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a b s t r a c t

We use an age-dependent SIR system of equations to model the evolution of the COVID-19.
Parameters that measure the amount of interaction in different locations (home, work,
school, other) are approximated from in-sample data using a random optimization
scheme, and indicate changes in social distancing along the course of the pandemic. That
allows the estimation of the time evolution of classical and age-dependent reproduction
numbers. With those parameters we predict the disease dynamics, and compare our re-
sults with out-of-sample data from the City of Rio de Janeiro. Finally, we provide a nu-
merical investigation regarding age-based vaccination policies, shedding some light on
whether is preferable to vaccinate those at most risk (the elderly) or those who spread the
disease the most (the youngest). There is no clear upshot, as the results depend on the age
of those immunized, contagious parameters, vaccination schedules and efficiency.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Several months after the onset of the COVID-19 pandemic it became clear that good numerical modeling is useful to
understand the dynamics of the disease. In particular, simple compartmental epidemiological models are convenient,
depending on few parameters and still capturing with reasonable precision essential aspects of the dynamics of infectious
diseases (Brauer, 2017; Hethcote, 2000; Wang et al., 2021).

The Susceptible-Infected-Recovered (SIR) model in its simplest form depends on two parameters, the average number of
sufficient contacts (those sufficient for transmission) and the mean waiting period during which patients are contagious. It
relies on the assumption that the population is homogeneous both in terms of behavior and biological susceptibility. It also
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assumes, in its simplest instance, that demographic aspects as age structure, birth and death rates do not matter for the
dynamics of the disease.

Some of the above assumptions appear to hold well in the case of the COVID-19 pandemic. For instance, demographic
changes appear to be of less importance due to difference in time scales, compared with the evolution of the pandemic.
However, dropping the homogeneity hypothesis allows a more realistic model, as age and location of contacts are important
factors in understanding the dynamics of the disease. For instance, the disease's severity and lethality is age-dependent,
among other factors (Bhopal & Bhopal, 2020; Jin et al., 2020; Verity et al., 2020; Wu & McGoogan, 2020).

Mathematical epidemiology has a somewhat long history, with (Hamer, 1906; M'Kendrick, 1925; Kermack, McKendrick, &
Walker, 1927) being among the earliest contributions. See (Brauer, 2017; Hethcote, 2000) for a thorough review of mathe-
matical modeling of infectious diseases, and (Albani et al., 2021a, 2021b,bib_Albani_et_al_2021a,bib_Albani_et_al_2021b;
Iannelli &Milner, 2017; Klepac & Caswell, 2011; Klepac et al., 2009; bib_Li_et_al_2020Li, Yang, &Martcheva, 2020, pp. 1e21;
Prem et al., 2020; Sun, 2010; Towers & Feng, 2012) for multi-group models. Some other models consider spatial aspects of
infectious diseases, as (Bertaglia & Pareschi, 2020; Besse & Faye, 2020; Lang, De Sterck, Kaiser, & Miller, 2018; Paeng & Lee,
2017; Peixoto, Marcondes, Peixoto, & Oliva, 2020; Tak�acs & Hadjimichael, 2019; Viguerie et al., 2020). Theoretical aspects of
models are covered in (Kuniya &Wang, 2018; Wen, Ji, & Li, 2018; Wu & Zou, 2016). For the control related models for COVID-
19 see for instance (Perkins & Espa~na, 2020) and references therein.

After the onset of the COVID-19 pandemic, a massive amount of articles related to the topic materialized. Several articles
considered compartmental models to forecast different scenarios (Albani et al., 2021a, 2021b,bib_
Albani_et_al_2021a,bib_Albani_et_al_2021b; Amaku et al., 2021a, 2021b,bib_Amaku_et_al_2021a,bib_Amaku_et_al_
2021b; Atkeson, 2020; Coelho et al., 2020; Kimathi, Mwalili, Ojiambo, & Gathungu, 2021; Komatsu & Menezes-Filho,
2020; Prem et al., 2020; Viguerie et al., 2020; Walker et al., 2020).

Socioeconomic costs of imposing social distancing are combined with compartmental models in (Acemoglu,
Chernozhukov, Werning, & Whinston, 2020; Alvarez, Argente, & Lippi, 2020; Atkeson, 2020), and the interplay between
economics and individual decisions are considered in (Borelli & G�oes, 2020; Brotherhood, Kircher, Santos, & Tertilt, 2020;
Eichenbaum, Rebelo, & Trabandt, 2020). See (Kremer, 1996; d’Onofrio & Manfredi, 2020, pp. 185e203; Funk et al., 2015;
Manfredi and d’Onofrio, 2013; Perrings et al., 2014; Soofi, Najafi, & Karami-Matin, 2020) for a description of behavioral- and
economic-epidemiology ideas. Also, macro-economic aspects of the pandemic appears, e.g., in (Guerrieri, Lorenzoni, Straub,
& Werning, 2020).

Population heterogeneity and its influence on herd immunity is considered in (Aguas et al., 2020; 2020Britton, Ball, &
Trapman, ; Cui, Zhang, & Feng, 2019; Gomes et al., 2020). Also, different aspects of vaccination are considered in the liter-
ature (Albani et al., 2021b; Amaku et al., 2021a; d’Onofrio & Manfredi, 2020, pp. 185e203; Meehan et al., 2020; Chen &
Toxvaerd, 2014; Gonz�alez & Villena, 2020; Jia et al., 2020; May & Anderson, 1984). Finally, alternative approaches, as
agent-based, statistical models and a combination of these techniques with compartmental models (specially to gather data),
are also commonly employed (Amaral, Casaca, Oishi, & Cuminato, 2021; Bendtsen Cano et al., 2020; Calvetti, Hoover, Rose, &
Somersalo, 2020; Donnat & Holmes, 2004; Ferguson, Laydon, & Nedjati-Gilani, 2020; Roda, Varughese, Han, & Li, 2020).

In the present paper, we consider a modification of the age-structured SIR model (Britton et al., 2020; Towers & Feng,
2012), in particular allowing for age-dependent probabilities of patients being sub-clinical (asymptomatic or symptomatic
patients that does not require hospitalization) or clinical (Albani et al., 2021b; Prem et al., 2020). We use contact matrices
(Prem, Cook, & Jit, 2017) which differentiates not only age but also location (home, work, school, other); see also (Kimathi
et al., 2021). Random searches approximate some key parameters that are related to social distancing in different loca-
tions, computing their values for some Brazilian regions. Following the approximation of those parameters, we are able to
forecast long term best/worst case scenarios. We gauge the efficiency of the scheme comparing our predictions with available
data using in-sample/out-of-sample testing.

We next use the model to compare age-dependent vaccination policies (Meehan et al., 2020). In a simple setting, we
compare vaccinating the young or the older population, since the model allows the immunization of specific age groups. The
outcome depends on the values of certain parameters, including how aggressive is the transmission and how late after the
start of the pandemic the vaccinations take place.

In general, for a short term period, vaccination prioritizing the elderly population is the best option with respect to the
total number of deaths. But that might not be the case in the long run if extra vaccine supplies are not provided.

Disclaimer: It is not our intention to propose real-life epidemiological policies or to provide predictions upon which
policies could be developed. Our intention is solely to investigate possible patterns of the disease evolution and raise possible
alternatives in terms of vaccination policies.

2. The model

In the spirit of compartmental modeling (Hethcote, 2000; Wang et al., 2021), we divide the whole population among
susceptible (S), infected (I), removed (R). Due to the short time scale of the disease, we can assume that demographic changes
are not relevant. The number of deaths are estimated a posteriori, from the removed R. The above quantities are 16-
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dimensional vectors, stratified by age, running from 0 to 4 (first components), 5e9 (second components), etc, up to 75-above
(16th components). There are Pi individuals for each age group, and the total population P ¼

P16
i¼1Pi is constant.

The equations governing the dynamics of the disease is as follows,1 for i ¼ 1 …, 16 and t2N:

Siðt þ 1Þ ¼ SiðtÞ � biðIÞSiðtÞ;
Iiðt þ 1Þ ¼ IiðtÞ þ biðIÞSiðtÞ � gIiðtÞ;
Riðt þ 1Þ ¼ RiðtÞ þ gIiðtÞ;

(1)

plus initial conditions. The model is “conservative” in the sense that Si þ Ii þ Ri ¼ Pi is constant for all ages i.
The term biSi is the rate of new infections of the i-population, and we remark that b depends on the number of patients of

all ages, making the model coupled and nonlinear. These patients are removed from their condition at rate gIi (they either
recover or die). We further divide the infectious into two groups, those that are asymptomatic or sub-clinical Isci ¼ ð1�riÞIi in
the sense that they do not require medical care. The clinical group Ici ¼ riIi corresponds to those that get ill, requiring medical
attention. The age-dependent fractions of those who become sub-clinical or clinical are ri 2 [0, 1].

To fully describe the model, we ought to define b and the other parameters.

(i) the components of the incidence function b are given by the formula

biðIÞ ¼
X16

j¼1

ascIscj þ acIcj
Pj

Ce
i;j ¼

X16

j¼1

�
ascð1� rjÞ þ acrj

� Ij
Pj
Ce
i;j;

where Ce is an effective contact matrix that measures the number of contacts between age groups. It depends on the amount
and choices of lock-down imposed, as we describe further ahead. The age-independent parameters asc and ac correspond to

the fraction of those that are infective, having the potential to infect others due to social behavior or biology. For convenience,
we also write the vector b(I) ¼ CeDI, where D is a diagonal matrix defined by

Djj ¼
ascð1� rjÞ þ acrj

Pj
:

(ii) The time dependent effective contact matrix Ce is defined by

CeðtÞ ¼ bhðtÞChome þ bwðtÞCwork þ bsðtÞCschool þ boðtÞCother; (2)
where the exogenous data Chome, Cwork, Cschool, Cother are 16 � 16 matrices, where C[

ij indicates the average number of different

people from the age group j that someone from the age group i contacted per day at [ 2{home, work, school, other}, as
compiled by (Mossong et al., 2008; Prem et al., 2017). The parameters b[ control the fraction of contacts that are “adequate”, in
the sense that they lead to infections.

(iii) Each component of r gives the risk that an infectious will become a sub-clinical or a clinical case. Since COVID-19
symptoms are more aggressive for older patients, ri grows with i.

(iv) g ¼ 1� e�1=dI is the daily probability that someone stays infected, where dI is the average duration of infection (Prem
et al., 2017). For simplicity, we assume that the period in which one is infective is independent of age and disease
severity. These hypotheses are commonly, but not always, assumed in the literature (Acemoglu et al., 2020; Albani et al.,
2021a, 2021b,bib_Albani_et_al_2021a,bib_Albani_et_al_2021b; Britton et al., 2020; Prem et al., 2020); see (Levin et al.,
2020; Walsh et al., 2020; Zhou, She, Wang, & Ma, 2020) for related discussions based on medical data.

(v) The contagious parameters asc and ac correspond to fractions of sub-clinical and clinical infected patients that still
spread the virus.
2.1. Reproduction and replacement numbers

The basic reproduction number R0 is understood as the secondary cases produced by an infective patient introduced in a
totally susceptible population (1002Barril, Calsina, Cuadrado, & Ripoll, ; Delamater, Street, Leslie, Yang, & Jacobsen, 2019;
1 Note that we are not using the Einstein's summation convention of summing up repeated indices.
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Diekmann, Heesterbeek, & Metz, 1990; Hethcote, 2000). Hence, suppose that the whole population with distribution P is
susceptible (S ¼ P), and we represent the infective patients by Î, a vector belonging to the canonical basis {e1, …, e16}. The
number of patients in the first day belonging to the i-th group is

X16

k¼1

dikbkðÎÞPk ¼
X16

k;j;[¼1

dikPkC
e
kjDjl Îl ¼

X16

m;j;[¼1

PimC
e
mjDjl Îl

where dik denotes the Kronecker delta, which equals one if i ¼ j and zero otherwise, and we define P as the diagonal matrix

such that Pkk ¼ Pk. Let A ¼ PCeD. Then the vector containing the contaminated individuals in the first day is AÎ, and we can
bound its Euclidean norm as

kAÎk2 � lmaxkÎk2 ¼ lmax; (3)

where lmax is the largest eigenvalue of A. Note that only the fraction ð1� gÞd�1 Î of the infective outsider remains infected on

the d-th day. This fraction infect less than (1 � g)d�1lmax, as in (3), and adding up all days, we gather that the total number of
infective agents is bounded by the basic reproduction number

R0d
X∞

d¼1

ð1� gÞd�1lmax ¼ 1
g
lmax: (4)
Reasoning in a similar fashion, we define the replacement number

Rtd
1
g
lmaxðtÞ; (5)

where lmax(t) is defined as the maximum eigenvalue of the matrix SCeD and S is the diagonal matrix with the diagonal given
by Sj for j ¼ 1, …, 16.

The above definitions of R0 and Rt rely on the Euclidean and spectral norms. However, if one is interested in considering
age-dependent quarantine or vaccination policies, it might be interesting to consider a slightly different approach. An
infective patient of the age group [ 2{1, …, 16} would contaminate, on a single day,

bðe[Þ,P ¼ CeDe[,P ¼
X16

i¼1

Ce
i[D[[Pi: (6)

As before, adding up the days and considering that at the jth day there will be a fraction (1 � g)d�1e of the infective
[

outsider, we gather that the total number of infective agents is the age-dependent basic reproduction number

R0;[d
X∞

d¼1

ð1� gÞd�1ðPTCeDÞ[ ¼
1
g
ðPTCeDÞ[: (7)
Similarly, we define the corresponding age-dependent replacement number

Rt;[d
1
g
ðSTCeDÞ[: (8)

The above number R indicates how many people would be contaminated by an infective patient from the age group [
t;[

introduced in the community at time t.

2.2. Modeling the lethality

Mortality is not part of the dynamics,2 resulting from the number of infectious. We postulate that only those clinically
infected die, at an age-dependent rate. So, among the “recovered” patients,

dðtÞ ¼ gmðtÞwd,I
cðtÞ (9)

die, where the constant vector wd is the age-dependent lethality weights of the disease (Levin et al., 2020), and the lethality
strength m is a scalar that captures how lethality varies with time. Note that the lethality proportion between different ages is
constant.
2 We assume that the recovered patients do not get reinfected.
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2.3. Data

The transmission parameters asc and ac are such that the transmission rate of symptomatic is higher than those
asymptomatic (Byambasuren et al., 2020; Prem et al., 2020), and we stipulate that the proportion of symptomatic patients
follows the same pattern of the hospitalized patients in (Verity et al., 2020). However, the proportion of asymptomatic pa-
tients is far from being settled (Byambasuren et al., 2020; Heneghan, Brassey,& Jefferson, 2020), with estimates ranging from
5% to 80%. Also, we assume that profile of the lethality rates follow Fig. 1, based on (Brazeau et al., 2020; Verity et al., 2020).

The contact matrices Chome, Cwork, Cschool, Cother are from (Prem et al., 2017), and population data, as seen in Fig. 10, is from
the Instituto Brasileiro de Geografia e Estatística (IBGE). The average number of days dI that a patient is infective is set to 12.

We use the available data (number of new cases and deaths) from each location to estimate the lethality strength m(t), and
bh(t), bw(t), bs(t), bo(t), which are necessary to compute the effective matrix Ce. These functions are transient since not only
individuals change behavior with time (Brotherhood et al., 2020), but also lethality changes withmedical conditions and virus
mutations.

For a simple SIR model, the available data uniquely determines the parameters (Bakhta, Boiveau, Maday,&Mula, 2020). In
general, that is not the case for our model, for instance if one of the four contact matrices vanish or if Cwork ¼ Cother. We reduce
the possibility of parameter indeterminations by assuming that bw ¼ bo, i.e., the behavior at work is equal to the behavior at
other locations. We also make then some further simplifying hypotheses. First, we assume that bh is constant, as there is no
reason to expect that the amount of contacts at home varies significantly with time. The second assumption is that bs(t) is
identically zero, since schools were closed during the period of data gathering.

Consider that data is available for the period f1;…;Tg4N, and let and N data
I ðjÞ and N data

D ðjÞ be the number of new cases
and new deaths at the j-th day. For simplicity, assume that T ¼ Ndt where dt ¼ 10, and consider the partition T dt of f1;…; Tg
¼ ∪N

j¼1Ij where

T dt ¼
�
Ij : j ¼ 1;…;N

�
; Ij ¼ fðj� 1Þdt þ 1;…; jdtg
Let P0ðT dtÞ be the space of piecewise constant functions with respect to the above partition. To determine bw we pose the
problem of finding (bh, bw) that solves

minðb̂h;b̂wÞ2R�P0ðT dtÞ
Jðb̂h; b̂wÞ; where Jðb̂h; b̂wÞ ¼

���N sir
I ðb̂h; b̂wÞ � N data

I kRT

���N data
I kRT

; (10)

and k ,kRT is the Euclidean norm in RT . Above, N sir
I ðb̂h; b̂wÞðtÞ is the number of new infected clinical patients that the SIR

model (1) yields at the t-th day if one replaces bh and bw by b̂h and b̂w in (2).
The above problem has finite dimension N þ 1 since any function b2P0ðT dtÞ can be written as

bwðtÞ ¼
XN

j¼1

bjcIj ðtÞ (11)

for some unknown coefficients b1;…;bN2R. Here, cIj ðtÞ is the characteristic function of Ij, which equals one if t2 Ij, and zero
otherwise. Note that the coefficients uniquely define a function in P0ðT dtÞ and vice-versa.

To solve (10) we employ a random optimization approach (Matya�s, 1965; Sarma, 1990)

(i) Choose a initial guess (bh, bw)
Fig. 1. Probability of being clinical among infectives r (left) and lethality weight wd (right).
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Fig. 2. In this figure we plot the 7-day moving average data on new daily cases. The dashed red plot corresponds to real data, and the solid blue plot depicts
clinical cases modeled by SIR. Above, and in all figures that follow, what we call data is actually a 7-day moving average of the real data.

E.L. Campos, R.P. Cysne, A.L. Madureira et al. Infectious Disease Modelling 6 (2021) 751e765
(ii) While some convergence criteria is not reached
3 All
(a) Define ðb̂h; b̂wÞ from (bh, bw) by adding noise
(b) If Jðb̂h; b̂wÞ< Jðbh;bwÞ, then ðbh;bwÞ)ðb̂h; b̂wÞ
The estimation of the lethality strength m is based on the number of daily deaths data N data
D . The total number of deaths

simulated by the SIR model is given by gm(t)wd ,Ic(t). Equating both quantities we compute

mðtÞ ¼ N data
D ðtÞ

gwd,I
cðtÞ

: (12)
Of course, parameter determination could be pursued using more sophisticated methods, e.g. (Albani et al., 2021a).

3. Simulation of the dynamics of the disease

In what follows we show the results coming out of parameter estimations. We then show results addressing howwell the
model predicts the number of new cases. We compare with real daily data for new cases and deaths,3 and, to smooth out
oscillations, we present the data using a 7-day moving average.

One of the hurdles for compartmental models is the definition of initial conditions. Indeed, both the exact “first day” of the
disease and howmany people were infected in that first day are unknown. As a initial condition of our model, we assume that
the first infection occurred 30 days before the official recordings. Indeed, the first day of the official data logs 489 cases; cf.
(Lourenço et al., 2020), who speculates that the epidemic in Italy and UK started one month before the first reported death.
We also stipulate that there were 10 infectious at each age group at day one.

Such uncertainty of initial conditions makes the results unreliable at the initial periods of simulations. In particular, the
computation of (12) is not feasible for the lack of data. Thus, we impose m(j) ¼ 1 at the initial stages.

3.1. Parameter estimations, and prediction analysis

We consider results for the City of Rio de Janeiro, henceforward simply called Rio. The results presented are for the sum of
all ages:

SðtÞ ¼
X16

j¼1

SjðtÞ; IscðtÞ ¼
X16

j¼1

Iscj ðtÞ;

IcðtÞ ¼
X16

j¼1

Icj ðtÞ; RðtÞ ¼
X16

j¼1

RjðtÞ:
We recall the assumption that the contacts might lead to infections at home are time independent, and the contacts at
work and other locations are identical, i.e., bw ¼ bo. Also, schools are closed, thus bs ¼ 0.
data were from taken from https://covid.saude.gov.br/, an official site from the Brazilian's Government Department of Health.
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Fig. 3. This figure is related to fatalities, displaying daily deaths. Again, real data is in dashed red, and computed daily deaths by the model come in solid blue.

Fig. 4. On the left we plot the estimated values of bw, except for the first one (that has a value roughly ten times bigger than the others). For visualization
purposes we interpolated the discontinuous function bw using cubic splines. On the right we display the values of the lethality strength m, defined in (12). The
blue curve is the least square quadratic curve.

E.L. Campos, R.P. Cysne, A.L. Madureira et al. Infectious Disease Modelling 6 (2021) 751e765
We compare in Figs. 2 and 3 the results of our in-sample approximation of the dynamics of the disease. Note that the actual
daily numbers of new cases (Fig. 2) and deaths (Fig. 3) are well approximated by the model.

In Fig. 4 we display the values of bw and m, estimated by our random search.We see in particular that bw oscillates following
the “macroscopic” oscillations of daily cases. Regarding the lethality strength m, note that it seems to decrease after day 90, in
Fig. 5. Reproduction and replacement numbers, R0 and Rt . Note that R0 is transient since it depends on the time dependent contact matrix. We also draw a line
at y ¼ 1 highlighting the recovering threshold. Comparing with Fig. 2, we see that there is a correspondence betweenRt crossing the threshold (up or down) and
the number of new cases increasing or decreasing.
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Fig. 6. Number of sub-clinical cases in solid blue, corresponding roughly to ten times the number of official cases in dashed red.
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line with what was presented by (Dennis, McGovern, Vollmer, &Mateen, 2020; Horwitz et al., 2020). Such aspect is captured
by the concave least square parabola.

Two important pieces of information coming out of the model are the values of the reproduction and replacement
numbersR0 andRt . Their computations follow easily from (4) and (5), and we display the results in Fig. 5. Note that values of
R0 is characterized only by the population's profile and the contact matrix Ce. On the other hand, Rt depends also on the
dynamics of the disease through the susceptible population. That is important since even if R0 >1, having Rt smaller than
one is enough to have a declining number of infectious.

Another issue that is worth discussing is that we fit the number of clinically infective patients Ic to the data. However, we
discussed nothing thus far about the sub-clinical patients Isc. It turns out that the number of sub-clinical patients is, in this
case, roughly ten times the number of registered patients, as shown in Fig. 6. Such difference resonates well with claims that
there is a significant sub-notification. For instance (Havers et al., 2020), reports that the number of cases in the USmight be at
least 10 times of what is registered. It would not come as a surprise if this difference is even greater in Rio. Also, the WHO
states that 80% of infections are mild or asymptomatic,4 in particular among children, as discussed by (DeBiasi & Delaney,
2770; Han et al., 2019). Recall that children are often not tested.

Next, we investigate numerically if this model can make reasonable predictions. To do so, after the day 200, we run the
simulations based on an in-sample (days 1e200) calculated bw and m, and compare with available data. We perform ex-
periments considering the best and worst scenarios, i.e. lowest and highest number of cases and deaths. We also consider an
intermediary case. The main idea shares similarities with some Value at Risk analyses used in risk management, where the
past dynamics of investments help in predicting the future; see (Jorion, 2006).

Wemake the predictions by going back j 10-day periods and performing simulations with the highest and lowest values of
bw and m in the period 200� 10j and 200. Choosing j¼ 4, we show in Figs. 7e9 the predicted number of daily and accumulated
cases and deaths, with 70 days in advance. Note that, for most of the period of interest, the data is in between the best/worst
case scenarios. We also plot the intermediary case, corresponding to the choice of bw and m being the average of the extreme
values, often yielding more accurate predictions.
4. Vaccination

We explore in this section simple immunization policies, shedding some light on the following question: if an age-based
vaccination strategy should be implemented, who should be protected first? Certainly, real-life policies are never as simple as
that, since other aspects as economics, logistics, ethics, politics, etc, play significant roles.5 Not only that, but also it is not even
clear that vaccinations schemes should be devised based on age groups (Pastor-Satorras & Vespignani, 2002). However,
vaccination policies based on age are easy to implement in practice.

Based on the age-dependent reproduction and replacement numbers R0;[ and Rt;[, we find out which age group con-
taminates most people. Consider for instance the dynamics of the disease in Rio, with a population profile as in Fig. 10.

Based on the evolution of the COVID-19 in the first 200 days in Rio, we computed the age-dependent replacement
numbersRt;[, displaying the results in Fig.11. Note that as far as spreading the disease is concerned, individuals of younger age
are the most dangerous. And individuals above 60, which are the ones most affected by the disease, contribute less for its
spreading.
4 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/q-a-similarities-and-differences-covid-19-
and-influenza.

5 For instance, free market policies are discussed in https://johnhcochrane.blogspot.com/2020/12/free-market-vaccines.html.
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Fig. 7. Number of daily new cases. The dashed red plot indicates the data and the solid black plot represents the simulation results for frozen bw and m cor-
responding to the best/intermediary/worst case scenarios. Note that, for most of the 70-day forecast, that data lie within the interval predicted by the model.
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Such heterogeneity leads to interesting immunization policy possibilities. People in the age group 15e19 (around 500 k
people in Rio) have the most impact on virus dissemination, but few of them die. On the other hand, those above 60 (around
900 k people) are at high risk, but they have little impact on the spreading of the disease.

To offer a glimpse on these issues, we modify our effective contact matrix Ce, allowing for the possibility of immunization.
Let us redefine (2) by

CeðtÞ ¼ VðtÞ
�
bhðtÞChome þ bwðtÞCwork þ bsðtÞCschool þ boðtÞCother

�
VðtÞ; (13)

where the transient diagonal matrix V(,) models the vaccinated age groups. Its j-th diagonal element is zero if the corre-
sponding age group is protected, and one otherwise. Of course, it is also possible to consider partial immunization by setting
values between zero and one.

Consider the hypothetical situation of having bh and bw as computed before (see Fig. 4) and the population of Rio. Between
the days 200e500, we assume that bw ¼ bopt ¼ 0.0064 or bw ¼ bmax ¼ 0.0117, and a constant lethality strength m ¼ 1.

Suppose that there is a limited supply of vaccines, which are made available only at a certain moment, that is, the
vaccination campaign takes place at a single day. In our examples, this is 100, 150 or 200 days after the pandemic starts. Of
course, the timing of vaccination campaigns impacts its effectiveness, and there is an important body of literature investi-
gating this issue (Albani et al., 2021b; Amaku et al., 2021a; Quach and Deeks, 2021).

To better compare experiments, we define an utility function that takes into account the number of lost lives. For Y 2 (0,
1), we define the Y-discounted cost of death as

Xþ∞

t¼1

Y tdðtÞ; (14)

where d(,) is the number of daily fatalities. We consider Y ¼ 0.9961/365 in the numerical tests.
In our numerical experiments, we first assume that a single shot of the vaccine induces a perfect immunization and stop

the virus spreading. In a second example, we consider partial immunization. Consider three age groups of similar size as
targets of an immunization campaign: those aged 15e34 (z1,584 people), 40e59 (z1,636 people) and those above 50
(z1,670 people). In all tested situations, the groups with best results were either the 15e34 or those above 50.

In Fig. 12, we plot the accumulated deaths considering full immunization of the groups aged 15e34 or over 50, for a fixed
bw ¼ 0.0064 after day 200. In solid blue we plot the total deaths if no vaccination takes place. The remaining plots correspond
to the total deaths if vaccination occur on day 100 (black), 150 (red) or 200 (magenta). The solid lines correspond to vacci-
nating the young and the dashes lines corresponding to vaccination of the elderly. In Fig. 13, we repeat the computations
fixing a higher bw ¼ 0.0117 after day 200.

Basically, two different policies are possible: stop the spreading corresponds to vaccinating those in the 15e34 age group,
and protect the vulnerable corresponds to vaccinating those above 50. Note from the results that the impact of stop the
spreading decreases as the vaccination date is delayed. That is because the percentage of young population already
contaminated at later dates is larger, and vaccinating the young group ends up not being so effective. Such effect is amplified
for higher transmission rates, as one can see by comparing Figs. 12 and 13. Note also that for short terms, it is always pref-
erable to protect the vulnerable, indicating that vaccinating the elderly population might be a wise option if a continuous
supply of vaccines is available.
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Fig. 8. Similarly to Fig. 7, the figure displays the number of daily deaths, dashed red being data and solid black being the best/intermediary/worst cases predicted
by the model.

Fig. 9. We present here the accumulated number of cases (left) and deaths (right). In both figures, the dashed red plots correspond to real data and the solid black
plots represent the simulation results for frozen bw and m, for the best/intermediary/worst case scenarios.

Fig. 10. Population profile of Rio. The last column corresponds to the total population above 75 years old.
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Considering the total amount of casualties in the long run, for lower transmission rates it is always better to vaccinate the
elders (Fig.12). For higher transmission rates, these results are reversed (Fig.13). However, when considering the cost of death
(14), the results are mixed, as shown in Table 1. For related results, see (Meehan et al., 2020; 1093Giubilini, Savulescu, &
Wilkinson, ; Zhao et al., 2020). We also remark that although most countries are pursuing policies that prioritize the
elderly, there are exceptions (The Japan Times, 2020).

We consider in a second example the possibility that the vaccines are not perfect, and display the results in Fig. 14. Assume
that a immunization campaign happens at day 150, and that either those aged 15e34 (solid lines) or those over 50 (dashed
760



Fig. 11. Age-dependent replacement numbers corresponding to the dynamics of the disease in Rio.

Fig. 12. Accumulated deaths for bw ¼ 0.0064. We assume no vaccination (solid blue), vaccination for group aged 15e34 (solid plots) and over 50 (dashed plots).
The vaccination takes place on day 100 (black), 150 (red) or 200 (magenta). Note that vaccinating the elderly population is always optimal in the short term, but
not necessarily in the long run.
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plots) are vaccinated. Assume also that the immunization is perfect (in blue), or has partial efficiency of 70% (black) or 50%
(red). Note that, as expected, as the vaccine efficiency decreases the number of casualties increase. It is maybemore surprising
to realize that this effect is more aggravated for the elderly.
Fig. 13. Accumulated deaths for bw ¼ 0.0117, a higher rate of transmission. As before, we assume no vaccination (solid blue), vaccination for group aged 15e34
(solid plots) and over 50 (dashed plots). The vaccination takes place on day 100 (black), 200 (red) or 300 (magenta). Note that vaccinating the elderly population
is always optimal in the short term, but not necessarily in the long run.
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Table 1
Numerical investigation of immunization policies based on age. In each line we present the values of the death cost functional (14) assuming different age
groups are vaccinated. The second column contains the population of the groups. In the three columns that follow, we present the results considering the
vaccination takes place on the days 100, 150 or 200 and assuming that bw ¼ 0.0064. The following three columns display the results for bw ¼ 0.0117 and
vaccination on the days 100, 150 or 200. For each column, we highlight the best results.

bw ¼ 0.0064 after day 200 bw ¼ 0.0117 after day 200

Vaccination day

Age group # vaccines 100 150 200 100 150 200

none 0 7.4 k 9.6 k
15e34 1,584 k 3 k 5.2 k 5.9 k 3 k 5.3 k 7.1 k
40e59 1,636 k 3.3 k 5.3 6.7 3.7 k 5.7 k 7.1 k
50- 1,670 k 3 k 5.1 k 6.6 3.4 k 5.5 k 7 k

Fig. 14. Accumulated deaths for bw ¼ 0.0064, under varying vaccination efficiencies. Assume that at day 150, a vaccination campaign targets either the young
(aged 15e34, solid plots) or those over 50 (dashed plots). The vaccination efficiency varies as follows: 100% (blue), 70% (black) or 50% (red).
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5. Discussions and conclusion

Epidemics as the COVID-19 are hard to model, not only because of biological factors, but also due to the unpredictability of
human responses. Political, economical, social and individual factors influence the behavior of people, leading to various
degrees of risk behavior. Making long term predictions is riskier than in general (non-human) biological systems, but they are
crucial for planning non-pharmaceutical interventions, allocation of resources, economical decisions, etc.

We propose in the work a general form to predict possible values of crucial parameters based on their history. Our method
has two steps. Based on the dynamics of the disease on a multi-generational SIR model, we first determine the values of some
time-dependent parameters, using a random optimization algorithm. Then, we feed the SIR model using extreme values of
such parameters, and predict best/worst case scenarios. We are also consider a prediction that is in between the two extreme
cases.

Our methodology is general and can be applied to other systems and circumstances, and might be useful to make long-
term predictions in situations where unexpected occurrences might change the behavior of the system.

We also explore age-based immunization strategies, under simplifying hypotheses. For instance, while we assume the
behavior of the population as known, the very existence of vaccines changes people's behavior. Moreover, several important
aspects of vaccination are not considered here, as ethical problems, logistics, etc. We also point out that other policies might
be better, as targeting certain classes of workers or individuals with comorbidities.

In our limited setting, we find out that optimal policies depend, among other things, on transmission rates, the vaccination
efficiency and its timing. Earlier vaccination dates, low vaccine efficiency and higher transmission indices increase the impact
of vaccinating the young. Under most conditions however, it pays off to vaccinate the elderly, although they contribute the
least for spreading the viruses. Indeed, for short terms, protecting the older population is always preferred. That seems to
indicate that under a continuous supply of vaccines, protecting the elderly is a wise option.

It is clear that the model provides different indications under different scenarios, and we shall explore more detailed
policies in a future work.

As we point out in our Disclaimer, our goal is not to predict actual number of cases and deaths or to propose general
policies, but instead to investigate limited aspects of the disease dynamics and raise possibilities of immunization strategies.
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