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Background: Patient-specific risk profiles of clinical failure after anterior cruciate ligament reconstruction (ACLR) are meaningful
for preoperative surgical planning and postoperative rehabilitation guidance.

Purpose: To create an ensemble algorithm machine learning (ML) model and ML-based web-based tool that can predict the
patient-specific risk of clinical failure after ACLR.

Study Design: Cohort study; Level of evidence, 3.

Methods: Included were 432 patients (mean age, 26.8 6 8.4 years; 74.1% male) who underwent anatomic double-bundle ACLR
with hamstring tendon autograft between January 2010 and February 2019. The primary outcome was the probability of clinical
failure at a minimum 2-year follow-up. The authors included 24 independent variables for feature selection and model develop-
ment. The data set was split randomly into training sets (75%) and test sets (25%). Models were built using 4 ML algorithms:
extreme gradient boosting, random forest, light gradient boosting machine, and adaptive boosting. In addition, a weighted-
average voting (WAV) ensemble model was constructed using the ensemble-voting technique to predict clinical failure after
ACLR. Concordance (area under the receiver operating characteristic curve [AUC]), calibration, and decision curve analysis
were used to evaluate predictive performances of the 5 models.

Results: Clinical failure occurred in 73 of the 432 patients (16.9%). The 8 most important predictors for clinical failure were follow-
up period, high-grade preoperative knee laxity, time from injury to ACLR, participation in competitive sports, posterior tibial slope,
graft diameter, age at surgery, and medial meniscus resection. The WAV ensemble algorithm achieved the best predictive per-
formance based on concordance (AUC, 0.9139), calibration (calibration intercept, –0.1806; calibration slope, 1.2794; Brier score,
0.0888), and decision curve analysis (greatest net benefits) and was used to develop an web-based application to predict a pa-
tient’s clinical failure risk of ACLR.

Conclusion: The WAV ensemble algorithm was able to accurately predict patient-specific risk of clinical failure after ACLR. Clini-
cians and patients can use the web-based application during preoperative consultation to understand individual prediction
outcomes.

Keywords: anterior cruciate ligament reconstruction; clinical failure; machine learning; artificial intelligence; ensemble method;
open-access application

The anterior cruciate ligament (ACL) is a commonly
injured ligament in the knee, especially in athletic popula-
tions.8,17,29 Regardless of surgical technique, treatment
aims to increase anteroposterior and rotational stability,
restoring the native knee biomechanics in terms of

tibiofemoral load bearing during movement as much as
possible.3 Despite the recent advances in surgical techni-
ques, ACL reconstruction (ACLR) does not come without
adverse outcomes, including residual rotatory laxity and
graft rupture.2,13,17,24,28,48 Persistent rotatory laxity and
graft rupture are associated with poor functional outcomes
and the subsequent need for revision surgery.4

Recent studies have indicated that the risk factors of
clinical failure after ACLR include younger age at sur-
gery,23,36 increased posterior tibial slope,56 meniscal
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deficiency,45 small graft size,32 and allograft reconstruc-
tion.34 One drawback is that these studies provide only
relevant information on a general level and are not able
to accurately determine the specific risk for each patient
in order to deliver individualized prediction conclusions.
Patient-specific risk is challenging to estimate and quan-
tify because of the complicated interactions between
numerous characteristic factors. In this context, it is
important to provide more comprehensive knowledge
and user-friendly tool to pinpoint the types of patients
who might encounter clinical failure of ACLR and deter-
mine their specific risk factors, especially in patients
with high return-to-sports expectations and functional
demands.27

Machine learning (ML) can increase the predictive
power and viability as an emerging method of health
care research.10,16,22,27 ML algorithms have been shown
to learn from adequate instances and adapt their internal
parameters (weights) and reinforce pertinent associations,
thus increasing the correctness of a specific mathematical
model.39 Furthermore, compared with conventional statis-
tics, ML algorithms can handle more complex interactions
in large data sets and increase prediction accuracy.27 Previ-
ous reviews have shown that numerous orthopaedic sur-
geons have been quite interested in predicting some
clinical outcomes of different procedures using ML algo-
rithms, including ACLR,25 dissatisfaction after primary
total knee arthroplasty,26 ACLR revision,36 and overnight
hospital admission after ACLR.30 However, only a single
ML model was selected for risk factor prediction in these
studies, such as the elastic-net penalized logistic regres-
sion,25 the Cox lasso,36 and the random forest (RF) algo-
rithm,26 and every algorithm model has its individual
disadvantages.54 According to previous studies, a nested
ensemble method showed the best performance among the
candidate ML models.30,54 An ensemble algorithm combines
�2 single algorithm models with varying strengths and
weaknesses to build a more sustainable model with better
performance.16

To our knowledge, no study has used an ensemble algo-
rithm for risk prediction of clinical failure after the ACLR,
although its predictive effectiveness and accuracy have
been well documented recently in some other areas of med-
icine.9,30,40,54 Therefore, in this study, we aimed to develop
an ML ensemble model and a user-friendly, ML-based,
web-based application for this purpose. We hypothesized
that an ensemble ML algorithm with superior accuracy
to the single ML algorithms would be a trustworthy tool
to predict the clinical failure of patients after ACLR.

METHODS

Study Population

The present study was carried out in accordance with the
TRIPOD (Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis) guide-
lines and the Guidelines for Developing and Reporting
Machine Learning Predictive Models in Biomedical
Research.7,31 The protocol for this study was approved by
our institutional review board; informed consent was
waived. We reviewed the records of 498 patients who
underwent primary anatomic double-bundle ACLR in our
institution between January 2010 and February 2019.
Exclusion criteria consisted of (1) partial ACL rupture;
(2) combined ligament injury, skeletal immaturity, or frac-
ture; (3) reconstruction with allograft or artificial liga-
ment; (4) history of ipsilateral knee surgery; and (5)
incompleteness of data provided for 2-year outcomes. Of
the initial 498 patients, we excluded 66 (13.3%), leaving
432 included in our study (Figure 1).

Primary Study Outcome

The primary outcome was ACLR clinical failure, a compos-
ite measure of rotatory laxity or a graft rupture.15 Rotatory
laxity was defined as a moderate or severe (grade 2 or 3)
asymmetric pivot shift at any follow-up visit or a persistent
(detected at �2 visits) mild asymmetric pivot shift (grade

Figure 1. Flowchart of patient selection. ACL, anterior cruci-
ate ligament.
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1).15 Graft rupture was defined as discontinuity of the graft
confirmed by either magnetic resonance imaging or arthro-
scopic examination.15

Candidate Covariates

A total of 24 preoperative and intraoperative covariates
prospectively obtained in our department were tested for
predictive value. Patient characteristics included age at
surgery, sex, body mass index, participation in competitive
sports, injured side, limited range of motion, limited sports
ability, joint pain, and time from injury to surgery. The
posterior tibial slope was obtained by true lateral knee
radiographs.47 The anterior drawer test, Lachman test,
and pivot-shift test were performed manually under anes-
thesia according to the International Knee Documentation
Committee (IKDC) guidelines.14 The presence of a grade 3
anterior drawer test, Lachman test, or pivot-shift test was
considered as high-grade preoperative knee laxity.33,43

Additionally, subjective clinical assessments, including
the IKDC score, Lysholm score, and Tegner activity score,
were obtained from patients before surgery. Graft diame-
ter, meniscal injury treatments, and graft length in the
tunnel were recorded intraoperatively. The postoperative
follow-up period was also recorded.

Model Development and Creation

Feature Extraction. The significant predictive features
were selected by applying recursive feature elimination
(RFE) with RF algorithms.18 The RFE created a model
with all features, sorting them by the importance score.
After eliminating low-ranked features with the lowest
scores, another unique model was built. The process was
repeated until a subset of predictors with the best predic-
tive performance was determined.

Base ML and Ensemble Algorithm. Four well-accepted
base ML algorithms, including extreme gradient boosting
(XGBoost), RF, light gradient boosting machine
(LightGBM), and adaptive boosting (Adaboost), were used
to develop predictive models with the selected features
mentioned above in the current study.16 These ML meth-
ods were compared according to their inherent characteris-
tics.42 An ensemble algorithm was combined using an
ensemble voting technique based on weighted-average vot-
ing (WAV) to predict clinical failure after ACLR.54 Suppose
there are M number of classification algorithms (CAs);
each is denoted as CA1, CA2, ., CAM. The WAV ensemble
did not simply sum up the posterior probabilities obtained
for each sample from the M classification algorithms.
Briefly, the performance of each model on the validation
data set could be evaluated after optimizing their hyper-
parameters. Then, we assigned weights, to each model to
create our WAV ensemble model according to their per-
formances (between 0 and 1 and could add up to 1). The
final predictive result (ŷ) of the voting ensemble algorithm
was computed using the following equation54:

ŷ ¼W1 3 Pr CA1 Xð Þð Þ1 W2 3 Pr CA2 Xð Þð Þ1 . . .

1 WM 3 PrðCAMðXÞÞ

such that SW1 1 W2 1 . . . 1 WM ¼ 1 if ŷ .0:5; the predic-
tion result of the sample was clinical failure. In these equa-
tions, W (weight) indicates the percentage of trust on
a particular classifier based on its performance in the
training data set, Pr indicates the posterior probability,
and X represents the independent variables.

Model Training and Hyperparameter Optimization. The
data set with selected features was randomly split into 2
parts: 75% of the data set for training and 25% for test-
ing.25,26,35,54 Each base model was optimized on the train-
ing set utilizing 10-fold cross-validation with 10 repetitions
and was tuned according to the training errors and mean of
results in the training process.25,26,35,54 Briefly, the train-
ing data set was randomly divided into 10 equally sized
pieces. We used the exhaustive grid search algorithm to
predict clinical failure with 9 pieces to tune the hyperpara-
meters of each model, while the remaining piece was used
as the validation set to evaluate each model’s performance
with the hyperparameters mentioned before. Thus, the
cross-validation procedure made different subsets of sam-
ples available for optimizing the model, which made the
model more robust and reduced errors as much as possible.
The most optimal hyperparameters for each model were
obtained in this process. Model evaluation on Monte Carlo
cross-validation was performed using bootstrapping with
1000 resampled data sets in the independent testing set.
A flowchart of the process is shown in Figure 2.

Model Performance Assessment

Model performance was assessed by calculating the pre-
dicted probabilities for clinical failure after ACLR in the
independent testing data set (remaining 25%) (Figure 2).
The performance of the 4 base ML models and the WAV
ensemble algorithm in optimal prediction was evaluated
in terms of concordance, calibration, and Brier score. Con-
cordance was measured using the area under the receiver
operating characteristic curve (AUC), which was applied to
evaluate the accuracy of the model by considering its spec-
ificity and sensitivity; the value of AUC ranges from 0 to 1,
with 1 indicating perfect concordance. Calibration referred
to the accuracy of the predicted probabilities, which com-
pared the predicted outcomes with the actual observed out-
comes. The mean misclassification in each predicted risk
was summarized in a calibration plot, with a straight
line with an intercept of 0 and a slope of 1 representing
perfect concordance of model expectation to observed fre-
quencies (ie, ideal model calibration). The Brier score is
a proper scoring function assessing the overall perfor-
mance and an extension of calibration and discrimination.
The Brier score of each model is the mean squared differ-
ence between the true observed outcomes and the model
prediction probabilities. In general, lower Brier scores indi-
cate better calibration of predictions, with 0 being perfect
performance and calibration.
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A comparison was made between the Brier score of each
algorithm model and the null model (the null model–
predicted probabilities were equivalent to the true outcome
prevalence in the entire study cohort).

Decision Curve Analysis

Decision curve analysis is able to reveal the benefit of
applying the predictive algorithm in clinical practice.
There is a cutoff point to determine the occurrence of inter-
ested clinical events (also known as the threshold value) in
the AUC. The cutoff point is the specific value of an indica-
tor used to judge the occurrence of interested clinical
events (denoted as A). The threshold probability refers to
the constituent ratio after classification according to the
cutoff point (number of persons � A/total number of per-
sons). The net benefit value represents the increased profit
of changing clinical management at this threshold proba-
bility. The calculation of the net benefit is shown in the fol-
lowing equation52:

Net benefit ¼ True positive rate� False positive rate 3ð
Weighting factorÞ

where the weighting factor is calculated as Threshold
probability/(1 – Threshold probability).

The relationship between the threshold probability and
net benefit can also be drawn as a line graph, which is the
decision curve. Making a plot of the threshold probability
and net benefit for the different decision models and putting
them together creates a decision curve for comparison of dif-
ferent prediction models. The analysis of the decision curve

in this study included 4 curves: the complete WAV ensemble
algorithm model, a simplified ensemble model with only 2
optimal predictors (follow-up period and high-grade preop-
erative knee laxity), and 2 baselines (no treatment for all
patients and treatment for all patients). The farther the
curve of the decision model is from the baseline, the higher
the net benefit of the decision is.

Individual-Level Interpretations and Digital Application

Local interpretable model-agnostic explanations (LIME) is
a method that enables patient-specific interpretations of
a model.46,51 LIME samples local input variable distribu-
tions using a predefined number of permutations and eval-
uates the effect of values within a specific range for each
predictor feature on the primary outcome.25 The impor-
tance of each feature is computed and carried forward
based on similarities between the features and the model
predictions.25,44 LIME can provide a visual explanation of
how each feature contributes to the global predictions,
showing how each feature either supports (increases the
probability of clinical failure) or contradicts (decreases
the probability of clinical failure) the prediction.25,30

With the use of LIME, we transformed the candidate
prediction model with the best performance into an open-
access risk calculator website application accessible on
desktops and smartphones. With this application, users
are able to get visible predictions of clinical failure after
ACLR with accompanying explanations.

RESULTS

Patient Characteristics

The mean age of the 432 study patients was 26.8 6 8.4
years, 74.1% were male, and 54.2% participated in sports.
The full preoperative and intraoperative data are pre-
sented in Table 1. In the study population, 73 (16.9%)
were classified as having experienced clinical failure (16
experienced graft rupture) during a mean follow-up period
of 72.2 6 37.3 months.

Feature Selection Outcomes

There were no missing data for any of the candidate cova-
riates. Features were selected using RFE with RF algo-
rithms, and the 8 most important predictors for clinical
failure in the model were follow-up period, high-grade pre-
operative knee laxity, time from injury to surgery, partici-
pation in competitive sports, posterior tibial slope, graft
diameter, age at surgery, and medial meniscus resection
(Figure 3).

Predictive Model Performance and Comparison

The AUCs of the 4 base models with 10-fold cross-
validation in the training data set (75% of data) were as fol-
lows: XGBoost, 0.932 (95% CI, 0.905-0.959); RF, 0.894 (95%

Figure 2. Flowchart visualizing the machine learning algo-
rithm development and evaluation process. ACLR, anterior
cruciate ligament reconstruction; CV, cross-validation;
LightGBM, light gradient boosting machine; RF, random
forest; WAV, weighted-average voting ensemble; XGBoost,
extreme gradient boosting.
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CI, 0.861-0.926); LightGBM, 0.935 (95% CI, 0.913-0.956);
and Adaboost, 0.945 (95% CI, 0.931-0.958) (Figure 4). Based
on the model from the training data set, we predicted the
patient-specific risk of clinical failure after ACLR in the

testing data set (remaining 25% of data). The receiver oper-
ating characteristic curves for the testing data set indicated
that the WAV ensemble model exhibited the best AUC
(0.9139) among all of the predictive models (Figure 5).

Details of the performance assessment for the 4 base
ML models and the WAV ensemble model are shown in
Table 2. The WAV ensemble model achieved the best cali-
bration and Brier score (calibration intercept, –0.1806; cal-
ibration slope, 1.2794; Brier score, 0.0888) (Table 2 and
Figure 6). Calibration plots for the 4 base ML models on
the testing data set are displayed in Figure 6.

Decision Curve Analysis

The results of the decision curve analysis are shown in Fig-
ure 7. It could be observed that the simplified ensemble
model curve was above the baseline of the 2 hypotheses
(treat all and treat none). The complete WAV ensemble
algorithm had a higher rise compared with the simplified
ensemble model curve in almost all interval ranges, imply-
ing that more true-positive results could be identified with-
out increasing the false-positive rate for patients who
expected a prediction when we applied the WAV ensemble
model. This indicated that the WAV ensemble algorithm
had potential application value. Moreover, using more infor-
mation related to patient characteristics could increase the
clinical application value of an ensemble model.

Digital Application and Individual Explanations

An open-source digital application (https://zorthoapps.
shinyapps.io/aclr) was built to be accessible on desktop
computers, tablets, and smartphones (Figure 8). This
application generated a risk assessment of the clinical fail-
ure after ACLR on the practical implementation for each
patient. We included 2 examples to show our open-source
website application (Figure 9). Patient 1 was 25 years
old, had preoperative high-grade knee laxity, and needed
medial meniscus resection; at one point, he participated
in competitive sports (Figure 9A). Four features contra-
dicted experiencing clinical failure: posterior tibial slope,

TABLE 1
Baseline Characteristics and Intraoperative Findings

for Patients Included in the Machine Learning
Analysis (N = 432)a

Variable Value

Sex, male/female, n 320/112
Age at surgery, y 26.8 6 8.4
Body mass index, kg/m2 24.4 6 3.4
Follow-up period, mo 72.2 6 37.3
Preinjury Tegner score 7.1 6 1.4
Preoperative Lysholm score 64.1 6 20.7
Preoperative IKDC score 54.0 6 19.0
Posterior tibial slope, deg 10.6 6 2.3
Physical examination findings, n

Anterior drawer test, 0/1/2/3 0/348/84/0
Lachman test, 0/1/2/3 0/26/300/106
Pivot-shift test, 0/1/2/3 0/207/158/67

High-grade preoperative knee laxity 112 (25.9)
Meniscal lesions

Medial meniscal tear 91 (21.1)
Lateral meniscal tear 118 (27.3)
Bimeniscal tear 68 (15.7)

Medial meniscus resection 72 (16.7)
Lateral meniscus resection 90 (20.8)
Graft length in the tunnel, mm 24.8 6 2.5
Time from injury to surgery, mo 22.3 6 39.4
Graft diameter, mm 9.9 6 0.7
Participation in competitive sports 234 (54.2)
Joint pain 186 (43.1)
Limitation of joint movement 332 (76.9)
Limited motor ability 147 (34.0)

aData are presented as mean 6 SD or n (%) unless otherwise
indicated. AMB, anteromedial bundle; IKDC, International Knee
Documentation Committee; PLB, posterolateral bundle.

Figure 3. The 8 most important predictor variables for clinical failure after anterior cruciate ligament reconstruction as selected
using recursive feature elimination with random forest algorithms.
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graft diameter, follow-up period, and time from injury to
surgery (Figure 9B). Once these parameters were input,
the program calculated a 75% probability that the patient
would experience a clinical failure after .2 years postoper-
atively (Figure 9B). In detail, the probability of a random
event is between 0 and 1, and the prediction model uses
0.5 as the discriminant boundary point. A probability of
75%, a tendency .0.5 of clinical failure based on our model,
does not mean exact quantified failure risk. Attention
should be paid to surgical techniques and additional post-
operative rehabilitation interventions.

Unlike patient 1, patient 2 did not experience medial
meniscus resection. No preoperative high-grade knee lax-
ity was found. However, patient 2 participated in competi-
tive sports (Figure 9C). Ranked by weight, the other
factors supporting the clinical failure experienced by patient
2 were follow-up period, graft diameter, age at surgery,

posterior tibial slope, and time from injury to surgery. These
factors made little contribution to the result. The probability
that patient 2 will experience clinical failure at .2 years
postoperatively was calculated at 12% (Figure 9D).

DISCUSSION

The important findings of this study were that (1) the
ensemble model validated the superior accuracy compared
with the 4 single ML algorithms, showing the best predic-
tive performance based on an AUC of 0.9139, calibration
intercept of –0.1806, calibration slope of 1.2794, and Brier
score of 0.0888; and (2) the ensemble algorithm was sys-
tematically developed as a web-based application to predict
patients’ risk of clinical failure of ACLR, which could allow

Figure 4. Box plot of area under the receiver operating char-
acteristic curve (AUC) for machine learning models with 10-
fold cross-validation in the training data set (75% of data).
The red line indicates the mean, the top and bottom of the
box indicate the 95% CI, and the whiskers indicate values
in the dataset not exceeding 1.5 times interquartile range.
Adaboost, adaptive boosting; LightGBM, light gradient
boosting machine; XGBoost, extreme gradient boosting.

Figure 5. Receiver operating characteristic curves of
machine learning models in the testing data set (25% of
data). Adaboost, adaptive boosting; AUC, area under the
receiver operating characteristic curve; LightGBM, light gradi-
ent boosting machine; RF, random forest; WAV, weighted-
average voting ensemble; XGBoost, extreme gradient boosting.

TABLE 2
Model Evaluation on Monte Carlo Cross-Validation in the Testing Data Set (25% of Data)a

Model AUC Calibration Intercept Calibration Slope Brier Scoreb

RF 0.8555 (0.8549 to 0.8561) –0.1482 (–0.1494 to –0.1470) 1.2969 (1.2952 to 1.2985) 0.1384 (0.1381 to 0.1387)
LightGBM 0.8920 (0.8915 to 0.8925) 0.0068 (0.005 to 0.008) 1.004 (1.002 to 1.006) 0.1080 (0.1074 to 0.1085)
Adaboost 0.8986 (0.8982 to 0.8991) –0.0750 (–0.0769 to –0.0737) 1.2100 (1.2083to 1.2117) 0.0926 (0.0922 to 0.0929)
XGBoost 0.8868 (0.8863 to 0.8874) –0.0007 (–0.0023 to –0.0008) 1.0221 (1.0195 to 1.0247) 0.1032 (0.1027 to 0.1037)
WAV ensemble 0.9139 (0.9135 to 0.9141) –0.1806 (–0.1816 to –0.1795) 1.2794 (1.2778 to 1.2809) 0.0888 (0.0885 to 0.0891)

aData are presented as mean (95% CI). Adaboost, adaptive boosting; AUC, area under the receiver operating characteristic curve;
LightGBM, light gradient boosting machine; RF, random forest; WAV, weighted-average voting; XGBoost, extreme gradient boosting.

bNull model Brier score, 0.1367.
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more convenient and accurate preoperative consultation.
Compared with traditional statistical methods, the
strength of ML is that it prioritizes repeatability and accu-
rate predictions of models rather than just providing inter-
pretability.5,25 In some previous studies, the concordance
of the single model was reported to be moderate, with

a lower AUC ranging between 0.69 and 0.82.25,35 The
ensemble model has been proven to be an effective way of
improving clinical outcome prediction accuracy over single
algorithm models.10,16,54 In this context, our ensemble ML
algorithm model showed the greatest AUC of 0.9139 com-
pared with all single models, indicating that ensemble

Figure 6. Calibration plots of the Brier scores for the models in the testing data set: (A) weighted-average voting (WAV) ensemble,
(B) random forest (RF), (C) light gradient boosting machine (LightGBM), (D) adaptive boosting (Adaboost), and (E) extreme gradi-
ent boosting (XGBoost). The y-axis displays the true observed proportion of those who experienced the clinical failure, while the
x-axis displays the corresponding predictions made by the ensemble model. The dashed line represents perfect prediction.
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ML has better potential to predict clinical failure after
ACLR from the individual patient level.

ACLR is a standard procedure to treat ACL deficiency,
aiming to improve knee stability and restore normal bio-
mechanics. However, the clinical failure of ACLR has
been reported to result in limited postoperative function,
swelling, and pain.13,28,48 Persistent rotatory laxity or
a graft rupture has been shown to correlate with inferior

clinical scores and the subsequent need for revision
surgery, and it can be especially devastating for young
athletes.15,57,58 All 8 variables were considered important
for postoperative clinical failure of ACLR in our WAV
ensemble model, which is consistent with previous
studies.12,21,32,38,41,49,50,58 Decreasing age significantly
increased the risk of graft rupture or early graft revision
after ACLR.13,21,23,31,38,41,50,58 Preoperative high-grade
knee laxity was associated with greater odds of ACLR graft
rupture.12,33,38 Greater tibial slope as a risk factor for graft
rupture,12 participation in competitive sports as a predictor
of ipsilateral graft failure,23 and the associations between
decreased graft diameter with early graft revision all
have been documented.32 A previous study have indicated
that time within 3 months from injury to surgery was asso-
ciated with an increased risk of ACL revision.49 Jacquet
et al21 concluded that the meniscus resection was predic-
tive of residual pivot shift after a long follow-up. These
studies explored risk factors for clinical failure rather
than predicting an individual’s risk of clinical failure after
surgery. The factors affecting postoperative clinical failure
varied among individual patients. Accurate prediction and
quantification of the patient-specific risk were challenging
given the complex relationships between these factors.36 In
general, the risk that a patient may experience adverse
outcomes after ACLR is routinely assessed based on tradi-
tional statistical prediction models.10,19,21,41 Traditional
statistical method forecasting may not be able to achieve
accurate quantitative prediction, which could be attributed
to the inherent limitations of such models.25,27 Developing
a practical and convenient predictive tool for clinical fail-
ure of primary ACLR can be beneficial to optimize the sur-
gical decision and postoperative rehabilitation plan.25,30,36

The most common type of ML is called ‘‘supervised
learning.’’ This approach consists of algorithms that ana-
lyze the relationship between predictors and outcomes.27

Compared with traditional statistics, ML algorithms are
data-driven, without an a priori hypothesis of the relation-
ship between the available data and outcome. Conven-
tional statistical techniques such as linear or logistic
regression have a potential pitfall: The relationship
between input variables and output is user-chosen and
may result in a suboptimal (less accurate) prediction
model. In reality, the relationship between input and out-
put is nonlinear when a large amount of input variables
are involved.27 These algorithms could learn to complete
feature selection and accurate prediction based on training
and could then be optimized for better performance.5,19

When an ML algorithm can highlight the correlation
between the predictors and the outcome of interest; it can
then be developed into a calculator capable of reliably pre-
dicting the outcome for a wider range of patients.35

Recently, some ML models have been applied in orthopae-
dics for clinical outcome prediction, such as the clinically
meaningful improvement after ACLR (AUC, 0.82),25 dis-
satisfaction after primary total knee arthroplasty (AUC,
0.77),26 ACLR revision (AUC, 0.69),36 and outcome after
surgery for degenerative cervical myelopathy (AUC,
0.70).37 The AUC range of the single model in our study
is between 0.8555 and 0.8968. These studies have shown

Figure 7. Decision curve analysis comparing the complete
weighted-average voting (WAV) ensemble algorithm with
a simple ensemble model using only 2 optimal predictors (fol-
low-up period and high-grade preoperative knee laxity). The
x-axis demonstrates risk thresholds for clinical failure, while
the y-axis shows the standardized net benefit of changing
management. The oblique black line labeled ‘‘treat all’’ plots
the net benefit from the default scheme of changing manage-
ment for all patients, while the dotted horizontal line labeled
‘‘treat none’’ represents the scheme of changing manage-
ment for none of the patients (net benefit is zero at all thresh-
olds). The further the curve of the decision model is from the
baseline, the higher the net benefit of the decision is.

Figure 8. Prediction page on the web-based application
(https://zorthoapps.shinyapps.io/aclr) for predicting clinical
failure after anterior cruciate ligament reconstruction
(ACLR). Users can input a patient’s variables and click the
Compute button to receive a risk assessment.
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acceptable prediction abilities, despite different prediction
targets, data sources, and candidate single models. It
should be noted that although these studies ultimately
chose appropriate single models for target prediction,
they might be unsuitable for horizontal comparison. Gha-
semieh et al16 outlined several limitations of single-based
ML, such as limited data set size, dependence on patient
participation, unstable training, no real-world validation,
lack of diversity in samples, and potential for bias. In addi-
tion, a single model is more likely to cause overfitting, and
the ensemble model can improve the normalization ability,
while the prediction ability of a single model is not high.16

Ensemble-based techniques are introduced to overcome
the limitations of single-based methods and obtain a robust
prediction classification.10,16 The ensemble model has been
proven to be the most accurate way of improving the accu-
racy of prognosis and diagnosis over single classifier mod-
els.10,16,22,30,54 Our ensemble ML algorithm model showed
the greatest AUC of 0.9139 when compared with all single
models.

Relevant studies widely used decision curve analysis to
show the clinical value of their predictive models.25,30 The
net benefit of each model across different threshold proba-
bilities was revealed directly by decision curve analysis. It
also identified the range of threshold probabilities in which
a model could bring benefit. It visually demonstrated that
intraoperative decision-making and postoperative manage-
ment changes based off our WAV ensemble model could
bring greater net benefits (lower probability of clinical fail-
ure). Decision curve analysis combined the accuracy

metrics and clinical applicability, which was a suitable
method for evaluating postoperative clinical failure of
ACLR risk prediction and perioperative period strate-
gies.55 In summary, we provided an ensemble ML practical
prediction model for orthopaedic surgeons to determine the
failure probability of a particular patient before surgery,
considering the risk of postoperative failure, optimizing
surgical decision-making, and guiding postoperative reha-
bilitation plan.

We incorporated the WAV ensemble model into an open-
access web application using the LIME method. Current
evidence has shown that LIME is a model-independent
interpretability approach that can explain the predictions
of any model.46,51 LIME provided individual explanations
for the behavior of the WAV ensemble model. It can help
individuals comprehend the ‘‘black box’’ prediction process
of clinical failure after ACLR by explaining a localized
example.11,44 Clinicians can understand the basis of pre-
diction outcomes and analyze whether the prediction
results are reliable using LIME.44 In our website applica-
tion, users are able to get visible predictions with accompa-
nying explanations of clinical failure after ACLR based on
LIME. The benefits of a web-based application for clini-
cians are clear: user-friendly visual interface, easy operation
for clinicians, and convenient access. As far as patients are
concerned, preoperative predictive evaluation can help
them participate in making surgical decisions to improve
patient satisfaction. Furthermore, the open-access network
can continuously incorporate new data to train the model
and improve its accuracy.30,36 Subsequently, it could also

Figure 9. Two examples of individual patient-level explanations for ensemble algorithm predictions of clinical failure. (A and B)
Prediction for patient 1. (C and D) Prediction for patient 2. The top row shows the inputted patient variables on the prediction
page of the website. In the bottom row, the red bars indicate features that put the patient at risk of clinical failure, and the
blue bars indicate features that contradict clinical failure. ACLR, anterior cruciate ligament reconstruction.
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incorporate different ethnic data and further establish
a global database, which can help physicians improve the
postoperative prediction accuracy of ACLR as well as surgical
decision-making ability and further develop a more scientific
rehabilitation plan to achieve better functional rehabilitation
in different populations worldwide.

Limitations

Some limitations in the current study need to be addressed.
First, in order to ensure the consistency and standardiza-
tion of the data set, we collected data of patients who under-
went primary anatomic double-bundle ACLR at a single
center, although the external generalizability of our study
may decline. We look forward to predicting clinical out-
comes based on widely used surgical techniques and multi-
centric clinical data in future research. Second, the study
needed a larger sample size to reduce the risk of overfitting
during the predictive model development. More patients
should be included in our follow-up work. Furthermore,
we considered 8 widely demonstrated features: age at sur-
gery, time from injury to surgery, participation in competi-
tive sports, graft diameter, medial meniscus resection,
posterior tibial slope, high-grade preoperative knee laxity,
and follow-up period. Other factors such as sex20 and
body mass index,53 which were demonstrated to be associ-
ated with clinical failure or revision after ACLR, did not
show significance in the current study. Notably, there
were controversies over whether sex could affect the clini-
cal outcomes after ACLR.1,23,41 Ageberg et al1 suggested
that female patients showed worse clinical outcomes com-
pared with male patients before and at 1 and 2 years after
ACLR, which was statistically significant. No impact of
sex on clinical failure outcomes after ACLR was found in
the studies by Persson et al41 and Kaeding et al.23 We
look forward to training the predictive model with more
sex-balanced data in future research and further explor-
ing this issue. Third, the rotatory laxity proportion in
the clinical failure after ACLR was 78% (57 in 73 clinical
failure). Some mechanisms of rotatory laxity were not
explored in this study, although it is necessary to explain
this status completely.6 We look forward to comprehen-
sively analyzing the mechanism of clinical failure after
ACLR in our further research. Last, although the ensem-
ble algorithm was well calibrated and the concordance
excellent, the results of our study might not apply to other
races in other countries because they represented data
from only the Asian population. Continuous learning and
rigorous external validation must be undertaken before
widespread clinical implementation. However, this ensem-
ble ML model provided potential for clinically useful
predictions.

CONCLUSION

Our study determined that the WAV ensemble algorithm
accurately predicted the patient-specific risk of clinical
failure after ACLR based on preoperative, intraoperative,

and postoperative factors, showing greater AUC and Brier
scores compared with the other 4 models. Furthermore,
our web-based application has the potential to help clini-
cians and patients understand the basis of prediction out-
comes and individual explanations, which could provide
more convenient and accurate preoperative consultation.
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