitative perspective
between healthy and non-healthy subjects. For this, we calculated
the percentage of individuals for which each parameter is
sensitive in the healthy and non-healthy cohorts separately.
The relative contribution of a parameter to the shape of the
curve may be compared when assessing percentages within
and between cohorts (Supplementary Table S17) and, hence, for
any individual.

Shifts in curve-shaping parameters, representing inter-
individual differences in the management of glycemic control,
can be found when comparing the healthy and non-healthy
groups, although some parameters remain equally sensitive in
both cohorts (kjs, fgi, η, D, kλ, and γ ), meaning that health
status does not affect their related physiological subsystems
differentially. Non-healthy subjects show a general decrease in
parameter sensitivity (Supplementary Table S17).

Altogether, the data suggest non-healthy individuals over-
rely on fewer subsystems that, in consequence, become more
determinant to achieve G-I homeostasis. In physiological
terms, this means that glycemic control in non-healthy
individuals is less robust and prone to failure, while the
function of some subsystems become less reliable. By contrast,
healthy individuals have several subsystems that collectively
contribute to determining OGTT curve shapes. For example,
we observe that individuals currently classified as non-healthy
show a more sensitive basal glucose consumption (kxg) and
less sensitive insulin-dependent glucose consumption (kxgi)
(Supplementary Table S17), suggesting a higher reliance on
insulin-independent glucose consumption than in individuals
classified as healthy. These observations are hallmarks of insulin
resistance mechanisms (16). This also implies that dysglycemic
individuals are likely to be less responsive to interactions
between glycemia and insulinemia, thus reflecting the loss of
glycemic control.

3.3. Quantifying Physiological Subsystem’s
Function and Defining Health From a
Parametric Perspective
To evaluate each subsystem’s relative influence on individual
OGTT curves, we transformed the governing system of

differential equations into their non-dimensional form and
obtained independent non-dimensional 5 numbers (NDNs).
NDNs are meaningful combinations of physiologically consistent
parameters and thus characterise different subsystems and
help compare individuals on a parameter-independent scale
(Figure 1E). All NDNs and the subsystems they represent are
described and defined in Supplementary Tables S13, S14.
We calculated pairwise correlations between all model
parameters and NDNs among cohorts to assess mutual
dependencies. Only a few showed significant correlations.
Hence, the information contained in parameters/NDNs is not
redundant (Figure 4A). Altogether, this analysis confirms that
G-I dynamics can be represented in separate modular subsystems
characterised by independent parameters/NDNs. Furthermore,
parameters/NDNs dependencies are conserved for all subjects
independently of their G-I status since correlation coefficients
shown in Figure 4A are not significantly different between
healthy and non-healthy groups (p > 0.05).

The next stage was to determine the health status
of each subsystem involved in the G-I dynamics using
Parameters/NDNs. We defined parameter/NDN normality
ranges using cohort values, i.e., the distribution of
parameter/NDN values between healthy and non-healthy cohorts
(Figure 3). We characterised parameters/NDNs distributions
using log-logistic distributions and calculated their 90%
confidence intervals. We then selected parameters/NDNs with
significantly different distributions between the healthy and non-
healthy cohorts (highlighted in Supplementary Tables S15, S16)
and defined thresholds to separate these cohorts in the
parameter/NDNs space. The set of parameters/NDNs that differ
between cohorts consists of kjs, τ , klg , η, kxgi, 5S, 5N , 5D, 5B,
5X , 5R, and 5I (see Table 1). Thus, those parameters/NDNs
can be used to assess any given individual’s health status at the
subsystem level.

We used receiver-operator curves (ROCs) built for each
parameter/NDN to find a diagnostic threshold that optimally
separates healthy and non-healthy parameter values (Figure 3).
These diagnostic thresholds closely coincided with the
intersection between the healthy and non-healthy distribution
curves. With these values, we defined three diagnostic ranges for
each parameter/NDN: normal (from the threshold to the healthy
side), undesirable (from the threshold to the non-healthy side
but still inside the healthy cohort distribution), and abnormal
(Table 1). In this way, a person’s intervention requirements can
be determined and targeted to specific subsystems according
to their health status, as per the ranges where their parameters
belong. Furthermore, as this method provides a detailed picture
of the physiological function, it can also reveal new effects or
targets of different polyphenolic formulations or molecules.

As a side remark, the traditional threshold-based diagnostic
criteria using 2-point OGTT does not identify a person’s
individual risk: when using only basal (fasting) glycemia (Gb)
and insulinemia (Ib) as predictors of dysglycemic risk, we observe
around 20% of individuals in the healthy cohorts have out-of-
bounds Gb values. Further, 50 and 65% of non-healthy subjects
were out of range for Gb and Ib, respectively. When considering
out-of-range Gb and Ib as classification criteria, only 32% of
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TABLE 1 | Healthy, undesirable and abnormal diagnostic ranges for model physiological parameters/NDNs.

Physiological

process
Variable Units

Healthy

diagnostic range

Undesirable

diagnostic range

Abnormal

diagnostic range

kjs min−1 0.0198 – 0.244 0.01 – 0.0198 <0.01

τ min 72 – 111 45 – 72 <45
Digestive

motility
5S – 0.396 – 47.6 0.0013 – 0.396 <0.0013

Glucose

absorption
klg min−1 0.00371 – 0.602 0.602 – 1.62 >1.62

Incretin

potency
5N – 0.232 – 3.84 8.12×10−4 – 0.232 <8.12×10−4

η L−3 0.0145 – 0.178 0.178 – 6.97 >6.97Glucose

distribution 5D – 1.20 – 15.4 15.4 – 550 >550

kxgi min−1 pM−1 9.41×10−6 – 0.00259 5.67×10−9 – 9.41×10−6 <5.67×10−9

5B – 0.00204 – 159 6.42×10−7 – 0.00204 <6.42×10−7
Tisular

glucose uptake
5X – 0.00866 – 0.395 3.59×10−7 – 0.00866 <3.59×10−7

Pancreatic

response
5I – 0.394 – 19.0 0.00871 – 0.394 <0.00871

Hepatic

response
5R – 0.00933 – 41.0 41.0 – 134 >134

Gb mM 4.10 – 5.03 5.03 – 5.29 >5.29Effective

control levels Ib pM 13.1 – 47.9 47.9 – 68.6 >68.6

non-healthy subjects are identified as such, whereas considering
altered Gb or altered Ib misidentifies 39% of healthy subjects and
22% of non-healthy subjects.

3.4. Coordination Among Subsystems
Affects OGTT Curve Shape
Physiological coordination among G-I subsystems can quantify
the effectiveness of dietary interventions and/or supplementation
with polyphenols to correct dysglycemic conditions in cohort
studies. Parameter/NDN coordination gauges the status of
internal subsystems, such as digestive motility and incretin
action, that otherwise should be assessed by invasive methods
(29–31). We explored the coordination among subsystems in
the healthy and non-healthy cohorts using community detection
algorithms applied on correlation graphs (Figure 4B), where
correlated groups represent functional coordination between
subsystems. We identified four correlated parameter/NDN
communities (coloured in Figure 4B). We found that basal
glycemia and insulinemia are not correlated to any other
parameter/NDN, so the clinical status of internal subsystems
cannot be inferred from these basal levels alone derived from the
current 2-point OGTT procedure of diagnostic.

In the healthy cohort, we detected strong correlations
between parameters/NDNs related to digestive motility,
glucose absorption, pancreatic insulin secretion, and glucose
consumption (Figure 4B), all connected to a central incretin load
(5N) node. In agreement with the current paradigm (31–36),
this suggests the incretin activity load number (5N) coordinates
motility and glucose absorption along the digestive tract. These
correlations are more notorious in the non-healthy cohort
(Figure 4B), reflecting a higher reliance on incretin-mediated
physiological coordination to achieve glycemic homeostasis.
Accordingly, differences in correlated parameter/NDN values

indicate that the non-healthy state is characterised by a slowing
down of stomach and jejunal motility and a decrease in incretin
load and pancreatic insulin secretion. Such hallmarks of glycemic
control dysregulation have been validated experimentally in the
past (29–31, 37). According to this observation, personalised
dietary interventions with pharmacologically active polyphenols
that target and improve digestive motility, incretin load and
pancreatic insulin secretion parameters would be promising to
ameliorate dysglycemia and slow its progression to disease states
in subjects where these parameters are decreased.

3.5. A Statistical Model to Assess Health
Status and Risk of Dysglycemia
Using the parameters/NDNs selected in the previous section,
glycemic health status can be characterised and quantified in a
patient-wise manner. For a given individual, the integration of
the different parameters/NDNs values may indicate individual
risk to dysglycemia at any given time. Here, we built a predictor
of dysglycemic risk integrating all relevant parameters/NDNs
describing each subsystem into a logistic regression model that
quantifies an individual’s probability of dysglycemia:

z = a1η + a25X + a3Gb + a4Ib + a5τ + a6kxgi + a0, (1)

P
(

dysglycemia
)

=
ez

1+ ez
, (2)

a1 = 0.5310, a2 = 0.1960, a3 = 1.2799

a4 = 0.0330, a5 = −0.0187, a6 = −798.2059,

a0 = −6.0103.

This risk parameter includes basal (fasting) glycemia and
insulinemia but also physiological parameters representing
glucose distribution (η), digestive motility (τ ), and insulin
sensitivity (kxgi,5X). Therefore, this risk parameter combines the
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main internal physiological processes that determine the result
of glycemic control as found in this work, and also the variables
resulting from that glycemic control.

We built an ROC curve to assess the performance of this risk
model when used as a classifier to discriminate between healthy
and non-healthy individuals, as detailed in the Methods section.
Performance metrics with an optimal threshold probability
and comparison to other models (full and quadratic) are
summarised in Supplementary Table S12. The simple model
presented above was selected according to its larger Akaike
Information Criterion (AIC). Using this parameter/NDN-based
risk model, we observe that 26% of healthy subjects are classified
as high-risk, somewhat higher than using basal values alone
(≈ 20%) to classify dysglycemic abnormalities. Further, 77% of
non-healthy individuals are successfully identified, achieving a
diagnostic odds ratio of 9.3 (77% sensitivity and 74% specificity).

One of the advantages of this risk model is its ability to return
not only an expected binary classification result but also a fitted
probability of belonging to the positive class (38). The model
considers a probability threshold of 0.60 or higher to classify a
subject into the non-healthy group. However, probabilities can
vary above and below that value, and those variations could
signal the improvement and impoverishment of glycemic health.
Moreover, since the model and parameters take into account
several internal homeostatic mechanisms, they can be sensitive
enough to quantify health changes that are difficult to univocally
assess using other tools.

Therefore, analysing a 5-point OGTT coupled with the
present approach can identify the risk of dysregulations in G-
I dynamics earlier and more sensitively than current tools.
This evaluation integrates an individual’s personal vulnerability
to dysglycemia and thus can help early decision making
in favour of dietary interventions or supplementation with
polyphenolic compounds which regulate glycemia rather than
pharmacological treatment of disease states.

3.6. Evaluation of the Effect of Treatment
With a Polyphenolic Extract in the Study
Cohort
To illustrate how individuals can be monitored during an
intervention with a polyphenolic extract for dysglycemia
treatment, we used Delphinol R©, a standardised maqui berry
(Aristotelia chilensis) extract that has been shown to improve
glycemic control (39). We studied 36 hyperglycemic, non-
diabetic, non-obese individuals randomly treated with three
different pre-prandial doses of Delphinol R© (control base
with no treatment, 60, 120, and 180 mg), 15 min before
an OGTT, with a one-week wash-out period between
experiments. We used 5-points OGTT curves to calculate
parameters/NDNs for each individual and Delphinol R©

dose. Statistically significant shifts in parameters/NDNs
between the control and any treatment dose are highlighted
in Figure 5.

Delphinol R© supplementation induced significant changes
(p<0.05) towards the normality range defined for each

parameters/NDNs. For example, the parameters/NDNs
describing the digestive system’s motility decrease (decreasing
kjs and 5S; increasing τ ) and absorption is delayed to the distal
part of the small intestine. Interestingly, this target mechanism
has also been described experimentally for metformin, one
of the first-line drugs routinely used to treat hyperglycemic
subjects (31–36), and also for flavonoids, anthocyanins and other
polyphenols (6, 7, 10, 12, 18, 19, 40–42).

Using parameters/NDNs to describe subsystems we gained
insights into the target mechanisms of action of Delphinol R©. We
observe the pancreatic response to incretin action (fgi) decreases,
but the incretin activity load number 5N remains the same.
These data argue that digestive motility modulation occurs via
a reduction of intestinal motility (τ ) and the decreased action
of incretins on the pancreatic function is enough to control
glycemia reinforcing the idea that an improved glycemic control
response is achieved by the coordinated participation of diverse
mechanisms. Further, we observe that a single pre-prandial dose
of Delphinol R© can decrease dysglycemia risk from 89% (control)
to 78% (180 mg dose), and that this effect occurs with any
dose (Figure 5). Hence, Delphinol R© is of particular interest for
individuals with early-detected dysglycemia risk, for whom an
intervention based on polyphenol rich food or supplementation
is most desirable as an early intervention for dysglycemia or
as a complement for traditional treatments to accelerate the
restitution of homeostasis.

The results in Figure 5 that a single pre-prandial dose of
Delphinol R© significantly decreases the risk of dysglycemia in the
studied cohort. Furthermore, results from significantly varying
parameters and NDNs indicate that the general mechanisms of
action for glycemic control improvement in the cohort include
(a) decreasing the stomach emptying and intestinal transit rate,
(b) delaying glucose absorption to the ileum, (c) improving
pancreatic function, and (d) less dependency on the incretin
effect for glycemic control. An additional paradoxical effect
is observed, in which insulin-induced glucose consumption
parameters (i.e., insulin sensitivity, quantified by kxgi and 5X),
decrease in a dose-dependent manner. As a proof of concept,
in the next section we show the analysis of effects at the
individual level.

We also show that some subsystems are more affected than
others with the use of Delphinol R©, suggesting the possibility
that specific formulations might have specific target subsystems.
This knowledge could lead to devising interventions with
supplementation with Delphinol R© combined with extracts
with different polyphenolic molecules (e.g., other anthocyanins,
flavonols, flavanols, and flavanones) affecting other subsystems,
which could have synergistic effects to normalise all glycemic
control physiological processes. For instance, cohort results show
that single pre-prandial doses of Delphinol R© does not seem to
affect hepatic function in glucose management, and its effects
on insulin sensitivity seems to be contrary to what should be
expected. Therefore, we can expect any polyphenolic molecule or
extract that ameliorates hepatic glucose management or insulin
sensitivity to have synergistic effects when combined with single
pre-prandial doses of Delphinol R© as used in this study.
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FIGURE 5 | Delphinol® has a dose-dependent effect on different subsystems involved in G-I dynamics. (A–E) Comparison of the values of significantly varying

parameters/NDNs between subjects in control conditions (no Delphinol®, blue bars) and treated with 60 mg (orange bars), 120 mg (yellow bars), and 180 mg (purple

bars) Delphinol® prior to an OGTT. p-values are reported for the pairwise t-test comparison of the means of each treatment group with the control group. (F) Risk

probabilities of dysglycemic (non-healthy) status calculated using the logistic model. The general risk of non-health status decreases with Delphinol® treatment in a

dose-dependent way. Reported values are average probabilities with errors and p-values of the difference between each dose and the control group. In the figure, the

number of asterisks denotes levels of significance of the difference with the control experiment; *p ≤ 0.1, **p ≤ 0.05, ***p ≤ 0.01, ****p ≤ 0.001.

3.7. Patient-Wise Evaluation of the Effect of
Treatment With a Polyphenolic Extract
Dose-dependant effects of Delphinol R© can be also analysed in a
patient-wise manner. As an example, Figure 6 presents glycemia
and insulinemia data for Patient 17, one of the subjects with
most considerable parameter improvements with Delphinol R©

treatment. A diagnostic trend is not evident from the analysis of
the crudeOGTT curve values, and quantification of effects is even
less possible from the raw curves alone.

In general, the use of the dysglycemia risk test as a diagnostic
tool demonstrates a general improvement of the glycemic control
response in patients treated with Delphinol R© through non-
obvious balancing mechanisms. In Patient 17, quantification
of the degree of improvement in glycemic control using the
dysglycemia risk test demonstrates the sensitivity of the method
to detect slight changes in glycemic control efficacy, which are
difficult to asses with other methods. This can be used together
with the exact variations observed in each parameter/NDN to
quantify the health status of each subsystem of the glycemic
control system and their contribution to the non-healthy risk for
each patient.

Parameters and NDNs can be used to characterise the
function of the different subsystems that intervene in glycemic
regulation during an OGTT in a patient-wise manner. The
NDNs ranges shown in Table 1 allow assessing and comparing
treatment efficacy in each patient. Figure 6 depicts the range
of all physiological subsystem’s characteristic NDN and basal

FIGURE 6 | OGTT and probability of non-health status for the case of patient

17. (A) Glycemia and Insulinemia curves for the control experiment (no

Delphinol® ) and three preprandial doses (60, 120, and 180 mg). (B) Risk of

non-health status calculated from the simple logistic model for patient 17 for

the control experiment and the three different Delphinol® doses.

glycemia and insulinemiafor each patient (classified as healthy,
undesirable and abnormal), reflecting how pre-prandial
Delphinol R© consumption affects glycemic control physiological
subsystems for a set of exemplary patients.

Frontiers in Nutrition | www.frontiersin.org 10 February 2022 | Volume 9 | Article 831696

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Olivera-Nappa et al. Patient-Wise Assessment of Polyphenol Nutritional Interventions

FIGURE 7 | Patient-wise assessment of the dose-dependent effects of pre-prandial Delphinol®. In the general cohort, some individuals reacted more positively to

Delphinol® than others, decreasing their dysglycemia risk. This figure presents exemplary results for both types of patients. (A) Patients 1, 16, and 17 show a clear

and dose-dependent improvement of their overall glycemic function expressed by the normalization of NDNs related to physiological subsystems involved in glycemic

control. (B) Patients 13, 32, and 36 do not clearly respond to pre-prandial Delphinol® treatment in the doses considered by this study, as assessed by the less

pronounced effect on normalizing the NDNs of internal physiological subsystem. (C) Effect of pre-prandial Delphinol® on the overall risk of dysglycemia, yielding

consistent results for the same patients.

Patients 1, 16, and 17 show a marked improvement in
their dysglycemia risk (Figure 7C). Reflecting this risk decrease,
Figure 7A shows that higher doses in all patients share
an improvement in digestive motility, basal glycemia and
insulinemia, and insulin activity load (patient adjusted proxy
for insulin sensitivity). Incretin potency, glucose distribution,
and pancreatic response are also improved, although less dose-
dependent. The 180-mg dose is undoubtedly the most effective
for Patient 16 and Patient 17. In contrast, Patient 1 seems
to benefit the most with 120 mg of Delphinol R© to normalise
physiological parameters.

In contrast, treatment with pre-prandial Delphinol R© has a
minimal effect on reducing dysglycemia risk in Patients 13,
32, and 36 using the doses assayed in this study. Patient 36
is a special case since their basal glycemia and insulinemia
are normal, but the overall risk of dysglycemia is high.
Dysglycemia risk can be detected when assessing NDN values
and signal physiological processes that are not fully functional.
The Delphinol R© treatment effects on physiological NDNs and
basal levels are heterogeneous in these three patients and do
not show a noticeable dose-dependent trend. However, all of
them present a general normalisation of the function of internal
physiological subsystems with the 120-mg dose. In view of
these results, a healthcare practitioner could decide that (a)
pre-prandial Delphinol R© is not effective for these patients, so
other polyphenolic treatments should be used, (b) a 120-mg pre-
prandial Delphinol R© dose should be used together with another
synergistic intervention to decrease dysglycemia risk, and (c)

larger pre-prandial Delphinol R© doses or longer Delphinol R©

dosages should be assayed with these patients.
The paradoxical effect observed in the cohort analysis, in

which insulin-induced glucose consumption parameters decrease
in a dose-dependentmanner, is clearly explained when separating
individuals for which the treatment is effective (Figure 7A) and
those for which no improvement in dysglycemia risk is observed
(Figure 7B). For the most effective dose, insulin sensitivity is
normalised along other physiological subsystems in patients
whose dysglycemia risk decreases, while for those individuals for
which the treatment does not decrease the risk, the most effective
dose does not normalise insulin sensitivity. This reflects the
relationship between risk and insulin sensitivity expressed in the
equations defining the calculation of dysglycemia risk. Therefore,
data show that only patients who respond to pre-prandial
Delphinol R© treatment improve their insulin sensitivity and
dysglycemic risk, but not all individuals respond in this manner.
Hence, the decrease in insulin sensitivity in the general cohort
should reflect a more general unresponsiveness to pre-prandial
Delphinol R© to ameliorate insulin sensitivity, and Delphinol R©’s
general positive effect on dysglycemia risk may be more related
to an improvement of other physiological subsystems, through
the other action mechanisms presented above.

4. DISCUSSION

In this work, we present evidence supporting the notion that
dysglycemia risk can be masked by current threshold-based
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diagnostic criteria and that vulnerability to dysglycemia depends
on individual circumstances and physiology. Such findings are in
line with those of Hall et al. (43), who used continuous glucose
monitoring to test such assumptions and found that individuals
have specific patterns of post-meal glycemic responses, which
reflect each subject’s differential G-I vulnerability. This work
and others (1, 2, 44) indicate that glucose dysregulation is
more prevalent and heterogeneous than previously thought and
can affect individuals considered normoglycemic by the current
clinical criteria.

Here, we present a new strategy to assess individual glycemia
health status in a non-invasive 5-point OGTT coupled to
modelling. The method enables the early identification of
individuals at risk of progressing to dysglycemic states. Once
identified, nutritional interventions based on diets rich in
or supplemented with polyphenols may be used as the first
line of intervention to lower the risk cost-effectively. Further,
since a growing body of evidence suggests several polyphenolic
compounds can ameliorate type 2 diabetes patients (6–8, 16, 41,
42, 45, 46), the progression of the intervention may be followed
by assessing the health status of each subsystem at different
times and the possible reversion of the dysglycemic state may be
assessed at any moment.

This approach builds on the knowledge obtained by analysing
the healthy and non-healthy cohorts. Cohort statistics enabled us
to (i) quantify the healthy function of the different subsystems
involved in the G-I dynamics and (ii) know their coordination
in healthy and non-healthy individuals. By having the cohort-
derived normality ranges as a blueprint, we can assess new
patients’ dysglycemia risk and health status at the subsystem
level and from a parametric point of view. Therefore, this
parametric health assessment can serve to study complex
questions. For example, whether all or which polyphenolic
compounds ameliorate dysglycemia. This strategy may be used
in the future to analyse which polyphenolic compounds claiming
to be anti hyper-glycemic target which physiological subsystems
or whether a known compound can affect other subsystems than
those already reported. This study allowed us to identify the
target subsystems of the commercial polyphenolic formulation
Delphinol R©. This supplement exerts its glycemic control
properties by ameliorating digestive motility, fasting glycemia
and insulinemia, insulin sensitivity. Secondary targets are
incretin potency, glucose-distribution, and pancreatic function.

Until now, physiological parameters describing the
subsystems involved in G-I dynamics, such as digestive
motility rates, glucose absorption, pancreatic function, incretin
activity, and hepatic reaction, could only be obtained by complex
research-lab tests (29–31). Coordination among subsystems
gives further insight on which functions are affected when
progressing through dysglycemic states to disease. Furthermore,
coordination allows a systematic measure in cohort studies of
nutritional interventions, particularly those whose effects are
subtle and time-dependent, such as polyphenol-rich diets.

To sum up, we present a patient-wise methodology to assess
glycemic health status and dysglycemia risk, with applications
in polyphenol research and nutritional interventions. This
methodology allows assessing the effectiveness of such

interventions by detecting subtle changes in the patient’s 5-
point OGTT profiles that current diagnostic criteria would
neglect. The strategy enables continuous monitoring and
detection of subtle changes (improvements or fall-outs) in the
health status. In turn, this allows rapid medical decisions in
a fairly straightforward manner. For example, through this
strategy, health practitioners may rapidly adjust and tailor the
intervention to individual needs to maximise the polyphenolic
supplementation impact. Altogether, patient-wise comparison of
the effects and combination of different interventions can pave
the road to building a precision preventive medicine approach
for glycemic dysregulation based on polyphenols and other
dietary and non-dietary interventions.
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