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Abstract: With social characteristics integrated into cyber-physical systems (CPS), the wireless
channel has been a complex electromagnetic environment due to the subjectivity of human
behaviour. For the low-power and resource-constrained nodes in cyber-physical-social systems
(CPSS), minimum research is available focusing on conquering the issues of computational complexity,
external interference and transmission fading simultaneously. This study aims to explore channel
estimation with interference suppression based on machine learning. A novel channel estimation
scheme is proposed, which combined interference suppression in channel impulse response (CIR)
of frequency domain with K-means algorithm and noise cancellation in CIR of time domain with
K-nearest neighbor (KNN) algorithm into an integrated process. Complexity analysis and simulation
results showed that the proposed scheme has relatively lower complexity and the performance
is proven better than traditional schemes, which meets the requirements of CPSS in complex
electromagnetic environments.

Keywords: channel estimation; interference suppression; noise cancellation; machine learning;
K-means; KNN

1. Introduction

The cyber-physical system (CPS) was coined to describe the mapping, interaction and
collaboration between computational and physical resources [1]. With the tight junction between
human behaviour and CPS, social characteristics integrated into CPS, which is called a
cyber-physical-social system (CPSS) [2]. CPSS indicates the integration of cyber interactions,
physical perceptions and social connections. Due to the subjectivity of human behaviour,
the wireless channel has been a complex electromagnetic environment of mixed radio signals between
human-to-human and human-to-object [3]. Under the wireless connectivity of all things, the signal
types are diverse, and not only the ambient noise is increased, but also the mutual interference will
appear. Especially in the connection in multimedia interaction, the signal has a broad bandwidth
which is easily interrupted. It leads to short communication distance, low transmission rate and even
information coverage hole in electromagnetic interference [4]. There is an interesting example: when
you enter a WiFi coverage room with a Bluetooth headset, the transmission rate of WiFi will decrease
because of the interference by Bluetooth [5].

Channel estimation is used for the recognition of fading characteristics in communication channel.
For broadband communication, channel estimation is often realized by inserting training sequences of
signals in time domain and frequency domain. The transform domain signal processing theory has
achieved a good compromise between performance and complexity for channel estimation, which can
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then be applied in broadband communication [6]. Studies by Edford proposed to cancel the noise in the
channel impulse response (CIR). of time domain, which was transformed by least square (LS) channel
estimation in frequency domain [7]. Studies by Minn took two times of samples than that in the largest
multipath delay, while the other samples in CIR were set to zero and treated as noise [8]. Studies by
Fukuhara proposed taking the samples in the largest multipath delay in CIR. The other samples in
CIR are set to zero which are treated as noise [9]. Studies by Fan presented the leakage of CIR in the
practical Orthogonal Frequency Division Multiplexing (OFDM) systems, the noise existed during
signal multipath delay, the frequency domain window was used to reduce the leakage of CIR, and the
noise of CIR was detected by threshold [10]. With the development of machine learning in recent years,
Fan and Ma have put forward discriminant analysis, clustering analysis in CIR. Through the machine
learning of the distance between the samples in CIR, the clustering of noise and the distinction of
signal taps in time domain were realized [11,12].

There are two typical strategies for anti-interference. One is to pre-process before transmitting,
such as transmission power allocation, spectrum sharing or reusing [13–15]. Pre-processing is used to
avoid the intended interference signal. The other strategy for anti-interference is to suppress or cancel
interference by recognition of the receiving signal feature. Interference suppression or cancellation
aims at uncertain interference signal. The technologies of time domain prediction, code-aided and
transform domain for interference suppression are summarized in [16]. The algorithm based on time
domain prediction takes advantage of the pseudo-randomness of spread spectrum signal, which has a
slow convergence rate. In addition, the code-aided algorithm is based on a pseudo-random sequence
with high computational complexity. The transform domain interference suppression is simple
in implementation and available in application, which can fulfill the demand of CPSS for energy
efficient [17].

Due to the interference in suppression and channel estimation aimed at different objects,
the technologies evolved through relatively independent roadmap. While the channel estimation and
interference suppression are implemented separately, the computational complexity is linear stacking
in the signal detection, which increases the processing delay and the cost of hardware. Although there
is some research named joint interference suppression and channel estimation, the technical relevance
of conquering the two issues is not remarkable [18–20]. For the low-power and resource-constrained
nodes in CPSS, few of the existing approaches can sufficiently conquer the issues of computational
complexity, narrowband interference (NBI) and transmission fading simultaneously [21]. Inspired by
the machine learning technology for channel estimation, the study aims to integrate interference
suppression into channel estimation based on machine learning.

The rest of this manuscript is organized as follows: Section 2 presents the signal model in complex
electromagnetic environment. Section 3 proposes the scheme of channel estimation with interference
suppression. Section 4 describes the complexity analysis as well as the simulation results. Section 5
presents the application of the proposed scheme. The conclusions and future work are presented in
Section 6.

2. Signal Model

NBI is partial band jamming, which consists of a simple unmodulated carrier [22]. Figure 1a is a
frequency domain monopulse, which refers to single tone jamming. The mathematical model of single
tone jamming is:

J(kI , l) = A0δ(kI − k0, l). (1)

Figure 1b refers to multitone jamming, which is a set of single tones. The mathematical model of
multitone jamming is:

J(kI , l) =
1√
K

K

∑
i=1

Aiδ(ki − k0, l), (2)

where K is the number of interfered subcarrier.
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Figure 1. Power spectrum of NBI. (a) single tone jamming; (b) multitone jamming.

Thereby, the signal with interference at the receiver can be written as:

Y(k, l) = H(k, l)X(k, l) + J(kI , l) + W(k, l), (3)

where H(k, l) is the CIR in frequency domain. J(kI , l) refers to the interference with kI subcarriers
jamming. W(k, l) is additive white Gaussian noise (AWGN). X(k, l) is a training sequence based on
Zadoff–Chu (ZC) sequence, the modulus of which is 1. The Flourier transformation of ZC sequence is
still a ZC sequence.

To estimate CIR H(k, l) more accurately, J(kI , l) and W(k, l) in Equation (3) should be
exactly eliminated.

3. Channel Estimation with Interference Suppression

3.1. Interference Suppression in CIR

We perform LS estimation to Equation (3), and the CIR of frequency domain is denoted
as Ĥ(1)

LS (k, l)

Ĥ(1)
LS (k, l) =

Y(k, l)
X(k, l)

= H(k, l) +
J(kI , l)
X(k, l)

+
W(k, l)
X(k, l)

. (4)

It can be seen from Equation (4) that there are three categories of signals in the lth symbol in kth
carrier: CIR, interference and noise. The existence of interference is uncertain, and the signal feature
is unknown. System performance will be deteriorated with the interference incorrectly cancelled as
AWGN [23]. It is necessary to detect and suppress the interference before noise cancellation.

Usually, NBI is added to partial subcarriers by high-powered signals. Thus, the receive signal
power of the subcarriers that are interfered with will be higher than the others. As in CIR, the modulus
of the interfered subcarriers will be higher than the others. On the basis of the feature, we introduced
machine learning techniques into interference cluster. Because the interference does not necessarily
exist in CIR, we proposed using the clustering of interfered subcarriers based on the global K-means
algorithm [24]. The main thought of the K-means algorithm is to start from the data to be measured,
first randomly generate K clusters, and then calculate the similarity between the data to be measured
and the cluster center, and continuously update both the cluster center and the cluster in the iterative
calculation until the convergence of the cluster center point is completed. For interference clustering,
the set of subcarriers with no interference is denoted as cluster C1, and the set of interfered subcarriers
is denoted as cluster C2. Therefore, interference detection is equal to the cluster of samples in CIR.

The steps of K-means interference clustering are as follows:
Step 1. The data to be measured is denoted as mi and mi ∈ {|Ĥ

(1)
LS (k, l)|}, i = 1, 2, ..., N. The cluster

center of C1 is defined as the mean of mi, which is denoted as mt:

mt =
1
N

N

∑
i=1

mi. (5)
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Step 2. Euclidean distance is used to measure the similarity between mt and mi. The calculation
formula is given as Equation (6):

di,t = mi −mt. (6)

Step 3. The cluster center of C2 is denoted as ms, which represents the data of the longest distance
from mt in Equation (6). The distance between ms and mi is calculated as Equation (7):

di,s = mi −ms. (7)

Step 4. mi will be classified by the distance calculated in Equations (6) and (7):{
mi ∈ C1 if di,t < di,s,
mi ∈ C2 if di,t ≥ di,s.

(8)

Step 5. The cluster center ms will be updated as the cluster C2 was updated. Step 3 and Step 4
will be repeated until all data to be measured are classified. The calculation formula of ms updating is
given as Equation (9):

ms =
1
Q ∑

i∈C2

mi, (9)

where Q is denoted as the number of samples in C2.
According to the interference cluster scheme, the modulus of samples in C2 are bigger than

those in C1. The power of a few subcarriers is singularly high for Q � N. It is fair to hypothesize
that the corresponding subcarriers have been interfered with. When Q is not much less than N,
the corresponding subcarriers are not interfered with or the interference is not significant to the
subcarriers. Nevertheless, the subcarriers may be subject to non-narrowband interference and it is not
the scope of this study.

It is necessary to suppress interference for Q� N. The simplest way to suppress interference on
a subcarrier is zero force, which means to set the samples on the interfered subcarriers in CIR to zero.
However, the zero members will also participate in data demodulation and output error soft bits,
which will have the adverse effect to channel decoding and degrade the overall system performance.
On the other hand, the channel estimation will be deteriorated by setting the samples on the interfered
subcarriers to zero in CIR.

The CIR in interfered subcarriers can not reflect the fading characteristics of the subcarriers. It is
assumed that the channel is stationary for a continuous spectrum transmission. Thereby, the difference
between CIR in the interfered subcarriers and the adjacent subcarriers will be small. Hence, we propose
to suppress interference by linear interpolation of the CIR of frequency domain. The interpolation
algorithm is presented as Equation (10):

H(kI , l) = (1− b
a + b

)Ĥ(1)
LS (kI − a, l) +

b
a + b

Ĥ(1)
LS (kI + b, l), (10)

where a is the normal carrier at the left of the interfered subcarriers, and b is the normal carrier at
the right of the interfered subcarriers. Both a, b will be at the left/right of the interfered subcarriers,
which are at the far right/far left.

Through linear interpolation on the interfered subcarriers, J(kI , l) in Equation (4) will be cancelled,
and it will be rewritten as Equation (11):

Ĥ(2)
LS (k, l) = H′(k, l) +

W(k, l)
X(k, l)

. (11)

It must be noted that linear interpolation on the interfered subcarriers is to improve the accuracy
of channel estimation, which can not restore original data on interfered subcarriers.
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The K-means algorithm can achieve the local optimization in unsupervised learning [25]. On the
premise of NBI, the K-means algorithm will be an effective scheme for interference detection. However,
even if the signal component is misjudged as interference, the line interpolation over adjacent
subcarriers will not have a serious negative impact on CIR.

3.2. Noise Cancellation in CIR

The noise term in Equation (11) can be cancelled in the CIR of time domain. To enhance resolution
of the CIR of time domain, M = 2N points Inverse Fast Fourier Transform (IFFT) is applied to Ĥ(2)

LS (k, l),
so we have Equation (12):

ĥ(2)LS (m, l) = h′(m, l) +
1
M

M−1

∑
k=1

W(k, l)
X(k, l)

ej2π km
M . (12)

Because the IFFT of W(k, l) is also approximately Gaussian, the noise of the time domain can be
denoted as w(m, l). Equation (12) can be rewritten as:

ĥ(2)LS (m, l) = h′(k, l) + w(m, l). (13)

Because the envelop feature of ĥ(2)LS (m, l) is known to the receiver, h′(k, l) and w(m, l) can be
classified by the machine learning mechanism. We proposed the classification of CIR and noise based
on the K-nearest neighbor (KNN) algorithm [26]. The mean thought of KNN is to set up a training
sample for each category, and then find out K-nearest neighbors which have the greatest similarity with
the data to be measured from all the training sample sets. The data to be measured will be classified
into the category that is the majority of its neighbors.

According to the envelop feature of ĥ(2)LS (m, l), which can be decomposed into two sets theoretically,
one of the sets is denoted as S̃, which represents the set of modulus of signal components. Because of
the leakage of CIR, S̃ exists at the beginning and end of ĥ(2)LS (m, l):

S̃ = {|ĥ(2)LS (m, l)||0 ≤ m ≤ 2MCP} ∪ {|ĥ
(2)
LS (m, l)||M−MCP ≤ m ≤ M}, (14)

where the maximum multipath delay is denoted as MCP.
The other set is denoted as W̃, which represents the set of modulus of noise components:

W̃ = {|ĥ(2)LS (m, l)||2MCP < m < M−MCP}. (15)

For the noise components in S̃ realistically, we set up the training samples of signal component by
the largest P samples in S̃. The initial set of training samples of signal component is denoted as G1:

G1 = {ui|(u1 ≥ u2 ≥ ... ≥ uP−1 ≥ uP) ∧ ui ∈ S̃},

µ̂1 = 1
P

P
∑

m=1
um,

σ̂1 = 1
P−1

P
∑

m=1
|um − µ̂1|2,

(16)

where µ̂1 and σ̂1 are the mean and variance of the elements in G1.
According to the principle of 3σ in Gaussian distribution, the modulus of noise samples less than

σ was a big probability. For there are signal components in W̃ realistically, we set up the noise training
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samples with modulus less than σ in W̃. The initial set of training samples of noise component is
denoted as G2:

G2 = {vi|(−σ < vi < σ) ∧ vi ∈ W̃},

µ̂2 = 1
Q

Q
∑

m=1
vm,

σ̂2 = 1
q−1

Q
∑

m=1
|vm − µ̂2|2,

(17)

where σ is the variance of the elements in W̃, µ̂2 and σ̂2 are the mean and variance of the elements
in G2.

It can be seen from Equations (16) and (17) that the statistical properties of G1 and G2 are different.
We should calculate the similarity by the standardized Euclidean distance, in order to eliminate the
error by the distribution difference of samples.

The data to be measured is denoted as qm ∈ {|ĥ(2)LS (m, l)|}, m = 1, 2, ..., M. The steps of KNN
classification are as follows.

Step 1. Calculate the standardized Euclidean distance between qm and all the samples in G1 and
G2. Dm is the set of all the calculation results:

d2(qm, vi) =
(qm−vi)

2

σ̂2
2

,

d2(qm, uj) =
(qm−uj)

2

σ̂2
1

,

Dm = {d2(qm, vi)} ∪ {d2(qm, uj)}.

(18)

Step 2. Sort Dm according to ascending order and find out the first k elements. TNN
m is a set of

first k elements, which mean that the k nearest neighbor of qm, and qm will be classified by majority
vote in TNN

m :
G(qm) = arg max

Gr
∑

tk∈TNN
m

δ[Gr = G(tk)], (19)

where:
G(qm) represents the classification of the training samples tk,
δ[Gr = G(tk)] is Kronecker Delta function,
r ∈ {1, 2} represents the two classifications as G1 and G2.
Step 3. Update G1 or G2 according to G(qm), and update the corresponding mean and variance.
Reiterate the three steps until all the samples in ĥ(2)LS (m, l) have been classified. Then, we set all

the samples to zero in G2 for noise cancellation. Finally, we obtain the channel estimation as:

ĥ(3)LS (m, l) = h′(k, l). (20)

Signal components and noise components are independent of CIR in the time domain. The
classifying error of KNN in two categories is presented in [27]:

R∗NN ≤ ρk(R∗NN) ≤ ρk−1(R∗NN) ≤ ... ≤ ρ2(R∗NN) ≤ ρ1(R∗NN) = 2R∗NN(1− R∗NN), (21)

where R∗NN is Bayes probability of error, and k is the number of nearest neighbors.
It can be seen from Equation (21) that noise cancellation with the KNN algorithm will be close to

the Bayes probability of error when the nearest neighbors k is big enough.
We have achieved interference suppression in the CIR of frequency domain by the K-means

algorithm and noise cancellation in the CIR of time domain by the KNN algorithm. Although the
original data on the interfered subcarriers can not be restored by the accurate channel estimation,
the original data on the interfered subcarriers could be partially restored by channel decoding. Soft bits
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demodulated from interfered subcarriers should be identified in channel decoder in order to reduce
the weight of these soft bits.

The complete process of channel estimation with interference suppression is described in Figure 2.
Steps in the red box are key contents of the process.

Interference detection
by K-means algorithm

Is there NBI?

No

Yes

linear interpolation 
on the interfered 

subcarriers

Frequency CIR
by LS CHE

Translate to
 time domain

Translate to
 frequency domain

Have received
training sequence

Noise cancellation
by KNN algorithm

Equalization and 
demodulation

Soft bits weighting

Channel decoding

Identify interfered 
subcarriers

Yes

Local 
training 

sequence

Figure 2. The integrated process of channel estimation with interference suppression.

4. Complexity Analysis and Performance Simulation

In this section, we will evaluate the computational complexity and performance of the proposed
channel estimation with traditional channel estimation. For easy description, the proposed channel
estimation scheme is abbreviated as Discrete Fourier transform-KNN (DFT-KNN). One of the
comparative schemes is the frequency domain windowed scheme, which is a typical scheme of
traditional transform domain channel estimation, and abbreviated as DFT-WF [10]. The other
comparative scheme is a discriminant analysis scheme, which is one of the earliest channel estimation
schemes based on machine learning techniques, and abbreviated as DFT-DA [11].

4.1. Complexity Analysis

We evaluate the computational complexity of DFT-KNN with others by multiply-accumulate
(MAC) and multiply-add (MA) times. The computation of the algorithms modules are shown in
Table 1, where core operator represents data width in parallel computing.
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Table 1. Computation of algorithm modules.

Algorithm Modules Basis of Algorithm Core Operator Computation

FFT transformation Radix-4 16b × 16b MAC 1013.76 M
LS estimation Least square 16b × 16b MA 122.88 M

Interference detection K-means 16b × 16b MAC 122.88 M
Interference suppression Linear interpolation 16b × 16b MA negligible

noise cancellation 1 KNN 16b × 16b MAC 368.64 M
noise cancellation 2 Windowing 16b × 16b MAC 245.76 M
noise cancellation 3 Mahalanobis distance 16b × 16b MA 368.64 M

According to the process shown in Figure 2, the amount of computation of DFT-KNN is
2641.92 MMAC (million MAC). There are two times of FFT transformation, one time LS estimation,
one time noise cancellation by widowing in DFT-WF, and the amount of computation of DFT-WF is
2396.16 MMAC. There are two times of FFT transformation, one time LS estimation, one time noise
cancellation by Mahalanobis distance in DFT-DA, and the amount of computation of DFT-WF is
2519.04 MMAC.

The sum of computation of interference detection and interference suppression in DFT-KNN is less
than 125 MMAC. DFT-KNN achieves interference suppression with amazing low computation load.
The computational complexity of DFT-KNN than that of DFT-WF increased by 12.7%, and the
computational complexity of DFT-KNN than that of DFT-DA increased by 3.7%.

The current processors can provide 100 GMAC (giga MAC) computing power, such as ZYNQ,
C66x, in which DFT-KNN can be easily implemented [28]. Therefore, the algorithm is useful for node
equipment in CPSS.

4.2. Simulation Results

We evaluate the performance of DFT-KNN with others by simulation comparison.
The communication system parameters of simulation are shown in Table 2, and the channel parameters
are shown in Table 3. To compare the performance of channel estimation objectively, the receiver is
assumed to be synchronized accurately.

Table 2. Transmission parameters.

Parameters Specifications

Carrier frequency 400 MHz–700 MHz
Modulation type 16 QAM a

Transmission rate 23.56 Mbps
Subcarrier number 1024
Subcarrier spacing 15 kHz

Channel codes Turbo
a QAM, Quadrature Amplitude Modulation.

Table 3. Channel parameters.

Tap Number Average Power (dB) Relative Delay (ns)

0 −3 0
1 0 200
2 −2 600
3 −6 1600
4 −8 2400
5 −10 5000
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4.2.1. Performance without Interference

Mean square errors (MSE) of the channel estimation schemes are shown in Figure 3.
The performance increases obviously by noise cancellation in LS channel estimation. The MSE of
DFT-WF outperforms LS over 4 dB. The MSE of DFT-DA and DFT-KNN outperform LS by 9 dB more
or less.

6 8 10 12 14
10−3

10−2

10−1

100

Es/No(dB)

M
S

E

MSE Simulation

LS

DFT−WF

DFT−DA

DFT−KNN

Figure 3. MSE of the channel estimation schemes.

In fact, all of these channel estimation schemes find the noise components by the modulus of the
CIR of time domain. According to the envelop feature of CIR being known to the receiver, the signal
and noise components are completely independent, and DFT-KNN that is based on a supervised
learning algorithm can achieve Bayes minimum error. The frequency domain window has improved
resolution of CIR of the time domain, but a lot of extra noise will be introduced to CIR by a filtering
window function. It makes the performance gap of MSE between DFT-WF and DFT-KNN 5 dB
more or less. DFT-DA is based on the Gaussian distribution of signal and noise components in CIR,
but the signal and noise components obey the Rician distribution in the simulation, which makes the
performance gap of MSE between DFT-DA and DFT-KNN by 0.5 dB more or less.

The system bit error rate (BER) based on different channel estimation schemes are shown in
Figure 4. Because of the performance difference in channel estimation schemes, the BER of DFT-WF
outperforms LS close to 2 dB, the BER of DFT-DA outperforms LS by 2.5 dB more or less, the BER of
DFT-KNN outperforms LS by 3 dB more or less. DFT-KNN has the best performance in the simulation.

4.2.2. Performance under Interference

Table 4 describes the simulation scenes under different combinations of interference styles,
jamming signal ratio (JSR) and interference suppression method.
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Table 4. Simulation scenes with different interference styles.

Simulation Scene Interference Style JSR Interference Suppression Method

Scene 1 No interference – –
Scene 2 Single tone JSR = 10 dB With nothing done
Scene 3 Single tone JSR = 10 dB Zero force
Scene 4 Single tone JSR = 10 dB Linear interpolation
Scene 5 multitone with 10 subcarriers JSR = 10 dB Linear interpolation
Scene 6 multitone with 10 subcarriers JSR = 15 dB Linear interpolation

6 8 10 12 14
10−4

10−3

10−2

10−1

100

Eb/No(dB)

B
E

R

CHE Without Interference

LS

DFT−WF

DFT−DA

DFT−KNN

Figure 4. BER based on different channel estimation schemes.

The system BER in different interference suppression schemes are shown in Figure 5. BER has a
floor effect with nothing to do about the interference in the system. All of the transform domain channel
estimation algorithms may have such a problem, including DFT-DA and DFT-WF. Linear interpolation
on the interfered subcarriers outperforms zero force by 0.5 dB. Meanwhile, a BER performance loss of
scene 4 which has JSR = 10 dB is within 1 dB compared to scene 1 that has no interference. It can be
proved that DFT-KNN tends to be more effective in complex electromagnetic environments.

The system BER in different interference styles is shown in Figure 6. Although the interference
power of a single subcarrier in multitone jamming is lower than that of single tone jamming,
the interfered subcarriers will lead to a series of inaccurate soft bits, which will degrade the performance
of the channel decoder. Hence, BER in multitone jamming is lower than that of single tone jamming.
Even with the JSR up to 15 dB, BER performance loss of scene 6 is within 2 dB compared to scene 1
that has no interference. DFT-KNN is proven robust in complex electromagnetic environments.
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10 10.5 11 11.5 12 12.5 13
10−6

10−5
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R

DFT−KNN with single tone JSR=10dB

Scene2

Scene3

Scene4

Scene1

Figure 5. BER in different interference suppression schemes.

10 10.5 11 11.5 12 12.5 13
10−6

10−5

10−4

10−3

10−2

Es/N0(dB)

B
E

R

DFT−KNN with multitone Interference

Scene1

Scene4

Scene5

Scene6

Figure 6. BER in different interference styles.

5. Method Application

As an important component in CPSS, data serve as a carrier system connecting cyberspace,
physical world and artificial world. Depending on the communication network, data in both the
physical and artificial world are transmitted to cyberspace, which are analyzed and calculated in the
cyberspace. The analytic results and decision making then give feedback to the physical and artificial
world through the communication network. Thus, the stability and reliability of the communication
network is the prerequisite for efficient CPSS operation.

When applied in telemedicine, based on various wearable device sensors, CPSS can continuously
monitor physiological vital signs and transmit them for remote diagnosis. Interference in
communication may cause distortion of data [29]. When proper data cannot be received by the control
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center in time, the quality of health monitoring is affected which may further lead to misdiagnosis
and failure to provide timely treatment to the patients [30]. In CPSS-based intelligent transportation
systems, the position of mobile phones and vehicles can be used to analyze the dynamic changes
of traffic conditions, so as to carry out traffic flow control and traffic guidance. Similar applications
require human beings, vehicles and roadsides to be connected via universal and ubiquitous networks
enabled by wireless communications, such that they can act cooperatively. The coexistence and
cooperation of the wireless communications give rise to interference coordination and resource
allocation problems [31].

Due to the diversity of communication systems in CPSS, frequency spectrum coordination is
becoming increasingly difficult. That interference suppression provides an alternative option for
anti-interference.

We have applied the proposed scheme to an intelligent connected vehicle (ICV). As shown
in Figure 7, the ICV established the connection with the cloud center through the public mobile
communication network, such as 3 G, 4 G, 5 G, and established the connection with roadside and human
through short-range communications such as RFID, bluetooth, and the connection with other vehicles
via broadband self-organization networks (SON). Based on these communication systems, the resources
on the clouds, roadsides and vehicles have been integrated seamlessly. By jointly considering the
information from physical, social, and cyberspace, safety and optimal driving experience could be
effectively realized.

Vehicle

Personal
Personal Cloud Center

Vehicle Roadside

3G/4G

RFID

Bluetooth

Broadband SON

Cable networks

Figure 7. Communication systems in ICV.

There are multiple wireless communication systems in such a small vehicle, and the
wireless channel will be a complex electromagnetic environment of mixed radio signals. In our
experimental ICV, RFID and SON happened to be in the same frequency spectrum (Figure 8).
The mutual interference would appear when the two communication systems work simultaneously.
In actual assessment, the loss rate of transmission in vehicle-to-vehicle reached 15% without
interference suppression. After applying the proposed scheme in SON, which combined interference
suppression in channel estimation, the loss rate of transmission in vehicle-to-vehicle showed no
significant changes regardless of whether RFID is working concurrently or not.

f_SON f_RFID f_3G f_BT Frequencyf_4G

Figure 8. Spectrum division of the communication systems in ICV.
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6. Conclusions and Future Work

This study proposed a novel channel estimation with interference suppression, which used
machine learning to meet the requirements of CPSS in complex electromagnetic environments.

The K-means algorithm was used for interference detection in CIR of frequency domain,
and suppressed the interference with linear interpolation of interfered subcarriers. The KNN algorithm
was used for noise cancellation in the CIR of time domain, which is close to Bayes probability of error.
Both K-means in CIR of frequency domain and KNN in CIR of time domain have relatively lower
complexity in channel estimation, which are compliant for nodes in CPSS. Using extensive simulations,
the performance of the proposed scheme is proven superior to the traditional scheme. The proposed
scheme is proven to work effectively in an interference scene and the negative effects of transmission
in interference are under control.

Our future work will focus on the implementation and optimization of the scheme,
hopefully helping to improve the transmission stability and reliability in CPSS.
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