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Abstract

Cancer cells show remarkable plasticity and can switch lineages in response to the 
tumor microenvironment. Cellular plasticity drives invasiveness and metastasis and 
helps cancer cells to evade therapy by developing resistance to radiation and cytotoxic 
chemotherapy. Increased understanding of cell fate determination through epigenetic 
reprogramming is critical to discover how cancer cells achieve transcriptomic and 
phenotypic plasticity. 

Glioblastoma is a perfect example of cancer evolution where cells retain an inherent 
level of plasticity through activation or maintenance of progenitor developmental 
programs. However, the principles governing epigenetic drivers of cellular plasticity in 
glioblastoma remain poorly understood. Here, using machine learning (ML) we employ 
cross-patient prediction of transcript expression using a combination of epigenetic 
features (ATAC-seq, CTCF ChIP-seq, RNAPII ChIP-seq, H3K27Ac ChIP-seq, and 
RNA-seq) of glioblastoma stem cells (GSCs). We investigate different ML and deep 
learning (DL) models for this task and build our final pipeline using XGBoost. The model 
trained on one patient generalizes to another one suggesting that the epigenetic signals 
governing gene transcription are consistent across patients even if GSCs can be very 
different. We demonstrate that H3K27Ac is the epigenetic feature providing the most 
significant contribution to cross-patient prediction of gene expression. In addition, using 
H3K27Ac signals from patients-derived GSCs, we can predict gene expression of 
human neural crest stem cells suggesting a shared developmental epigenetic trajectory 
between subpopulations of these malignant and benign stem cells.       

Our cross-patient ML/DL models determine weighted patterns of influence of epigenetic 
marks on gene expression across patients with glioblastoma and between GSCs and 
neural crest stem cells. We propose that broader application of this analysis could 
reshape our view of glioblastoma tumor evolution and inform the design of new 
epigenetic targeting therapies. 
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1. Author summary

This study aimed to develop a machine learning (ML) pipeline that can be used to 
investigate the role of epigenetic regulation on gene transcription in glioblastoma 
stem cells (GSCs). We developed a cross-patient prediction pipeline with 
multi-epigenomic data of patient-derived GSCs to predict gene expression. Our 
pipeline includes in-silico perturbation analysis, which examines the impact of 
different epigenetic regulators including chromatin accessibility (ATAC-seq), distal 
chromatin looping (CTCF ChIP-seq), histone modifications (H3K27Ac ChIP-seq), 
and active transcription (RNAPII ChIP-seq), on gene transcription across patients. 
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Our in-silico perturbation analysis inferred that the various epigenetic modulators are 
essential for regulating gene expression, with a higher weight on H3K27Ac, across 
patients. Collectively, we developed a cross-patient prediction pipeline that can be 
used to unravel the multi-epigenetic-driven mechanism of gene expression and 
propose potential drivers of cellular plasticity in GSCs. 

2. Introduction

Glioblastoma stem cells (GSCs) are characterized by tumor-initiating and self-renewal 
properties and are known to drive chemoresistance and heterogeneity in glioblastoma  
(1–5). Until now, there is limited understanding regarding the epigenetic factors that 
define GSCs’ failure to attenuate their stemness potential in the face of differentiation 
cues. In addition, the influence of epigenetic mechanisms on GSC phenotypic plasticity 
is not fully understood. To address these questions, previous studies have examined the 
contribution of histone modifications, chromatin accessibility, and distal chromatin 
looping on gene transcription (6–9). Conventional studies employ correlation analysis to 
look at the linear relationship between gene expression and one epigenetic modulator. 
For example, it was shown that histone modifications can be predictive for gene 
expression by looking at the linear relationship between expression and histone 
modifications (10). In addition, CTCF was shown to play a role in gene regulation by 
participating in establishment and maintenance of chromatin loops (11). Finally, gene 
expression of oncogenes is amplified due to increased chromatin accessibility and 
enhancer activation (12). Although these studies provide mechanistic insights on 
epigenetics-based modulation, they include poor correlation coefficients between each 
epigenetic modulator and gene expression suggesting that correlation analysis is 
incapable of comprehensively interrogating the enormous amount of epigenomic and 
transcriptomic data. 

To address this issue, machine learning (ML) techniques have been applied to 
epigenomics data such as ATAC-seq, ChIP-seq of histone modification marks, or 
transcription factors. The majority of these studies have been applied to predict gene 
expression based on one type of epigenetic modulator, such as histone modifications, 
as seen in AttentiveChrome and GraphReg (13–15). In the last few years, few studies 
have also applied ML algorithms to build models that take multiple epigenetic 
modulators to predict gene expression (16–19). However, the application of machine 
learning to study the combinatorial effect of multiple epigenetic modulators across 
patients with cancer has not been performed.

Here, we develop an ML-based prediction model that predicts gene expression levels in 
patient-derived GSCs using multiple epigenetic regulators (ATAC-seq, RNA polymerase 
II (RNAPII) ChIP-seq, CTCF ChIP-seq, and H3K27Ac ChIP-seq) at high performance. 
To examine the contribution of each epigenetic regulator on gene expression, we 
perform in-silico perturbation analysis and show that all epigenetic regulators contribute 
to gene expression prediction, with a higher contribution of H3K27Ac ChIP-seq signals, 
followed by RNAPII ChIP-seq, ATAC-seq, and CTCF ChIP-seq across patients. 
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Fig 1. Schematic overview of epigenetics-driven gene transcription and epigenomics 
sequencing data processing: Gene transcription heavily relies on epigenetics. These  
epigenetic mechanisms can be categorized into four categories: A. Chromatin 
accessibility, B. Active Transcription, C. Chromatin looping, D. Histone modifications. 
Counts of these sequencing +/- 2.5 kilo base-pairs (kbp) flanking the TSS region of 
each gene were measured and divided into 50 bins, with each bin representing 100 
base pairs to create a heatmap for the input of the model.

Glioblastoma is a perfect example of cancer evolution where cells retain an inherent 
level of plasticity through activation or maintenance of progenitor developmental 
programs. To determine the contribution of H3K27Ac and CTCF binding on predicting 
gene expression between GSCs and neural stem cells we used publicly available 
ChIP-seq data of H3K27Ac and CTCF of neural crest (NCCs) and neural progenitor 
cells (NPCs) as test data for our GSC data-trained model and compared the Pearson 
Correlation Coefficients (PCCs). Our analysis shows that the GSCs and NCCs share 
patterns of H3K27Ac enhancer landscape influence on their gene expression. 

Overall, our ML approach determines weighted patterns of influence of epigenetic 
marks on gene expression across patients with glioblastoma. Moreover, our approach 
reveals pattern similarity of H3K27Ac marks across GSCs and NCCs, which provides 
insights into epigenetic-driven cellular plasticity. Broader application of this analysis 
could reshape our view of glioblastoma tumor evolution and inform the design of new 
epigenetic targeting therapies. 

3. Materials and methods

3.1 Datasets and pre-processing

We model and investigate the relationship between epigenetic modulators and gene 
transcription of patients derived GSCs using machine learning. To achieve this, we used 
the following four markers to compose our GSC patient datasets: ChIP-sequencing with 
H3K27Ac (enhancer marker), RNAPII (active transcription marker), and CTCF (distal 
chromatin looping marker), and ATAC-sequencing (chromatin accessibility) and 
RNA-sequencing data (Fig 1). This dataset was created for two patients (GSC1 and 
GSC2). For investigative downstream experiments, we included datasets composed of 
markers from non-GSC crest and progenitor neural cell data sourced from ENCODE 
(accession codes: ENCFF056WDN, ENCFF521XJN, ENCFF400MZX, ENCFF123YLB, 
ENCFF503KKJ, ENCFF655GGB, and ENCFF583OOM)(18,20–26). Both neural cell 
samples were from the human embryonic stem cells (H9) cell line. The progenitor cell 
dataset included H3K27Ac ChIP-seq, CTCF ChIP-seq, and DNase-seq (as an analog 
for ATAC-sequencing). The crest cell dataset included H3K27Ac ChIP-seq and CTCF 
ChIP-seq. For detailed information on the preparation of these datasets see 
supplementary section S1. 

We focused on the +/- 2.5 kilo base-pairs (kbp) flanking region of the transcription start 
site (TSS) for each gene and divided it into 50 bins, with each bin representing 100 
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base pairs. Further, we created a 50 x 4 matrix with rows representing bins and columns 
for epigenetic features for each of the 20,015 genes, and each bin contains summarized 
counts. As a result, we  passed 20,015 x 50 x 4 to our model as an input. To prepare the 
gene expression labels, we summarized counts of the +/- 2.5kb flanking the TSS per 
gene and normalized it using transcripts per million (Fig 2). 

The second preprocessing step included separate standardization and log(2) 
transformation of the gene expression measurements (27). To account for the variation 
in count values across different types of sequencing and experimental conditions, we 
standardized the counts of each sequencing data by using the mean value of the 
corresponding sequence data. This standardization occurred after the train, validation, 
and test data-splitting was performed. Here, each of the four epigenetic features were 
standardized separately within the train, validation, and test sets. We chose to 
standardize the data at this point, as opposed to before the data splitting, to avoid 
potential data leakage (28). Each gene had its corresponding target label log(2) 
transformed with a pseudo count of 1, prior to the data split process. Additional 
information regarding the model input process is contained in the supplementary section 
S2 (Fig S1 & S2).

Fig 2. Patient datasets representation after preprocessing. The figure depicts the 
standardized epigenetic marker values per gene for a patient. It highlights the 
3-dimensional arrangement of the datasets prior to model input. Here the “x” axis 
corresponds to the 50 bins of 100bp counts for each feature. The ”y” axis represents 
each gene’s 4 epigenetic features. The figure’s “z” axis is representative of the gene 
arrangement in the dataset.
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3.2 Machine learning modeling

We tested several regression-based cross-patient predictive models to examine the 
novel application of our specific combination of epigenetic markers to predict gene 
expression using machine learning. Given the two patients (GSC1 and GSC2), we 
sought to use machine learning to extract a common pattern seen across patients, as 
GSCs are highly heterogeneous from one patient to the next. Therefore, we trained 
each model using a subset of genes from patient 1 followed by testing the same model 
with patient 2’s dataset (represented as GSC1→GSC2). Our experimental setup also 
included the inverse operation where the models were trained on patient 2’s dataset 
and tested using patient 1’s data (represented as GSC2 →GSC1).

To our knowledge this was the first time this specific combination of markers was 
explored in a machine learning study. In every case, the prediction task was a 
regression where the models predicted the RNA-seq gene expression value per gene. 
Cross-patient prediction experiments required two datasets (one for training and 
validation, and the other for testing), each composed of ChIP-seq, ATAC-seq, and 
RNA-seq.

To select the best machine learning model, we tested deep learning architectures like a 
Multi-layered Perceptron (MLP), a Convolutional Neural Network (CNN), a Recurrent 
Neural Network (RNN) and a Branched Multi-layer Perceptron (Branched MLP). With 
the branched MLP we combined the genomic sequences from the region as inputs. 

Traditional machine learning algorithms included Gradient Boosting Regression (GBR), 
Support Vector Regression (SVR), and Multiple Linear Regression (MLR) architectures. 
Detailed information regarding these models is outlined in supplementary section S3. 

Evaluation metrics. Pearson Correlation Coefficient (PCC) was used as the primary 
metric for hyperparameter tuning, performance evaluation, and feature perturbation. 
Spearman Correlation Coefficient (SCC) was calculated concurrently with PCC. 
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3.2.1 Criteria for model selection.

Out of all the models tested, we selected our final machine learning model based on the 
analysis of each model’s overall Pearson Correlation Coefficient (PCC) metric results. 

Fig 3. Cross-patient prediction methodology using the model XGBoost 
architecture. The model input for training and validation was derived from a different 
patient than the testing dataset. As shown, the matrices were flattened before going into 
the model where the RNA-seq value was predicted.

3.2.2 XGBoost model details

The XGBoost based model exhibited the best average performance of all the 
cross-patient experiments in this study. The downstream analysis and discussions we 
share in later sections are drawn from this architecture’s predictions. Since XGBoost 
takes 2-dimensional input, the dataset features were flattened to 20,0015 x 200 while 
the target variable (RNA-seq) became a 20,0015 x 1 array. The relative positioning of 
the bins of each of the four gene features was kept contiguous (Fig 3). 

Loss function. We used mean squared error (MSE) for loss function calculations as 
follows:

mean squared error = -                                              (1)1
𝑛

𝑖=1

𝑛

∑ (𝑦
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𝑖
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In the calculation represents the actual RNA-seq measurement while   represents 𝑦
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the predicted value per gene  for the number of genes  in the dataset. 𝑖 𝑛
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3.3 Model training, validation and testing

We split the data into training, validation, and test sets to perform hyperparameter 
tuning. We trained two models (GSC1→GSC2 and GSC2→GSC1). The 
hyperparameters for the first model were tuned by dividing the GSC1 datasets into 
training (70%) and validation (30%) sets. All the genes in the GSC2 dataset constituted 
the test set. Similar setup was used for the GSC2→GSC1 model. A base set of 
hyperparameters for experimental testing, optimized for higher PCC performance, were 
chosen for each model. This was done using a grid search (combinatorial products of 
hyperparameter values into unique sets) optimizing for model performance. 
Supplementary section S3 (Table S1, S2, S3, S4, S5, S6, S7, and S8) includes 
additional information on hyperparameter tuning.

We ran each model 10 times (with different random seeds) in the two cross-patient 
arrangements (GSC1→GSC2 and GSC2→GSC1) for experimental testing. The mean 
and standard deviation of our metrics are reported for our study’s experimental results 
(Fig 4A and 4B). 

3.4 Perturbation experimental setup and analysis

To study the individual effect of each epigenetic signal on prediction, we perturbed one 
of each of the datasets four epigenetic features at a time and ran the perturbed input 
through the trained model. For this set of experiments, each signal perturbation was 
done for 10 runs while each run was given a different random seed. The perturbation 
experiments maintained our cross-patient prediction arrangement and were run in both 
prediction directions (GSC1→GSC2 and GSC2→GSC1). 

Perturbation of a particular epigenetic signal was achieved by replacing all of that 
feature’s values with 0.0 (the mean of the standardization) for all gene’s across the test 
dataset. Our analysis compared the calculated mean and standard deviation results, for 
each set of perturbations, to the original model performance and each other. The 
per-gene prediction results were also recorded for later analysis. 

4. Results

4.1 Machine and deep learning models perform similarly in different 
cross-patient prediction scenarios 

The study found that, when the models were trained with GSC1’s (patient 1) and 
tested with GSC2’s (patient 2) data, which we referred to as GSC1→GSC2,  the 
highest PCC value was acquired with the XGBoost Regression (XGBR) model at 
0.826199 ± 0.000888. Multiple Linear Regression (MLR) held the lowest 
performance of 0.676872 ±  0.0; a 0.149327 difference in PCC. The sub-par 
performance of MLR indicated that the relationships among the epigenetic markers 
and their relationship with gene expression was non-linear. This characteristic of the 
data reinforced the need to experiment with many different algorithms of higher 
complexity to optimize our study’s application of machine learning. Interestingly, 
given the non-linearity of the data, five of our models successfully found patterns 
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leading to RNA-seq values using completely different architectures. In fact, this 
sub-group (XGBR, GBR, MLP, CNN, and RNN) performed within 0.014497 of each 
other. This indicated that the results were to some degree agnostic to the model 
used and more so dependent on the epigenetic features of the dataset. 

For the following set of experiments, we trained all of our models with GSC2’s 
(patient 2) dataset and tested with GSC1’s (patient 1). We referred to this as the 
GSC2→GSC1 prediction direction. The highest level of performance we achieved 
with this set of experiments was a PCC score of 0.809537 ± 0.000377, which as it 
turns out was again from XGBR. Comparing this prediction direction to the previous 
one we found that the general trends in metrics were similar. The separation 
between XGBR and MLR was 0.12818 for this prediction direction. Meanwhile, the 
difference among the first and sixth models was 0.016044. These two findings 
indicate the small differences in PCC among our higher performing models for this 
prediction direction as well.

A

B

Fig 4A & 4B. PCC cross-patient regression model results. Our experimental 
results were compiled as the mean PCC scores over 10 runs of each model. In both 
graphs, the error bars shown indicate standard deviation of the model results. A) 
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Our cross-patient XGBoost-based regression model performed higher than all other 
architectures when training with GSC1 and testing with GSC2 (GSC1→GSC2). B) 
Our XGBoost-based algorithm also out-performed the others when training with 
GSC2 and testing with GSC1 (GSC2→GSC1).

Our data suggest that across both prediction directions, XGBR emerged as the 
model with the highest test set PCC measurements. Additionally, the strong PCC 
values for most of our models including XGBR contrasted by the consistently lower 
than average results from our MLR, underscored the non-linearity of our GSC 
datasets. Therefore, we used the XGBR model for our following perturbation 
experiments and downstream analysis. Finally, the strong PCC values highlighted 
the success of our cross-patient prediction approach to generalize the epigenetic 
input patterns connected to the gene expression from one patient to another. Our 
methodology of experimenting with both the GSC1→GSC2 and GSC2→GSC1 
prediction directions successfully found high performance and consistency across 
our metrics. 

Our study’s corresponding SCC metric results are detailed in the supplementary 
section S5 (Fig S4A & S4B). Script time considerations are detailed in the 
supplementary section S6 (Table S9).

4.2 Perturbation Results: All the combined epigenetic markers (epigenetic 
modification, chromatin accessibility, and histone modifications) contribute to 
gene expression with a higher weight on H3K27Ac signals

To evaluate the contribution of each epigenetic marker to predicting gene expression, 
we conducted perturbation analyses on each marker and observed the resulting 
performance metrics (PCC). Specifically, when the model was trained with GSC1 and 
GSC2 patient data was the evaluation dataset (GSC1→GSC2), the most striking 
change occurred when we perturbed the H3K27Ac signals. Here we saw a decline in 
performance of 0.583851 (70.667%) in PCC. We noted declines of 0.036298 (4.393%) 
for RNAPII, 0.004939 (0.597%) for ATAC-seq, and 0.00419 (0.507%) for CTCF 
perturbations (Fig 5A). This suggests that the predictive dependence of gene 
transcription was on all epigenetic markers (histone modifications, RNAPII binding, 
broad chromatin accessibility, and chromatin looping), with a greater weight on 
H3K27Ac signals followed by RNAPII, ATAC-seq, and then CTCF.
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A

B

Fig 5A & 5B. Epigenetic signal perturbation model performance comparison 
using XGBoost in both prediction directions. Each epigenetic signal was perturbed 
over 10 separate experiments in the two prediction directions. Shown are the mean 
PCC model results for 10 runs for each epigenetic marker (different random seeds) and 
error bars indicating the standard deviation. The hyperparameters used were identical 
to our other testing (see Table 1). The figures illustrate the order of model effect signal 
perturbation had from most to least: H3K27Ac, RNAPII, ATAC-seq, and CTCF. The 
effect was consistent in both prediction directions. A) GSC1→GSC2 prediction direction. 
B) GSC2→GSC1 prediction direction. 

To determine if this finding is consistent across patients, we applied our perturbation 
methodology to the opposite prediction direction (GSC2→GSC1). The mean of all the 
experiments produced a decline in PCC, although to a lesser degree. The perturbation 
of the H3K27Ac signal of the GSC1 patient data while it was the evaluation dataset 
yielded a metric decrease of 0.14429 (17.824%). This was lower than the percentage 
decrease of the same feature as seen above, but it was a higher difference when 
compared to the other three features. The remaining results for this prediction direction 
showed declines of 0.008748 (1.08%) for RNAPII perturbation, 0.005978 (0.738%) for 
ATAC-seq, and finally 0.0021 (0.2594%) for CTCF perturbation (Fig 5B). This other 
direction of cross-patient in-silico perturbation analysis shows the same order of the 
predictive epigenetic modulator’s dependence on gene transcription is observed in the 
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other patient. This suggests that, according to the data, gene transcription is highly 
connected with the H3K27Ac signals, followed by RNAPII, ATAC-seq, and CTCF.  And 
this mechanism is observed across both patients. Interestingly, perturbing H3K27Ac led 
to different degrees of PCC reduction in GSC1→GSC2 and GSC2→GSC1 (0.456 and 
0.250, respectively). This indicates that the degree of gene transcription dependence on 
H3K27Ac signals varies among GSCs. This could be potentially due to their 
heterogeneity, as H3K27Ac signals can vary among patients (29). 

Comparing these PCC values to the correlation values between RNA-seq and each 
epigenetic marker, we can say that our cross-patient prediction analysis captured a 
trend that is not captured by simple correlation analysis (S4, Fig S3A & S3B). 
Additionally, this result on the importance of H3K27ac signals was furthered supported 
by the SCC results (S7, Fig S5A & S5B) and the primary model’s feature importance 
output (S8, Fig S6A & S6B). To address the generalibiilty of this model to unseen data, 
we altered the hyperparamters for the “reverse” direction, and observed a measurable 
increase in PCC/SCC, suggesting the generalibility of this model (S9). 

4.3 Cross-patient analysis with neural crest and progenitor cell epigenetic data 
H3K27Ac is known as an enhancer marker, and CTCF is also known as a mediator 
between enhancer and promoter. The enhancers are crucial gene expression 
modulators among GSCs as well as different cell types such as neural crest and 
progenitor cells. Thus, we hypothesized that H3K27Ac and CTCF would be critical 
markers to predict gene expression for GSCs as well as NCCs and neural progenitor 
cells. Furthermore, we hypothesized that if we test our GSC-trained model with neural 
crest or progenitor cells, we would observe similar PCC values. To test this hypothesis, 
we used publicly available data of H3K27Ac and CTCF-ChIP seq of neural crest and 
progenitor cell as test data and compared the PCCs. When we test the patient dataset 
on the trained model, we curated each dataset to include their H3K27Ac and CTCF 
values while ensuring that the ATAC and RNAPII values were 0 (the mean of the 
standardizations) across all genes of GSCs and then compared the PCCs. Our 
cross-cells analysis (Fig 6A and 6B) showed that testing the model with GSC showed 
the highest PCC (0.780-0.794) followed by one with NCC (0.649-0.672), one with neural 
progenitor cells (0.549-0.567). This indicates that computationally 
H3K27Ac/CTCF-related epigenetic landscape is most similar across GSCs, then 
followed by GSCs and NCCs, and GSCs and neural progenitor cells. 

To further investigate this similarity in epigenetic landscape, we particularly looked into 
the genes with higher accuracy as these genes significantly contribute to training the 
model. Our XGBoost-trained model allowed us to rank genes based on prediction 
accuracy and to identify a group of genes that contributes to training the model. Thus, 
we ranked the genes based on performance, which is defined by means of squared 
error between observed and predicted values from 10 runs. Particularly, we focused on 
only expressed genes, because H3K27Ac and CTCF are known to positively correlate 
with gene expression, thus low-expressed genes would not be influenced by their 
H3K27Ac and CTCF signals around TSS (11,29). Looking at the rank of genes for all 
the GSC, neural crest and progenitor cells, we set 4500 as a threshold to separate 
between “accurately predicted” genes and the rest. Our PCC result indicates that GSCs 
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are more similar to NCCs than to neural stem cells in terms of H3K27Ac- and 
CTCF-based epigenetic landscape. Given this data, we decided to focus on GSCs and 
NCCs. 

To assess the epigenetic landscape of GSC1, GSC2, and NCCs, we looked into the 
intersection of “accurately predicted” genes between GSC1, GSC2, and NCCs and 
identified 544 genes in the intersection. Furthermore, we looked into the aggregated 
signals of these 544 genes for H3K27Ac and CTCF, respectively, and compared it to the 
aggregated signals of randomly selected genes (Fig 7A and 7B). For H3K27Ac, we 
observed a shift in the peak distribution for the “accurately predicted” genes of NCCs 
compared to the randomly selected genes, suggesting that H3K27Ac signals contribute 
to accurately predicting gene expression of NCCs. (Fig 7A), Given this result and 
H3K27Ac’s contribution on predicting GSC’s gene expression, we hypothesized that the 
intersection peaks for NCCs would show good concordance with the GSC peaks, and in 
fact it did. Meanwhile, considering the epigenetic disparities between GSCs and NCCs, 
as expected, we observed the small difference in standardized counts right before TSS 
(e.g. around bin 22-23) between GSCs and NCCs (Fig 7B). Regarding CTCF, we 
observed a comparable peak distribution between “accurately predicted” genes and 
randomly selected genes. This indicates that CTCF of “accurately predicted” genes don’t 
significantly contribute to predicting gene expression. Moreover, the contribution of each 
epigenetic marker, H3K27Ac and CTCF, of “accurately predicted” genes align with the 
observed difference in their predictive capabilities for gene expressions. Overall, this result 
suggests that H3K27Ac contributes to accurately predicting gene expression of NCCs as it 
does with GSCs. However, CTCF seems to be less impactful for prediction. Additionally, the 
resemblance of H3K27Ac peak distribution between GSC and NCC underscores epigenetic 
similarities at the enhancer landscape when it comes to predicting gene expression. 

A

B
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Fig 6A & 6B Our cross-patient analysis was extended to include neural crest and neural 
progenitor cell data compiled from features available on ENCODE. In each experiment, 
the test set included only the H3K27Ac and CTCF markers. A) The model was trained 
with GSC1. From the prediction performance it was inferred that the GSCs were most 
similar to each other. Interestingly, the plot indicates that the NCC epigenetic data is 
more similar to GSC1 than the neural progenitor cell data. B) When the model was 
trained with GSC2, we saw the same trend where the GSCs were most similar followed 
by the NCC data. Both plots’ values are the mean of 10 experiments and the standard 
deviation indicated by the error bars. 

A
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B

Fig 7A & 7B. Epigenetic signal analysis. We performed an analysis of H3K27Ac 
signals (standardized counts per bin), to investigate similarity/dis-similarity between 
GSCs and NCCs. A) Each line represents the mean of the standardized count values 
for 544 common genes identified by the intersection of the model’s lowest error per 
gene, on the respective test set. The plot shows the bi-modal nature of the H3K27Ac 
signal with corresponding peaks at the bin 27 within the TSS region. B) The heatmap 
visualizes the Euclidean distance between pairs of dataset mean values in the 
highlighted region. We identified similarity when comparing GSC1 and GSC2 indicated 
by the relatively small distance between their mean values. The same observation of 
similarity was made at bin 27 where the Euclidean distance is also relatively small 
between the GSCs and the NCC datasets. The observation is contrasted by the 
relatively larger difference in the signals at bin 27 and 28 between the GSCs and a 
group of corresponding 544 genes within the NCCs that were randomly chosen from 
outside of the lowest error rate gene population.
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5. Discussion
Origin and maintenance of GSC plasticity are regulated by endogenous cell processes 
affecting DNA, chromatin, and RNA, as well as by factors of the microenvironment that 
help propagate cancer stem cell phenotypes. Epigenetic pressure contributes to the 
ability of GSCs to remain plastic and allows GSCs and differentiated progenies to adopt 
a population equilibrium that facilitates tumor persistence (30–32).

To understand non-linearity of epigenetic mechanisms that drive gene expression, 
machine-learning has been recently employed as demonstrated in AttentiveChrome and 
GraphReg (16). Here, we apply machine learning to a combination of epigenetic bulk 
NGS data to discover epigenetic marks that can predict gene expression across 
patients with glioblastoma. To explore the developmental origin of cellular plasticity in 
GSCs, we successfully developed machine-learning models that utilize cross-patient 
prediction to investigate the epigenetic regulation of gene expression in heterogeneous 
GSCs, NCCs, and NPCs.  

Our model comparison shows XGBR architecture to be the best performing model. 
XGBR is known as a strong architecture for processing tabular data and our datasets 
consisted of various types of epigenetic modulators arranged as a series of tables (33).  
Our cross-patient perturbation analysis using the XGBR model indicates that H3K27Ac 
signal contributes more to prediction of gene expression compared to RNAPII, broad 
chromatin accessibility, and chromatin looping across patients. Our perturbation 
analysis shows that the sum of the drop in PCC by each epigenetic modulator is less 
than PCC without perturbation. This suggests that other potential contributors to gene 
expression prediction may exist, such as other histone modification marks (e.g., 
H3K9me3, H3K27me3, etc.) and modulators of distal chromatin looping (e.g., Cohesin). 

Recently, application of a neural network projection on the developmental trajectory of 
normal brain cells uncovered that glioblastoma cells share features of common lineage 
with perivascular neural crest and radial glial cells (34). Here we show that patients 
derived GSCs exhibit common patterns of H3K27Ac marks with NCCs. Remarkably, 
H3K27Ac marks of human NCCs can predict gene expression of GSCs from different 
patients with glioblastoma. Since these are bulk NGS data, they suggest a conserved 
enhancer landscape between certain subpopulations of GSCs and NCCs. In the future, 
it will be important to define the specific subpopulation of GSCs that shares gene 
regulatory networks with NCCs to determine conserved epigenetic traits of cellular 
plasticity between glioblastoma and the developing nervous system. 
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6. Conclusion
We built a cross-patient prediction analysis framework that can be used to provide 
insights on the contribution of multi-epigenetics markers on predicting gene expression 
of cancer stem cells and other cells with stem-cell phenotypic potential that involves cell 
plasticity. By applying this framework to GSCs, we identified that H3K27Ac signals 
contribute to predicting gene expressions most, followed by RNAPII, ATAC-seq, and 
CTCF, and this contribution is preserved across patients. Furthermore, we applied this 
to neural progenitor cells and crest cells and found that H3K27Ac/CTCF-related 
epigenetic landscape was similar across GSCs, neural progenitor cells, and neural crest 
cells. Overall, we presented a cross patient gene expression prediction framework that 
can be used to formulate deep insights into epigenetic-driven gene expression 
mechanisms and the epigenetic landscape of cellular plasticity across cancer stem cells 
and multiple cell types.  

7. Abbreviations

GSC1: Glioblastoma Stem Cells 1. Nomenclature to indicate patient 1.

GSC2:  Glioblastoma Stem Cells 2. Nomenclature to indicate patient 2.

GSC1→GSC2: This denotes the experimental setup whereby the model is trained on 
data derived from patient GSC1 (patient 1) while the test set is composed of data from 
patient GSC2 (patient 2).

GSC2→GSC1: Indicates that the training dataset is derived from patient GSC2 and the 
prediction direction is toward the test set of GSC1.

NCC: Neural Crest Cell

NPC: Neural Progenitor Cell

PCC: Pearson Correlation Coefficient metric.

SCC: Spearman Correlation Coefficient metric.

SD: Standard deviation.

8. Code availability

The study’s code is located at 
https://github.com/rsinghlab/ML_epigenetic_features_glioblastoma.
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Supporting information

S1. Epigenetic marker and RNA-sequencing information.

GSC datasets:

Primary glioblastoma stem cell isolation and culture. Primary human glioblastoma 
stem cells (GSCs) were isolated from Glioblastoma Multiforme (GBM) tumors using an 
established selection media-based protocol. GSCs were cultured in complete culture 
media: Neurobasal-A (Fisher Scientific, 10888022), B27 minus Vitamin-A (Fisher 
Scientific, 12587010), Glutamax (Fisher Scientific, 35050-061), Heparin (StemCell Tech, 
07980), human HB-EGF, 100 ug (Peprotech, 100-47), human FGF,100 ug (Peprotech, 
100-18B), and Antibiotic: Antimycotic (Anti-Anti) (Gemini Bio-products, 400-101). 

RNA-sequencing data. GSCs were lysed using the Trizol reagent (Invitrogen). RNA 
was isolated from this lysate using the RNeasy mini kit (Qiagen). Next-generation 
sequencing was performed on these RNAs. 

RNA-pol II and H3K27Ac ChIP-sequencing data. For each biological replicate, 5 
million cells were pelleted and sent to Active Motif for chromatin immunoprecipitation, 
library preparation, and bioinformatic analysis. 75-nucleotide sequence reads were 
obtained using the Illumina NextSeq 500 system, resulting in over 30 million reads for 
each library, and aligned to the genome using the Burrows-Wheeler Alignment (BWA) 
algorithm. The 3’ end of aligned reads (tags) were extended in silico to 150-250 bp and 
the density of these extended fragments was quantified for the entire genome, which 
was divided into 32-nucleotide bins. The detection of peaks, genomic regions with 
significant local enrichment for tags, was performed using the MACS and SICER 
algorithms. Tag number across multiple libraries was normalized by being reduced to 
the number of tags in the smallest library through random sampling, in order to preserve 
site-specific and global differences between libraries. 

CTCF ChIP-seq. For each biological replicate, 3 million cells were crosslinked and 
lysed using the truCHIP Chromatin Shearing Kit (Covaris). Isolated chromatin was 
sheared at 105 peak incident power, 2% duty factor, and 200 cycles per burst for 100 
seconds in an S220 Focused-ultrasonicator (Covaris) to a length of 200-1200 bp. 
Shearing efficiency was validated using a Fragment Analyzer (Agilent). 
Immunoprecipitation for CTCF and ChIP-seq library preparation was performed using 
the ChIP-IT High Sensitivity Kit (Active Motif) and Next Gen DNA Library Kit (Active 
Motif), following the manufacturer’s instructions. 

ATAC-seq. For each biological replicate, 50,000 cells were used to prepare ATAC-seq 
libraries in accordance with the protocol used in Ackermann et al. for alpha and beta 
cells, which was adapted with some modifications from the original protocol from 
Buenrostro et al. and the Omni-ATAC protocol. Samples with low viability (85%) were 
treated with DNase (Worthington) at a concentration of 200 U/mL for 30 minutes at 37° 
C. Double-sided bead purification to remove primer dimers and large 1,000 bp 
fragments was carried out using Agencourt AMPure XP beads (Beckman Coulter). 
Quality control was performed before sequencing using a Fragment Analyzer (Agilent) 
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and the KAPA Library Quantification Kit (Roche). Libraries were analyzed by GENEWIZ 
using the Illumina HiSeq 2500 system to acquire 150 bp paired-end sequence reads. 
200 million genomic reads per sample were obtained to detect open vs. closed 
chromatin regions. 

Neural Progenitor Cell Dataset:
Our progenitor cell datasets were composed from marker bam alignment files available 
from ENCODE (https://www.encodeproject.org) (20–26,35). They were all derived from 
the biosample ENCBS018TPT. Since RNAPII ChIP-sequencing was unavailable, we 
used the signal value of 0.000000 (the mean of the standardization) across all gene 
bins. 

RNA-sequencing data. This RNA-seq data was from the lab of Thomas Gigeras, 
CSHL under experiment ENCSR244ISQ, We chose isogenic replicate 1 which was from 
accession ENCFF056WDN (https://www.encodeproject.org/files/ENCFF056WDN).

H3K27Ac ChIP-sequencing data. This data was listed under accession 
ENCFF521XJN (https://www.encodeproject.org/files/ENCFF521XJN) as isogenic 
replicate 2. It was from the lab of Bradley Bernstein, Broad from experiment 
ENCSR449AXO. 

CTCF ChIP-sequencing data. For this feature we chose isogenic replicate 2 in 
accession ENCFF400MZX (https://www.encodeproject.org/files/ENCFF400MZX). 
lENCODE lists the experiment as ENCSR125NB from the Lab of Bradley Bernstein, 
Broad.

DNase-sequencing data. For the progenitor cell dataset we used DNase-seq data as 
an analog for ATAC-seq. This particular data was from the lab of John 
Stamatoyannopoulos, UW. It was listed under ascension ENCFF123YLB 
(https://www.encodeproject.org/files/ENCFF123YLB) as isogenic replicate 1 and was 
from the same biosample (ENCBS018TPT) as the other data for this dataset.

Neural Crest Cell Dataset:

The neural crest cell dataset was composed of H3K27Ac, CTCF and RNA-seq marker 
data from ENCODE (20–26,35). They were all derived from the ENCBS417JEU 
biosample. The features that were unavailable, RNAPII ChIP-sequencing and 
ATAC-seq, were replaced with the value 0.000000 across the bins of  each gene. 

RNA-sequencing data. This dataset’s RNA-seq values were from experiment 
ENCSR761SHI, attributed to the lab of Barbara Wold, Caltech. The isogenic replicate 
used was replicate 2 under the accession of ENCFF503KKJ 
(https://www.encodeproject.org/files/ENCFF503KKJ).

H3K27Ac ChIP-sequencing data. Our study used the data from accession 
ENCFF655GGB (https://www.encodeproject.org/files/ENCFF655GGB) which was 
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isogenic replicate 1. The data was collected under experiment ENCSR685HSP from the 
lab of Bradley Bernstein, Broad.

CTCF ChIP-sequencing data. This CTCF data was also from the lab of Bradley 
Bernstein, Broad. In this case it was from experiment ENCSR218MVT which included 
isogenic replicate 2. It can be found under accession ENCFF583OOM on ENCODE 
(https://www.encodeproject.org/files/ENCFF583OOM).

S2. Flowcharts of data preparation and preprocessing process

Our patient dataset preparation process involves a number of utilities which convert the 
feature reads housed in BAM files into counts for each of 50 bins for all 20,015 genes. 
As illustrated in Figure S1, each of the four epigenetic signal data collections follow one 
preparation path while the expression data follows another. Ultimately, the two 
preparation paths converge to produce 2-dimensional, 1,000,750 x 5 files for model 
script input.

Figure S2 depicts our data preprocessing just prior to model input within the script. 
Again, we saw that the epigenetic feature and target variable follow different paths for 
their respective preprocessing. The feature data leading to the dataset splitting process 
before standardization. Meanwhile, the target variable undergoes a log(2) 
transformation before the appropriate dataset splitting. The processes were coordinated 
to ensure that each gene’s information remains synchronized throughout.

Given that all of our models were configured for cross-patient prediction, the data 
preprocessing occurs in sequence for each patient datafile as the model script is run.
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Fig S1. Illustration of dataset preparation process. The process that extracted the 
observed epigenetic marker values from BAM format files made use of a series of 
utilities which combined the separate data into one file. The process aligns the 50 bin 
values of the gene’s epigenetic features with a single extracted RNA-seq value for the 
gene to maintain consistent formatting.  

Fig S2. Illustration of data preprocessing process. The epigenetic feature values per 
gene were extracted, formed into matrices, and finally standardized for model input. 
Each gene’s observed RNA-seq value is extracted and transformed creating the target 
variable for the model. 

S3. Supporting predictive models information

XGBoost Regression (XGBR)

An overview of the parameters we tuned starts with  (learning rate), which referred to η
the step size shrinkage of the feature weights at each iteration. "Max depth" referred to 
the maximum depth for each tree while "n estimators" determined the total number of 
trees in the model.  (min split loss) is the minimum reduction in loss required to split on γ
a leaf node. A parameter that the algorithm used to reduce overfitting is "subsample" or 
the ratio of random samples taken from the training data before growing a new tree. The 
algorithm used "colsample bytree" which was a ratio to determine the number of 
features to be randomly selected for each tree. Meanwhile, "min child weight" referred 
to the minimum number of samples (the weight) required to form a new tree 
node(36,37).
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Table S1. XGBoost Regression model hyperparameters. Outlined in the table are 
the chosen hyperparameter values from their respective search spaces over our tuning 
process.

hyperparameter model value search set

η 0.03 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, 0.10, 0.12, 0.15, 
0.17, 0.20, 0.25, 0.30, 0.40, 0.50

max depth 6 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, 25

number of estimators 150 25, 50, 75, 100, 110, 125, 130, 150

γ 0.3 0.0, 0.1, 0.3, 0.5, 0.7

subsample 1.0 0.2, 0.4, 0.6, 0.8, 1.0

column sample by 
tree

0.2 0.2, 0.4, 0.6, 0.8, 1.0

minimum child weight 1 1, 3, 5, 7, 9

Multi-layered Perceptron (MLP)

Our Multi-layered Perceptron model was found to be one of our most performant 
configurations for testing and prediction in our cross-patient experiments. The 
3-dimensional dataset structure was kept intact prior to model input. Each gene’s 
epigenetic features were then flattened at the next layer. Since batching was used, the 
dataset matrix went from b x 50 x 4 to b x 200 where b represented the batch size. The 
model calculations then progressed through a collection of three hidden (dense) layers 
alternating with two dropout layers (for regularization). The model’s 4th dense layer is 
configured with a single output (with linear activation) for RNA-seq value prediction for 
this regression task.

This model’s hyperparameters tuning followed the same methodology as our other 
models. Each of the three dense layer sizes were tuned independently of each other. 
Our tuning process resulted in an unconventional configuration where the number of 
nodes in a layer downstream from previous ones is higher than the others. We then 
experimented with fine tuning the layer sizes relative to each other and found that the 
existing setup performed well. Additionally, we opted to configure the dropout rate as 
part of our grid search for tuning. 

This model’s results were consistently near the highest we observed with our data. 
Going further, it was the best performing of our deep learning based architectures. 
Because of that we used the same experimental setup in a version of our perturbation 
analysis. 
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Table S2. Multi-layered Perceptron hyperparameters.
hyperparameter model value search set

learning rate 0.0001 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005

b 512 512, 1024

hidden layer 1 size 100 20, 50, 100, 200

hidden layer 2 size 100 20, 50, 100, 200

hidden layer 3 size 200 20, 50, 100, 200

dropout rate 0.4 0.3, 0.4, 0.5

epochs 150 Established by examining PCC metric training 
and validation plot curves.

Branched Multi-layered Perceptron (Branched MLP)

Multi-modal computation was a significant portion of development phases and for a 
series of experiments we added an approach where we gave a model both the 
epigenetic features we discussed in the main body of this work along with the genetic 
sequence for each gene. The HG38 Human Reference Genome was used to create the 
sequence branch input. We acknowledged from the onset that the human reference 
genome may not be an informative source to partner with our glioblastoma epigenetic 
measurements since they are derived from different cell types. We proceeded with the 
experiments to determine if we would learn more about the model behavior and ability 
to predict gene expression.

As with our process for the epigenetic data, we developed an approach to the data that 
can be seen as having 2 parts; one internal and one external to the model script. The 
preparation process of the gene sequence data, outside of the script, incorporated the 
use of the same BED location files we used in our epigenetic data preparation process. 
The goal was to ensure that the location for sequence for each gene exactly matched 
the same its epigenetic markers. We collected 100 base pairs, ranging from above and 
below the gene’s TSS site, for each of 50 bins. Our next task was to convert the 
letter-based sequence to a numerical one. We used the following replacement strategy 
for this:

A = 1, T = 2, C = 3, G = 4, N = 5

The numpy files that resulted from these steps became additional input into the script 
where the second portion of the preprocessing took place. Here, the sequence data was 
composed 3-dimensionally where the gene sequence’s index position in this dataset 
was an exact match to its corresponding epigenetic measurement position. At this point 
we sought to consider the computational complexity of this branch of the model while 
maintaining the analysis of the data around the TSS site. The number of bins was 
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reduced to 21 whereby, with TSS located at bin 25 the sequence input ranged from bins 
15 to 35. Therefore, this led to an intermediate matrix shape of 20,0015 x 21 x 100. 
Finally, just prior to this data being input into the training/validation and evaluation model 
fits, our script one-hot encodes the numerical representations in the following way:

1 = [1, 0, 0, 0, 0], 2 = [0, 1, 0, 0, 0], 3 = [0, 0, 1, 0, 0], 4 = [0, 0, 0, 1, 0], 5 = [0, 0, 0, 0, 1]

The patient epigenetic measurement process was unchanged for this architecture so 
this model then received batched input for its respective “epigenetic” and “sequence” 
branches. Both branches have 3 dense layers with dropout layers in place for 
independent regularization.  The output of those two branches was concatenated for 
input into a set of 4 dense layers. The first 3 layer sizes are tuned along with those in 
the aforementioned branches. The final dense layer is a single output for gene 
expression (RNA-seq) prediction. 

In common with our other deep learning based architectures, this model used our 
measured RNA-seq values as the target variable, MSE for loss calculations, and the 
Adam optimizer. Additionally, hyperparameter tuning followed the same process as our 
other models. 

Our Branched Multi-layered Perceptron performance was generally improved over the 
Multiple Linear Regression and Support Vector Regression. In turn, it was less 
performant than all other models. We also noted that its metric standard deviation was 
increased over all other models which may indicate that its cross-patient predictions are 
less stable than our other models. 

Although we found other predictive algorithms to be more informative in this work, 
multi-modal approaches like this one are interesting for future investigation. 

Table S3. Branched Multi-layered Perceptron hyperparameters.
hyperparameter model value search set

learning rate 0.01 0.01, 0.05, 0.001, 0.005, 0.0001, 
0.0005

b (batch size) 512 512, 1024

epigenetic branch hidden layer size 1 200 20, 50, 100, 200

epigenetic branch hidden layer size 2 200 20, 50, 100, 200

epigenetic branch hidden layer size 3 200 20, 50, 100, 200

epigenetic branch dropout rate 0.3 0.3, 0.4, 0.5

sequence branch hidden layer size 1 200 20, 50, 100, 200
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hyperparameter model value search set

sequence branch hidden layer size 2 200 20, 50, 100, 200

sequence branch hidden layer size 3 100 20, 50, 100, 200

sequence branch dropout rate 0.3 0.3, 0.4, 0.5

combined branch hidden layer size 1 50 20, 50, 100, 200

combined branch hidden layer size 2 200 20, 50, 100, 200

combined branch hidden layer size 3 20 20, 50, 100, 200

combined branch dropout rate 0.3 0.3, 0.4, 0.5

epochs 150 Established by examining PCC 
metric training and validation plot 

curves.

Convolutional Neural Network (CNN)

We applied various configurations of Convolutional Neural Network (CNN) model 
architectures to our cross-patient prediction task as well. To accomplish this, we made 
use of Tensorflow/Keras model Application Programming Interface (API). As with our 
MLP model we used MSE for loss calculations along with Adam for optimization. The 
CNNs and MLPs also have the use of Dropout layers for regularization, in a number of 
places in their architectures. Our team’s experiments included 1, 2, and 3 layer CNN 
architectures; all built using Conv1D layers. In each case, pooling was implemented 
(MaxPooling1D layers). All of them fed their convolutional module output to a series of 
dense layers which lead to final prediction output. The layers used ReLU activation 
although we ran various experiments using LeakyReLU. Of note is that the 1 layer 
results were reported in the main body of this work by virtue of the fact that it received 
the most extensive tuning, training and testing within this group of models. 

The nature of CNN layers and batching when fitting the model, allowed us to keep the 
datasets in their 3-dimensional structure for input after preprocessing. That made 
flattening only necessary just prior to the series of dense layers. 

Table S4. Convolutional Neural Network hyperparameters.
hyperparameter model value search set

learning rate 0.001 0.01, 0.001, 0.005, 0.0001, 0.0005

b (batch size) 512 512, 1024

number of kernels 10 5, 10, 20, 50

kernel size 30 10, 20, 30
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hyperparameter model value search set

pool size 5 5, 10, 15

hidden layer size 1 25 25, 50, 100, 200

hidden layer size 2 100 25, 50, 100, 200

hidden layer size 3 100 25, 50, 100, 200

dropout rate 0.4 0.2, 0.3, 0.4, 0.5

epochs 150 Established by examining PCC metric training 
and validation plot curves.

Recurrent Neural Network (RNN)

The sequential nature of the epigenetic features made Recurrent Neural Networks 
(RNNs) a suitable model choice for their capability to capture spatial relationships within 
the sequence. We conducted experiments with various RNNs and their extensions, and 
determined that AttentiveChrome, based on Gated Recurrent Units (GRUs) instead of 
Long Short-Term Memory (LSTM) (13),  achieved the best performance on the dataset.

The AttentiveChrome architecture incorporates two levels of RNN and an attention 
mechanism. The first level consists of four GRUs, each processing information about 
one epigenetic feature. The input to these GRUs is treated as a time series, with each 
element in the sequence (i.e., each bin value for each epigenetic feature of a single 
gene) representing a time step (xt), with t ranging from 1 to T (T=50, as there are 50 
bins). GRUs, as all other RNNs, maintain an internal state called the hidden state (h), 
which captures the historical information of the input sequence up to the current step. 
This hidden state acts as a form of memory, enabling GRUs to retain information about 
the observed data in the sequence and capture temporal (in terms of epigenetic 
features, spatial) dependencies. At each time step, the GRUs update their hidden state 
(ht) by considering the current input (xt) and the hidden state from the previous step 
(ht−1). GRUs employ two activation functions, functioning as an update gate and a reset 
gate, respectively, to selectively retain and erase information in the hidden state, 
mitigating the issue of vanishing gradients.

To enhance the GRUs' ability to capture long-term dependencies and focus on relevant 
segments of the input sequence, a soft attention layer was applied to the hidden states 
of all time steps (h1h2…hT) from each of the four GRUs. The attention mechanism 
assigned weights to the hidden states, reflecting their relative importance, and thus 
added on the complexity and interpretability. The results are then concatenated and 
subsequently passed through a new GRU layer (with 4 time steps corresponding to the 
4 epigenetic features), an additional attention layer, and a dense layer to generate the 
final predicted gene expression value. TensorFlow Keras was employed for the 
implementation of this model.
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Table S5.  Recurrent Neural Network hyperparameters.
hyperparameter model value search set

learning rate 0.001 0.01, 0.05, 0.001, 0.0001

b (batch size) 512 512, 1024

RNN output size 50 5, 10, 20, 30, 50, 80

dropout rate 0.1 0.1, 0.3, 0.5

epochs 200 100, 200, 300, 500

Gradient Boosting Regression (GBR)

Our first regression tree model configured for our cross-patient prediction analysis used 
scikit-learn’s library. Its performance after tuning was comparable with our deep learning 
models and was an early indication of the potential of tree based algorithms for 
prediction with our epigenetic patient data. 

In the main body of this work, we briefly discussed our thoughts of the computational 
efficiency of our models. The library lacks graphical processing unit (GPU) acceleration 
and although the run times we recorded were competitive with the other models, this led 
us to consider the application of similar algorithms with GPU acceleration available.

Table S6. Gradient Boosting Regression hyperparameters.
hyperparameter model value search set

learning rate 0.06 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09

max depth 4 1, 2, 3, 4

n estimators 90 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 
60, 65, 70, 75, 80, 85, 90, 95

Support Vector Regression (SVR)

Our approach to building a regression version of the Support Vector Machine algorithm 
found us utilizing the scikit-learn library’s implementation together with our use of 
multiple patient datasets for model training and testing. Again, our datasets were 
reshaped, for model input using the identical method to our other traditional machine 
learning algorithm setups. 

Our tuning phase centered on C and  hyperparameters. Out of our search sets, we ϵ
found 0.01 to be the optimal valve for both. 
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Across all of our testing, the SVR outperformed linear regression but did not reach the 
levels of performance reached by other models. 

Table S7. Support Vector Regression hyperparameters.
hyperparameter model value search set

C 0.01 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09

ϵ 0.01 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 
0.008, 0.009, 0.01 , 0.011, 0.012, 0.013, 0.014, 
0.015, 0.016, 0.017, 0.018, 0.019, 0.02 , 0.021, 

0.022, 0.023, 0.024, 0.025, 0.026, 0.027, 0.028, 
0.029, 0.03 , 0.031, 0.032, 0.033, 0.034, 0.035, 
0.036, 0.037, 0.038, 0.039, 0.04 , 0.041, 0.042, 

0.043, 0.044, 0.045, 0.046, 0.047, 0.048, 0.049, 
0.05 , 0.051, 0.052, 0.053, 0.054, 0.055, 0.056, 
0.057, 0.058, 0.059, 0.06 , 0.061, 0.062, 0.063, 
0.064, 0.065, 0.066, 0.067, 0.068, 0.069, 0.07 , 

0.071, 0.072, 0.073, 0.074, 0.075, 0.076, 0.077, 
0.078, 0.079, 0.08 , 0.081, 0.082, 0.083, 0.084, 
0.085, 0.086, 0.087, 0.088, 0.089, 0.09 , 0.091, 

0.092, 0.093, 0.094, 0.095, 0.096, 0.097, 0.098, 
0.099

Multiple Linear Regression (MLR)

Our linear regression model was implemented using the statsmodels Application 
Programing Interface (API) where we chose the Ordinary Least Squares (OLS) version 
of the algorithm. Given that this is a traditional machine learning algorithm, our 
3-dimensional datasets were reshaped into 2 dimensions before model input.

We chose to employ elastic net regularization when the model was fit to the data. This 
fit method allowed us to tune both the alpha (penalty weight) and  L1_wt (the portion of 
the penalty applied to the L1 term).

Table S8. Multiple Linear Regression hyperparameters.
hyperparameter model value search set

α 5000 0, 1, 5, 10, 25, 50, 75, 100, 200, 400, 800, 
1600, 2500, 3200, 5000

L1_wt 0.0 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
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S4. Correlation highlights the variation among the epigenetic features for each 
dataset

To see if the application of machine and deep learning is appropriate to model the 
relationship between these epigenetic sequencing data and RNA-seq, we performed 
correlation analysis between gene expression and each epigenetic modulator 
(ATAC-seq, H3K27Ac ChIP-seq, CTCF ChIP-seq, and RNAPII ChIP-seq). To 
accomplish this, our patient datasets were each prepared in a similar fashion to what 
occurs in our models with some notable differences. The RNA-seq values were not 
log(2) transformed and the epigenetic sequencing data were not standardized. We 
instead calculated the sum of the bin counts for each gene’s 4 features where each row 
represented a gene’s bin position.

Our results indicated a positive correlation between gene transcription and each 
epigenetic modulator, with PCC values of 0.366, 0.111, 0.208, and 0.333 (for H3K27Ac, 
CTCF, ATAC-seq, and RNAPII, respectively) in GSC1, and PCC values of 0.412, 0.162, 
0.221, and 0.359 (for the same order of modulators) in GSC2 (Fig S3A & S3B). These 
findings provided a promising starting point for exploring the potential of ML/DL models 
in this domain, based on the non-linearity between each modulator and RNA-seq which 
more complex machine and deep learning models can investigate. 

A
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Fig S3A & S3B. Correlation within GSC1 and GSC2 datasets. The two visualizations 
convey the calculated correlation values for our two patient datasets. GSC1 is shown in 
panel A with GSC2 in panel B. In both datasets the values indicate nonlinearity between 
the epigenetic modulators and gene expression.
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S5. Supporting model SCC results

All of our experiments produced Spearman Correlation Coefficient (SCC) results along 
with PCC. We designated it as our secondary evaluation metric and during our analysis, 
we noted that while many models’ values were comparatively lower than the 
corresponding PCC findings, the trends in how the models perform relative to each 
other remained the same. Our most performant model under PCC, XGBR, had higher 
results under SCC as well. It should be noted here that we sought hyperparameter 
combinations that optimized PCC and not SCC. With that in mind, it was interesting that 
the results we saw reinforce our PCC observations. 

A

B

Fig S4A & S4B. Spearman Correlation Coefficient experimental results. The SCC 
results depicted here support our PCC results for both prediction directions where we 
found our cross-patient XGBoost-based model maintained the highest performance.. A) 
The mean model performance values and their standard deviations (error bars) over 10 
experimental runs are shown for GSC1 as the training and GSC2 as the testing dataset. 
B) The model SCC performance for the reverse prediction direction (GSC2 as testing 
and GSC1 as training).
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S6. Computational considerations

Script runtime was also taken into consideration as a measure of computational impact. 
The time it took for the experiments to be completed could provide some information 
towards its environmental impact and the availability of resources to make use of it. 
While we acknowledge the particular factors we needed to consider within our 
environment we also could not assume that future work in this space would not be 
influenced in some way by computational impact.

Although they were a factor, our computational times were not intended to be taken as 
absolute. These run times were measured according to the elapsed time for the python 
script containing the model and associated functions to run as calculated by the 
computational platform. For example, our deep learning scripts included functions for 
tasks such as gene level error recording, and visualization to name a few. Additionally, 
since the computational platform was a shared resource, run times can be influenced by 
the load of other laboratory tasks at a given time of day. Additionally, some of the model 
architectures make use of Graphical Processing Unit (GPU) acceleration which will 
impact many of the required calculations. 

Table S9. Mean model script runtime measurements for experimental setup. 
model name GSC1 (training) / 

GSC2 (testing)  ↓
GSC2 (training) / 
GSC1 (testing)  ↓

XGBoost Regression (XGBR) 7 min. 31 sec. 7 min. 30 sec.

Gradient Boosted Regression 
(GBR)

10 min. 27 sec. 7 min. 32 sec.

Multi-layered Perceptron (MLP) 9 min. 12 sec. 8 min. 38 sec.

Convolutional Neural Network 
(CNN)

8 min. 58 sec. 9 min. 49 sec.

Recurrent Neural Network (RNN)

Branched Multi-layered Perceptron 
(Branched MLP)

43 min. 16 sec. 38 min. 41 sec.

Support Vector Regression (SVR) 8 min. 40 sec. 9 min. 0 sec.

Multiple Linear Regression (MLR) 7 min. 27 sec. 8 min. 1 sec.

The model script runtime for this prediction direction found the MLR to complete the 
fastest followed by the average XGBR script completion time. The other models, with 
the exception of one, were comparatively close to both the MLR and XGBR times. 
Again, the Branched MLP performed behind the others. We provided information in the 
main body of this work as to how we went about recording runtimes. Additionally, we 
discussed how our data preprocessing was executed when the model scripts were run. 
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Therefore, the Branched MLP is affected here by not only the fact that the 
3-dimensional matrix of gene sequences were formed when the model was run but the 
one-hot encoding of that branch input happens as well. Together with the computational 
complexity, the runtime of the Branched MLP was over five times the MLR. It is of note 
that the XGBR model led the metric performance while the script completed the 
predictions faster than the majority of the others.

S7. Supporting feature perturbation results

Our perturbation experiments included supplementary SCC metric calculations of the 
mean and standard deviations of the metric across the same set of experiments 
outlined in the main body of this work. As we observed from the analysis of our primary 
set of results, our SCC perturbation revealed a trend where the most pronounced effect 
to model performance occurred when the patients’ H3K27Ac feature values were 
perturbed. Just as with PCC, when we consider the prediction direction, perturbing this 
feature within GSC2 gave us the greatest reaction. The same feature for GSC1 and the 
opposite prediction direction gave us a smaller difference but still one that was more 
pronounced than the other features in that set. The differences being 76.208% against 
15.879% ( between the original and the perturbation results of 0.619646 and 0.128064 
respectively). Interestingly, the perturbation of CTCF when GSC2 was the test set 
caused an increase in the metric by 0.000354. One explanation for this may be the fact 
that the models were not optimized for SCC.

Our takeaway here is that these results support our PCC results because we found 
H3K27Ac perturbation to cause the greatest performance change positively or 
negatively. The other features are impactful as well, albeit to lesser degrees. 

A
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Fig S5A & S5B. Spearman Correlation Coefficient results under feature 
perturbation. Our perturbation experiments produced SCC metric results alongside 
PCC results (Fig 4A and 4B). The results were compiled over the same 10 experimental 
runs, using our cross-patient XGBoost-based model and standard deviation indicated 
with error bars. A) Each epigenetic signal was perturbed separately when the model 
was trained with GSC1 and tested with GSC2. The model performance when H3K27Ac 
signals were perturbed was significantly decreased in comparison to the other signals. 
B) A decrease in performance was noted across all markers and particularly with 
H3K27Ac (GSC2 as training and GSC1 as testing). 

S8. Model feature importances support perturbation analysis

To investigate the interpretability of our model’s predictions we extracted feature 
importance calculations using the functionality incorporated into xgboost’s library. Since 
the datasets were flattened into a 2-dimensional form prior to model input, the model 
saw each gene’s bin values as the data’s features. When the model calculates feature 
importance, it does so for each bin. Therefore, we summed the individual feature 
importances corresponding to the four epigenetic markers (Fig S6A and S6B).

We found that the aggregated H3K27Ac marker was the most important feature for the 
model by considerable margins in both prediction directions. This supports our 
observations of the profound effects perturbation of the H3K27Ac signals had on model 
performance (Fig 5A and 5B, Fig S5A and S5B).

A
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Fig S6A & S6B. Feature importances extracted from our cross-patient 
xgboost-based model for GSC1→GSC2 (A) and GSC2→GSC1 (B). The model found 
the H3K27Ac features to be the most important for prediction of RNA-seq. The results 
visualized are the means over 10 experimental runs in each prediction direction with the 
error bars denoting the standard deviation.

S9. How robust can our cross-patient prediction approach be when new patient 
data is introduced?

A guiding concept for our cross-patient computational approach was to uncover how 
well it would generalize to other glioblastoma patient data. The strength of our metric 
results alone answered that question. All of our cross-patient experiments were done 
with a test set derived from a different patient than the one used for that experiment’s 
tuning, training and validation. The hyperparameters chosen were kept consistent when 
we reversed the prediction direction and trained the model with the data of the second 
patient and evaluated it with that of the first. With this setup, metric performance of the 
“reversed” (GSC2 training/validation and GSC1 testing) prediction direction was 
comparable to the other results. We reasoned that this generalizability was observable 
given the fact that the training and testing of the model are using data from separate 
distributions. This is different from traditional machine learning experimental setups 
where the train, validation and test data are all derived from the same distribution and 
the datasets are created using cross-validation splitting techniques. This finding added 
support to our conjecture towards our method’s ability to generalize to unseen data.

From this observation, a question emerged of how sensitive was model performance to 
hyperparameter choices. We re-formulated the question and considered that since the 
hyperparameters were originally tuned when training and validation was done with 
GSC1’s data, would overall model performance be significantly affected if we instead 
hyperparameter tuned using GSC2’s data?

To answer this question we altered our experimental methodology. Instead of keeping 
the hyperparameters consistent for the “reversed” prediction direction we performed 
hyperparameter tuning using our XGBoost-based model. We did however, use the 
same values in the search set as the previous tuning for this model. This led us to 
choose hyperparameter values that were optimized again for PCC but were specific for 
this prediction direction. We then performed our new series of experiments with the 
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same steps as our previous tests. When compared to our first set of tests with the same 
model and prediction direction, we found that there is a measurable increase in PCC 
and SCC by 0.002 in each. 

To ensure that this observation was not due to the particular model of choice, we 
performed the same series of experiments using our MLP-based model. Again, we 
noted that when the hyperparameters for this specific prediction direction were chosen, 
there was an increase in the metrics (0.009 and 0.008 for PCC and SCC  respectively). 

Although there are minor performance advantages to hyperparameter tuning our 
models specifically for the direction of cross-patient prediction, the fact that the 
performance of the first experiments are within range of this optimized version is 
significant. Our analysis shows us that this approach when applied to our datasets, was  
generalizable and does not call the gene level predictions into question. We assert that 
these outcomes strengthen our understanding of the robustness of our cross-patient 
prediction methodology. 
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