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Abstract 

Adipose tissue in addition to its ability to keep lipids is now recognized as a real organ with both 
metabolic and endocrine functions. Recent studies demonstrated that in obese animals is 
established a status of adipocyte hypoxia and in this hypoxic state interaction between adipocytes 
and stromal vascular cells contribute to tumor development and progression. In several tumors 
such as breast, colon, liver and prostate, obesity represents a poor predictor of clinical outcomes. 
Dysfunctional adipose tissue in obesity releases a disturbed profile of adipokines with elevated 
levels of pro-inflammatory factors and a consequent alteration of key signaling mediators which 
may be an active local player in establishing the peritumoral environment promoting tumor growth 
and progression. Therefore, adipose tissue hypoxia might contribute to cancer risk in the obese 
population. To date the precise mechanisms behind this obesity-cancer link is not yet fully 
understood. In the light of information provided in this review that aims to identify the key 
mechanisms underlying the link between obesity and cancer we support that inflammatory state 
specific of obesity may be important in obesity-cancer link. 
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Introduction 
Obesity, defined as abnormal excess 

accumulation of fat in adipose tissue, is a chronic 
low-grade inflammation. It is associated with a high 
risk of developing type 2 diabetes, metabolic 
syndrome cardiovascular disease, and several types of 
cancer [1-5]. In tumors of breast, colon, liver and 
prostate, obesity represents a poor predictor of clinical 
outcomes. [6–9]. The precise mechanisms underlying 
this obesity–cancer link are not yet well understood. 
The definition of overweight and obesity according to 
WHO is defined by body mass index (BMI, 
weight/height m2): BMI = 25-29 kg/m2 for 
overweight and BMI ≥ 30 kg/m2 for obesity, Table 1 
[10]. The adipose tissue in addition to its ability to 
keep lipids is now recognized as a real organ with 
both metabolic and endocrine functions [11]. The 
knowledge about the structural and functional 

principles of adipose tissue has evolved considerably 
over the last ten years to get to today's conception of 
the adipose organ [12,13]. At the cellular level it 
shows considerable heterogeneity, being constituted 
only half from mature adipocytes, and for the rest 
from preadipocytes, fibroblasts, endothelial cells, 
nerve cells and macrophages [14,15]. (Figure 1). The 
adipose tissue is divided in brown adipose (BAT) and 
in white adipose (WAT). The BAT is only a minimal 
part of the body, which in an adult is approximately 
50 grams compared to kilograms of the white adipose 
tissue. The most important knowledge we have today 
on the white adipose tissue regarding its role. 
Recently several studies have clearly demonstrated 
that the white adipose tissue is a true endocrine 
organ, a secretory organ metabolically active, and far 
from being inert tissue [16,17]. It consists of different 
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cell types and produces a number of adipokines and 
cytokines [18]. Both stem cells (one every 50 
adipocytes) that the pre-adipocytes are found in 
adipose tissue. These cells, when stimulated and 
activated, have the capacity to divide and give rise to 
new adipocytes. Once formed, the new white 
adipocytes will remain so until the death of the 
individual: they can then increase or decrease in 
volume but not in number [19]. It is therefore 
important to prevent an excessive increase of adipose 
tissue and the number of adipocytes, especially in 
children, in which this phenomenon would condemn 
them, with high probability, to remain obese for the 
rest of life [20].  

 

Table 1 Diagnostic criteria for obesity in according to WHO 
classification. 

Category BMI value  
(kg/mq) 

Underweight ≤ 18.5 
Normal Weight 18.5-24.9 
Overweight 25-29.9 
Obesity Type 1 30-34.9 
Obesity Type 2 ≥ 35 

 
 

Adipocytes: hypertrophy and hyperplasia 
Body fat is stored in white adipose tissue into 

smaller fat cells, adipocytes, whose number and size 
varies greatly from individual to individual. 
Adipocytes, to ascertaining which of lipids, vary their 
size (diameter 20-200 µm): they are able changing of 
20 times their diameter and out several thousand 
times their volume. Adipocytes modulate a variety of 
physiological responses which include the 
metabolism of lipids and glucose, inflammation, 
blood pressure and ultimately angiogenesis and 
homeostasis [21]. Body fat may increase in two ways 

(Figure 2):  
• Hypertrophy: increase in the volume of 

adipocytes 
• Hyperplasia: increase in the number of 

adipocytes  
The hyperplasia of adipose tissue occurs during 

certain periods of life (last half of pregnancy, the first 
year of life and the beginning of puberty) or in special 
situations, such as obesity. In all other cases remain 
the phenomena of hypertrophy [22,23]. It is important 
to remember that the hyperplasia, unlike 
hypertrophy, is an irreversible process, so even in the 
event of slimming exasperated cells does not decrease 
in number but, only in their volume [24]. When an 
obese person slimming, fat cells lose a certain amount 
of fat, reducing their volume, but the number of 
adipocytes cannot be reduced. That's the reason a 
person with obesity regained in the short term much 
of body fat lost when suspending the crash diet. An 
excessive accumulation of triglyceride inside white 
adipocytes causes a progressive increase of their 
volume. The adipocyte hypertrophy creates the risk of 
compromising the integrity of the adipocytes 
themselves who do not have unlimited power to 
increase the volume; therefore reached a certain limit 
an adipocyte excessively hypertrophic undergoes 
events of hypoxia and necrosis [25]  

As a result there has been an alteration of 
adipose tissue with changing in the production of 
steroid hormones and adipokines, development of 
metabolic disorders, and the onset of chronic 
subclinical inflammation [26,27]. These alterations are 
implicated in the mechanism of carcinogenesis, 
progression and tumor metastasis [28] (Figure 3). 
Recent studies demonstrated that in obese animals is 
established a status of adipocyte hypoxia and in this 
hypoxic state interaction between adipocytes and 
stromal vascular cells contribute to tumor 

development and progression 
[29]. In obesity, adipose tissue 
hypoxia may cause cellular 
mechanisms that lead to the 
development of insulin 
resistance, to a state of chronic 
inflammation with infiltration 
of macrophages, the reduction 
of adiponectin and increased of 
leptin, adipocyte death, ER 
stress and mitochondrial 
dysfunction [30-34]. Therefore, 
adipose tissue hypoxia might 
contribute to cancer risk in the 
obese population [35,36]. 
Hypoxia-inducible factor 1 
alpha (HIF-1a), is an important 

 
Figure 1 Schematic representation of adipose tissue. 
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transcription factor that is regulated by hypoxia and 
in tumors leads to increased vascularization. HIF-1a is 
involved in the regulation of transcription of genes 
implicated in the mechanisms of carcinogenesis. 
These include angiogenesis, cell survival, invasion 

and metabolism of glucose. Finally, HIF-1a was 
associated with an increase occurrence of metastases. 
Furthermore HIF-1a inhibition might improve 
sensitivity of tumors to radiation [37,41].  

 

 
Figure 2 Adipocyte hypertrophy and hyperplasia induces an inflammatory cascade and accumulation of immune cells, activation of leukocytes, endothelial cells 
coupled with angiogenesis, adipogenesis and death of adipocytes. 

 
Figure 3 The different mechanisms linking obesity and cancer. Excessive adipose tissue is related to the changes of the lipids concentrations in the circulation, levels 
of species reactive oxygen as well as to secretion of adipokines and circulating hormones. The hypertrophy and hypoxia of adipose tissue cause chronic inflammation. 
Thus, cytokines secreted by inflamed adipose tissue, production of angiogenic factors, infiltration of macrophages M1 and insulin resistance associated with obesity 
may favor stimulation of a favorable microenvironment for tumorigenesis. 
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To block hypertrophy, each fat cell realizes two 
actions [42,43]: 
• amends its protein synthesis by producing and 

secreting cytokines, inflammatory proteins and 
hormones which are able to prevent further 
entry of fatty acids on the inside; 

• stimulates the increase of the number of new 
adipocytes in order to accumulate triglycerides 
that are continuously introduced with the daily 
nutrition. 

Adipocytokines 
The white adipocytes produce and secrete a 

large number of molecules, collectively called 
adipocytokines or adipokines. The adipocytes have a 
robust protein synthesis capable of producing specific 
proteins in norm-volume condition, but in the 
presence of hypertrophy undergo a change in their 
protein synthesis, with production of inflammatory 
proteins (cytokines) [44-46]. While the majority of 
adipokines, such as tumor necrosis factor-α, IL-6, 
PAI-1 are pro-inflammatory, adiponectin on the 
contrary is an adipokine with anti-inflammatory, 
anti-diabetic, cardio protective and anti-tumor actions 
[47,49]. Dysfunctional adipose tissue in obesity 
releases a disturbed profile of adipokines with 
elevated levels of pro-inflammatory factors and 

reduced adiponectin [50]. (Figure 4) 
This variation in the pathophysiology of 

adipocytes is the key to understanding the 
relationship between obesity, insulin resistance status, 
metabolic syndrome, diabetes mellitus type 2, 
atherosclerosis and several types of cancer (breast, 
prostate, colon, liver) [51-54]. 

However, it acquired the close relationship 
between the production of inflammatory proteins and 
the degree of hypertrophy of adipocytes [55,56].  

Follows is a summary of the various proteins 
secreted by adipocytes both in conditions of normal 
volume and in hypertrophic adipocyte (Figure 5): 
• Cytokines: TNF-α, IL-1, IL-6, IL-10. 
• Transforming Growth Factor- b (TGF-b). 
• Leptin, resistin, adiponectin. 
• Monocyte Chemoattractive Protein-1 (MCP-1). 
• CXCL5 
• Haemostatic Proteins: Plasminogen Activator 

Inhibitor-1 (PAI-1) 
• Proteins involved in blood pressure regulation: 

angiotensinogen. 
• Angiogenic proteins: vascular endothelial 

growth factor (VEGF). 
 

 
 

 
Figure 4 Dysfunctional adipose tissue in obesity is associated with disturbed profile of mediators released from this tissue establishing a state of chronic inflammation. 
An increase of pro-inflammatory cytokines and leptin causes a down regulation of adiponectin. This results in a reduction of anti-inflammatory and anti-tumor activity 
explicated by adiponectin. In obesity high levels of pro-inflammatory cytokines such as TNF-α and IL-6 act systematically and could induce oncogenic effects in distant 
sites such as colon, liver, breast. 
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Figure 5 Summary of the various proteins secreted by white adipocytes both in conditions of normal volume and in hypertrophic adipocytes. Adipose tissue play an 
active role in controlling the physiological and pathological process through various adipokines. Dysfunctional adipose tissue in obesity releases a disturbed profile of 
adipokines with elevated levels of pro-inflammatory factors like leptin, IL-6 and TNF-alfa and reduced adiponectin that is protective against tumourigenesis. These 
adipokines have been implicated in cancer development and progression through their effects on insulin resistance, lipolysis and various inflammatory pathways. In the 
context of obesity, the hypertrophic expansion of adipose tissue induces local hypoxia, inflammatory activation and reactive angiogenesis, changes which favour 
tumourigenesis. 

 
The adipokines constitute a class of proteins 

extremely heterogeneous, both in structural and 
functional terms, but have some common 
characteristics. From the functional viewpoint 
adipokines are polyvalent molecules, involved in a 
large number of physiological and pathological 
processes in fact modulate the sensitivity of 
peripheral tissues to insulin, regulate appetite, energy 
expenditure, and glucose and lipids metabolism, 
homeostasis, angiogenesis, blood pressure and all the 
axis of endocrine and reproductive systems [57-59]. In 
addition, many appear to be strongly related to 
immunity and inflammation [60,61]. Within this wide 
range of signals and protein factors, it is evident how 
the white adipose tissue plays an active role in 
controlling the physiological and pathological 
processes, in particular the metabolism and energy 
homeostasis [62,63]. It is precisely through the various 
adipokines that the white adipose tissue 
communicates directly with the peripheral tissues and 
in particular with the skeletal muscle. And above all 
there is an intense cross-talk between white 
adipocytes and brain through leptin and the 
sympathetic nervous system [64-66]. Following 
describes the two best-known hormones secreted by 
white adipocytes: adiponectin and leptin. 

Adiponectin is the main hormone produced by 
mature not hypertrophic white adipocytes. It carries a 
powerful anti-inflammatory action, in addition to its 
role in modulating insulin sensitivity improving it in 
the liver, muscle and adipocytes [67,68]. Increase the 
oxidation of lipids in tissues by promoting weight 

loss, improves endothelium-dependent vasodilate-
tion, reduces the production of oxygen free radicals, 
has anti-inflammatory action: reduces the expression 
of adhesion proteins, the production of TNF-alpha 
and counteracts the effects on endothelial function, 
inhibits the differentiation of monocytes into 
macrophages, inhibits the activity of metalloproteases 
wall, inhibits the effects of LDL (low density 
lipoprotein) oxidized on endothelial cells of the 
capillaries of the microcirculation content in 'adipose 
organ and systemic vascular network [69,70]. Plasma 
levels of adiponectin are reduced in obesity in the 
abdomen, in the male, in postmenopausal women, in 
high blood pressure, hypertriglyceridemia in type 2 
diabetes mellitus and coronary artery disease [71-77]. 
Adiponectin expression is decreased by TNF-a and 
IL-6, increased by PPARy agonists [78] (Figure 6). 
Adiponectin exerts a reduction in the proliferation of 
adipocyte cells, endothelial cells and tumor cells 
[79,80]. In addition to inhibit tumor growth and 
survival, adiponectin blocks angiogenesis by 
decreasing the expression of VEGF and Bcl-2 
(anti-apoptotic) and increasing the activity of p53, Bax 
and caspase (pro-apoptotic), with resulting in 
apoptosis of endothelial cells. Likewise, adiponectin 
was shown to reduce TNF-α induced effects on cell 
proliferation and migration [81,82]. In fact, it has been 
shown that the reduced concentrations of adiponectin 
observed in obesity may represent one of the 
mechanisms that connect obesity with the 
development and progression of cancer [83-86]. 
importantly, adiponectin levels are decreased in 
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obesity-associated insulin resistance and cancer [87]. 
Insulin resistance is increased, with resultant 
elevation in insulin and bioavalible IGF1 levels, which 
enhance tumor cellular proliferation [88,89]. Low 
levels of adiponectin exert pro-inflammatory effects 
by means of the rise of the production of various 
proinflammatory cytokines including TNF-α and IL-6, 
favoring in this manner the onset of a permissive 
tumor microenvironment facilitating tumor 
promotion [90-92]. In several studies has been 
observed a negative correlation between circulating 
adiponectin levels and the risk of developing certain 
types of cancer such as colorectal, breast, pancreatic, 
liver and prostate cancer [93-96]. Low adiponectin 
levels are potentially associated with carcinogenesis 
[97-99]. The adiponectin protective effects in tumors 
also include the inhibition of leptin proliferative 
signaling and inducing cell apoptosis [100-101]. 

Leptin is produced by white "normal" 
adipocytes and hypertrophic adipocytes, acts as a key 
mediator in body weight regulation [102]. Once 
entered into the blood stream, reach the brain, where 
it provides a critical hormonal signal to the 
hypothalamus in the regulation of appetite and 
energy expenditure: inhibition of appetite [103]. The 
production of this hormone is closely related to 
adipose tissue mass and volume of adipocytes: an 
increase in body fat, especially visceral fat, as well as a 
diet high in calories is associated with an increase in 
circulating levels of leptin where weight loss results in 
a reduction of the same [104,105]. The production of 
leptin is to limit the continuous entry of fatty acids in 
adipocyte hypertrophic, choice of defense needed to 
prevent cell death by excessive volume. Under 
conditions of obesity can develop a state of leptin 
resistance and therefore the actions ensured by this 
adipocyte hormone cannot be exercised [106,107] 
(Figure 7). Leptin is currently at the centre of the 
obesity-cancer link, as it is produced in proportion to 

fat mass and potently induces cell mitogenesis, 
growth and motility [108-110]. Mature adipocytes 
secrete both adiponectin and leptin with 
preadipocytes showing a primarily secretion of high 
leptin levels [110-112]. An increase of preadipocyte 
pool in obese subjects is related to an increase in leptin 
levels, with proangiogenic and promitogenic 
properties [113,114]. Simultaneously, high levels of 
leptin leads other inflammatory cells stimulating the 
differentiation of monocytes into macrophages 
favoring in this manner the state of chronic 
inflammation obesity-associated [115]. In summary, 
leptin has an important role in the development of a 
large variety of malignancies increasing the 
expression of anti-apoptotic proteins, inflammatory 
markers (TNF-a, IL-6), angiogenic factors (VEGF), and 
also the hypoxia-inducible factor-1a (HIF-1a) 
[116,117]. These processes promote cancer cell 
survival, proliferation and migration [118,119]. 

The activation of the inflammatory process 
occurs in the case of hypoxia or when the availability 
of oxygen is not adequate to the demands of white 
and brown adipose tissue. This results in a decrease in 
oxygen tension that activates the transcription factor 
HIF-1 (Hypoxia Inducible Factor-1) and generates a 
number of negative effects [120]: 
• Inhibition of adiponectin production by white 

adipocytes; 
• Induce a state of insulin resistance; 
• Ischemia and necrosis of white adipocytes; 
• The production of angiogenic factors;  
• The release of inflammatory cytokines; 
• Increased production of free radicals can also 

damage the DNA of the same adipocytes. 
 In conclusion, hypoxia of adipocytes is the key link 
between the initial cell damage and activation of the 
inflammatory process [121,122]. 

 

 
Figure 6 In obese subjects lower adiponectin levels lead to a reduction of the anti-inflammatory antidiabetic and antitumor power explicate by adiponectin. 
Decreased levels of adiponectin leads to a state of insulin resistance by cytokine-mediated inflammation contributing to the tumor permissive microenvironment that 
facilitates tumourigenesis. 
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Figure 7 Leptin plays important action in regulating glucose metabolism, in the satiety signal and increase insulin sensitivity. Under conditions of obesity can develop 
a state of leptin resistance and therefore the actions ensured by this hormone cannot be exercised. In obese subjects an increase of adipocytes is related to an increase 
in leptin levels that activates inflammatory cell response and induces pro-inflammatory cytokine production maintaining the obesity-associated state of chronic 
inflammation. In this context increased leptin levels lead to increased expression of anti-apoptotic, pro-inflammatory and angiogenic factors that promote 
proliferation and migration of cancer cells. 

 

White adipocytes and inflammation: the 
inflammatory Triad 

The hypertrophic hypoxic white adipocytes 
present alteration of the extracellular matrix and 
collagen. In this condition activating their capacity to 
adapt to aggressive situations, changing their natural 
protein synthesis and directing the production of their 
proteins to cytokines, inflammatory proteins 
damaging cells and entire systems anatomy of the 
body [123]. Hypertrophy associated with subsequent 
hypoxia, is therefore the functional transition to 
generate a "change" of protein synthesis to local and 
systemic inflammatory agents [124]. There is an axis 
between white hypertrophic adipocytes secreting 
inflammatory proteins and functional status of the 
endothelium of the capillaries and systemic fat [125]. 
The inflammatory proteins secreted by hypertrophic 
and hypoxic white adipocytes are the primary cause 
of atherosclerosis, state of insulin resistance, high 
blood pressure, type 2 diabetes mellitus, metabolic 
syndrome, bone joint and muscle tendon 
degeneration [126-128]. Furthermore links between 
obesity and inflammation and between chronic 
inflammation and cancer may suggest that 
inflammation may be important in linking obesity to 
cancer [129-132]. Virchow over 100 years ago, 
emphasized the link between chronic inflammation 
and cancer development. He observed the increased 
presence of leukocytes in neoplastic tissue [133,134]. 
Since then, the role of chronic inflammation has been 

observed in multiple cancer types. Like adipose 
tissue, tumor microenvironment is composed of 
multiple cell types including epithelial cells, 
fibroblasts, mast cells, and cells of the innate and 
adaptive immune system that favors a 
pro-inflammatory and pro-tumorigenic environment 
[135,136]. 

Belong to the group of inflammatory cytokines: 
• Tumor Necrosis Factor-alpha (TNF-α) 
• Interleukin-1 (IL-1) 
• Interleukin-6 (IL-6) 

which constitute a "triad inflammatory" that acts in 
adipose tissue and of all the other cells of the whole 
organism [137]. Obesity causes chronic inflammation 
silent that is without symptoms, in charge of related 
diseases with functional and aesthetic decay of the 
whole organism [138]. The triad inflammatory 
(TNF-α, IL-1, IL-6) shall set up actions aimed at 
integrity adipocyte hypertrophy and hypoxic in the 
organ fat and aggressive actions whole body level 
with inflammatory degenerative diseases [139,140]. 

Tumor necrosis factor-α. Another 
pro-inflammatory cytokine secreted by adipocytes is 
TNF-α, increased secretion of this cytokine is found in 
obese subjects [141]. More than two decades ago 
TNF-α was first described as a cytokine with 
antitumor properties but later when its antitumor 
activity was tested on cancer patients became 
apparent its active role in promoting cancer [142]. 
Thereafter has been observed that the 
proinflammatory role of TNF-a becomes involved in 
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all stages of tumorigenesis that include tumor cell 
transformation, survival, proliferation, invasion, 
angiogenesis and metastasis [143]. Animal models 
have shown a positive relationship between TNF-α 
and tumor development and progression in liver and 
colorectal cancer with elevated circulating 
concentrations in different tumor types [144-146]. In 
addition, TNF-α is not only produced by a wide 
variety of tumor cells but also by adipocytes. Levels of 
TNF-α are increased in obesity, indicating a role for 
this cytokine in the obesity-associated inflammation 
and particularly in insulin resistance and diabetes 
[147,148]. 

Interleukin-6 Another cytokine produced by 
adipose tissue belonging to the group of 
pro-inflammatory cytokines is IL-6 whose levels are 
increased in obese subjects [149,150]. IL-6 is a key 
modulator in inflammation-associated carcinogenesis, 
regulates the expression of genes involved in the 
different steps of tumor growth and progression via 
the JAK/STAT signaling pathway [151,152]. In fact a 
relationship between IL-6 and carcinogenesis has 
been shown for several types of cancer and elevated 
circulating level correlate with disease aggressiveness 
and poor prognosis [153-157]. 

Interleukin-1 Interleukin-1 is a regulatory 
cytokine expressed in both normal tissues and in 
tumor cells. IL-1 can lead to the activation of 
transcription factors such as NF-kB and AP-1, and 
promote the expression and promote the expression 
of genes that regulate the mechanisms of survival, 
proliferation and tumor angiogenesis [158]. In 
obesity-related inflammation, IL-1 over-regulates 
HIF-1a protein through a classical NF-kB/COX-2 

inflammatory signaling pathway culminating in 
up-expression of the angiogenic factor VEGF needed 
for tumor growth and metastasis [159].  

The following summarizes the actions of 
inflammatory triad: 

1. Reduction and block of capillaries lipoprotein 
lipase synthesis. The reduction and the absence of this 
enzyme on the wall of the capillaries in the adipose 
organ prevents the release of triglycerides from 
circulating VLDL in the blood, and then the non-entry 
of fatty acids into adipocytes; the value of 
triglycerides and cholesterol in the blood increases 
[160,161].  

2. Blocking of insulin receptors of adipocytes. 
This block implies a state of insulin resistance initially 
in the fat organ, subsequently of the whole body, 
particularly in muscles with increased glucose and 
insulin in the blood until the onset of diabetes mellitus 
type 2 [162-163]. 

3. Activation of lipoprotein lipase hormone 
sensitive in adipocytes with breakdown of 
triglycerides accumulated in hypertrophic white 
adipocyte, output of free fatty acids (FFA) with a 
consequent reduction in volume. Excess of FFA in the 
blood cause fatty liver and insulin resistance in the 
muscles, increasing glucose and insulin in the blood 
until the onset of diabetes mellitus type 2 [164].  

4. Endothelial Inflammation. Exists an axis 
between hypertrophic and hypoxic white adipocytes 
secreting inflammatory proteins and functional status 
of capillaries endothelium of the adipose organ tissue 
and systemic vascular with the entire systemic 
vascular network (atherosclerosis and vein diseases) 
[165,166]. (Figure 8) 

 

 
Figure 8 Actions of inflammatory triad. Obesity causes chronic silent inflammation with subsequent increased secretion of inflammatory triad cytokines and 
decreased production of adiponectin that make unable adipose tissue to store the surplus of free fatty acids contributing to a development of insulin resistance, type 
2 diabetes, and obesity-related cardiovascular disease. The mitogenic and anti-apoptotic environment caused by elevated levels of insulin in obesity accelerates the 
stepwise accumulation of mutations and, hence, favor carcinogenesis. TNF-a, IL-6 and IL-1 signaling, enhancing carcinogenesis by increasing cell proliferation and 
neoangiogenic cell properties. In addition, the inflammatory enhancing expression of VEGF, ICAM-1 and VCAM-1 by endothelial cells. 
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Adipocytes, inflammation and insulin 
resistance 

One of obesity-related diseases is insulin 
resistance considered a major risk factor for cancer 
development and has been associated with poor 
prognosis for several cancers [167,168]. 

The hypoxic hypertrophic adipocytes and 
macrophages in addition to an increase of the 
production of inflammatory cytokines TNF-α, IL-1, 
IL-6 also reduce the production of adipocyte 
hormones protective, including adiponectin [169,170]. 
The whole of these pathological changes leading to 
the appearance of a state of insulin resistance, which 
is established through different mechanisms still only 
partly elucidated:  
• direct mechanism that includes the deactivation 

of the substrate of the insulin receptor (ISR-1) by 
phosphorylation of serine and threonine 
residues by inflammatory mediators such as IL-6 
and TNF-α [171]; 

• Indirect mechanism caused by the increase in 
free fatty acids (FFA) in the circulation, which 
cause an increase of other mediators of 
inflammation (e.g. NF-KB), implicated in insulin 
resistance [172,173]. 
The insulin resistance is a condition 

characterized by not active insulin that is due to 
reduction of the receptors located in the cell 
membranes of adipose tissue and muscle, with an 
increase of blood glucose and insulin [174,175]. The 
defect of insulin action makes the fatty tissue less able 
to store glucose and fatty acids and fatty tissue as a 
compensatory response seeks to expand further 
through hypertrophy, but mostly hyperplasia [176]. In 
patients with insulin resistance there is an increase in 
glucose and insulin levels due to a reduced sensitivity 
of tissues to insulin [177]. In chronic 
hyperinsulinaemia it is observed increased secretion 
of IGF-1 and a reduced production of binding 
proteins so it results a further increase in circulating 
levels of IGF [178]. Through the IGF receptor, IGF 
activates downstream signaling pathways that 
promote mitogenic and proangiogenetic pathways 
and inhibit apoptosis [179]. The insulin and adipokine 
cancer hypotheses overlap, since he insulin-resistant 
state is mediated, at least in part, by 
cytokine-mediated inflammation [180]. The cytokines 
promote the insulin resistance which in turn leads to a 
state of chronic low-grade inflammation of the 
adipose tissue by establishing a favorable 
microenvironment for tumor promotion [181,182]. 

White adipocytes: hypoxia, ischemia and 
oxidative stress 

The adipocyte hypertrophy generates 
obstruction of capillaries with hypoxia and ischemia 
both individual white adipocytes (hypertrophic and 
hypossic) that the brown adipocytes [183]. For 
hypoxia means a pathological condition caused by a 
lack of oxygen in the blood or in adipose tissue, while 
ischemia is a condition caused by an inadequate blood 
flow [184]. Hypertrophy of white adipocytes damages 
the microcirculation, the vascular network of the 
entire organ adipose creating conditions of 
obstruction and constriction of capillaries with 
endothelial damage in the white and brown adipose 
tissue [185,186]. Furthermore, the progressive 
hypertrophy of white adipocytes and the expansion of 
the white adipose tissue make the same adipocytes 
more away from the vascular network, with reduction 
of the volumes of oxygen available [187]. The adipose 
organ is a major consumer of oxygen and the 
condition of hypoxia/ischemia generates a greater 
state of oxidative stress, able to direct the white 
adipocytes hypertrophic/hypoxic and towards the 
secretion of inflammatory proteins and brown 
adipocytes towards a situation of dysfunction 
[188,189]. The brown adipocyte is much richer in 
capillaries and requires significant volumes of oxygen 
to ensure adequate oxidation of fatty acids and ensure 
proper body temperature [190]. A hypoxic condition 
in brown adipocytes promotes the reduction of 
thermo genesis, i.e. the production of heat, and 
oxidation of fatty acids, with sensation of cold and 
continuous weight gain because the fatty acids are 
deposited in white adipocytes [191-193]. Moreover, in 
conditions of hypoxia and ischemia the brown 
adipocytes produce significant amounts of reactive 
oxygen radicals (Radical Oxygen Species, ROS) that 
damage their mitochondrial functionality [194-196]. 
Hypoxia occurs when oxygen availability is not 
adequate to the demand of both white and brown 
adipose tissue [197]. This results in a decrease in 
oxygen tension that activates the transcription factor 
HIF-1 (Hypoxia Inducible Factor-1) and generates a 
series of negative effects:  
• inhibition of production of adiponectin by white 

adipocytes; 
• induction of a status of insulin resistance; 
• ischemia and necrosis of white adipocytes; 
• production and release of inflammatory 

cytokines and angiogenic factors; 
• Increased production of free radicals which are 

able to also damage the DNA of the same 
adipocytes. 
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In conclusion, hypoxia and ischemia of 
adipocytes are the key link between the initial cell 
damage and activation of the inflammatory process 
[198-207]. 

Adipocytes and cancer 
Adipose tissue is composed by a heterogeneous 

cell population mostly represented by adipocytes. 
Other cellular components including endothelial cells, 
macrophages, pericytes and adipocytes progenitor 
cells [208,209]. In adipose tissue interaction between 
adipocytes and stromal vascular cells contribute to 
tumor development and progression. Some types of 
tumors such as breast develop in proximity of 
adipocytes and metastasize in an environment mainly 
dominated by adipocytes such as the abdominal 
cavity [210]. Growth and metastasis of these tumors 
reflect the important role of the numerous adipocytes 
present in the microenvironment for tumor 
maintenance progression [211,212]. 
Microenvironment within local adipose deposits 
clearly provides a tumor permissive niche for 
transformed, infiltrating cells. During cancer 
progression cancer associated adipocytes undergo 
considerable morphological and functional alterations 
acquiring a fibroblast-like phenotype [213,215]. This 
phenotypic change involves a loss of expression of 
adiponectin and leptin the markers of terminal 
adipocyte differentiation. As a result an increase in 
the secretion of pro-inflammatory cytokines such as 
IL-6, TNF-α and PAI-1 that create a favorable 
environment inducing tumor cells to acquire a 
phenotype with major invasiveness and 
aggressiveness [216-220]. Alterations of the signaling 
mechanisms of the key mediators in obesity could 
represent determining factors for the establishment of 
a peritumoral environment to promote the 
development and tumor progression. In the light of 
information provided in this review we support that 
inflammatory state specific of obesity may be 
important in obesity-cancer link. Nevertheless, the 
molecular basis of the interactions that exist between 
the key mediators of tumor cells and adipocytes, 
which promote the establishment of a permissive 
tumor microenvironment is still unclear. 

Conclusion 
The results led to the hypothesis that an 

unfavorable adipokines profile with a reduction of 
adipokines with anti-inflammatory or anti-tumor 
activity could provide a comprehensive insight into 
the understanding of the molecular mechanisms 
involved in carcinogenesis related to obesity. This can 
provide the specific targets that are involved in those 
mechanisms whereby obesity leads to tumor 

progression. In conclusion, in obese subjects may 
become useful to follow a path to preventing cancer 
and its progression reduction plan to stop the 
inflammatory cascade, improve insulin sensitivity 
and contrast the factors that induce hypoxia. 
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