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Background: Pancreatic ductal adenocarcinoma (PDAC) has persisted as one of the worst prognostic 
tumors with a 5-year survival rate of lower than 6%. Although many studies have investigated PDAC, new 
biomarkers are required to ensure early diagnosis and predict the prognosis of PDAC. 
Methods: In this study, we used bioinformatics methods to evaluate differences in the expression of solute 
carrier (SLC) family genes in tumors and non-tumors. A Kaplan-Meier analysis, least absolute shrinkage and 
selection operator (LASSO) analysis, and multivariate Cox proportional hazards regression analysis were 
used to evaluate the relationship between SLC genes and prognosis using The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) datasets. The prognostic signature was constructed depending on the 
risk score to assess the impact of multiple genes on the prognosis, receiver operating characteristic (ROC) 
curves and forest plot was constructed to assess the ability to predict the prognosis and effects of clinical 
variables in both high- and low-risk groups. Tumor-infiltrating immune cells were evaluated using Cell-type 
Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) in both high- and low-risk 
groups. 
Results: In 32 SLC genes, 9 were significantly associated with the OS after LASSO analysis. SLC19A3 
(P=0.007), SLC25A39 (P=0.027), SLC39A11 (P=0.043) were significantly associated with prognosis and 
included into the prognostic model. CIBERSORT demonstrated that memory B cells (P=0.004), naive B 
cells (P=0.007), CD8 T cells (P=0.003), activated memory CD4 T cells (P=0.004), and activated NK cells 
(P=0.019) were significantly higher in the low-risk group. Gene set enrichment analysis (GSEA) showed that 
potential molecular mechanisms enriched in MYC and p53 signaling pathways.
Conclusions: SLC19A3, SLC25A35, and SLC39A11 were significantly relative to the prognosis of PDAC 
and changed the tumor microenvironment, as well as the MYC and p53 signaling pathways. The SLC19A3 
gene may represent a new tumor suppressor in PDAC.
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Introduction

Pancreatic cancer (PC) is the fourth and the sixth leading 
cause of cancer-related death in the US and China, 
respectively (1,2). In 2018, there were approximately 458 
million new cases and 432 million deaths due to PC (3). 
The above statistics indicate that PC is a highly malignant 
neoplasm with a similar morbidity and mortality; and the 
5-year survival rate remains low, at 6% (4). Pancreatic 
ductal adenocarcinoma (PDAC) is the predominant 
pathological type of PC (5). Patients with PDAC are 
typically first diagnosed at an advanced stage, and thus, 
have surpassed the opportunity for surgical treatment. This 
is because patients do not exhibit classic symptoms at an 
early stage and there is an absence of powerful detective  
biomarkers (6). Some patients are lucky and undergo radical 
resection; however, the 5-year survival rate is only as high 
as 25% (7). Thus, new biomarkers are required to improve 
outcomes.

The solute carrier (SLC) gene superfamily is the second 
largest family of membrane proteins after G protein-
coupled receptors, including over 400 proteins in 65 
subfamilies based on sequence similarities (8). Amino acids, 
sugars, fatty acids, inorganic ions, essential metals, and 
drugs are transported over the cell membrane by the SLCs, 
which function as passive transporters, ion transporters, and 
exchangers (9). Since SLCs are responsible for transporting 
essential substances throughout the human body, SLC 
mutations have been linked to human genetic disorders 
and the level of SLC expression is changed in a variety of 
tumors, including congenital chloride diarrhea, glucose 
galactose malabsorption, and familial renal glucosuria  
(10-12). A study showed that SLC5A8 could suppress colon 
cancer and was silenced by methylation (13). In a mouse 
model, reducing polyamine was effective for prolonging 
prognosis and preventing tumor progression, and a 
knockdown of SLC3A2 in neuroblastoma cells reduced 
the uptake of polyamine (14). Moreover, SLCs have been 
extensively studied in pharmacokinetics, chemotherapy 
resistance, and as therapeutic targets (15). Nucleoside 
transporters encoded by the SLC28 and SLC29 subfamilies 
have been shown to mediate the uptake of gemcitabine and 
5-fluorouracil. In addition, some of the SLC22A subfamily 
is related to the transport of platinum compounds (16,17). 
Mutations of SLC affect the synthesis of transporters, finally 
resulting in an insufficient intake of chemotherapeutic 
drugs which will inevitably lead to decreased sensitivity 
to chemotherapy. Although a previous study found that 

SLC2A1 may be a prognostic biomarker for PDAC, the 
SLC family played an important role in biological processes 
such as metabolism, and the comprehensive analysis of 
the SLC family in PDAC was still unknown (18). As well 
as, the potential mechanism of most members of the SLC 
family in PDAC and the relationship between genes and the 
prognosis of PDAC remains unclear.

The tumor microenvironment (TME) consists of 
multiple cell types (e.g., endothelial cells, immune cells, and 
so on) and extracellular components. Tumor cells can alter 
the TME through immune escape and immunosuppression; 
thus, the TME plays a critical role in the occurrence, 
progression, and treatment of tumors (19,20). In addition, 
immune cells are an essential cell type involved in TME 
and targeting immune cells is a promising therapy in  
PC (21). The effect of PD1 or PD-L1 checkpoint inhibitor 
immunotherapy has improved the clinical outcomes in a 
variety of tumors, including advanced melanoma, Hodgkin’s 
lymphoma, and advanced gastric or gastro-esophageal 
junction cancer (22-24). However, targeting immune 
checkpoints has not benefited all patients in a variety of 
tumors, including PDAC (25). Researching the differences 
in tumor-infiltrating immune cells (TIICs), the relationship 
with molecular expression and interactive features in 
individual tumors, and therefore, the identification of new 
immunotherapeutic targets, is critical for improving patient 
prognosis. Studies shown that the tumor microenvironment 
of PDAC was highly heterogeneous, and PD-1+ cells, and 
Foxp3+ T cells could evaluate the prognosis of patients with 
PDAC after surgery (26,27). A study shown that SLC1A5, 
SLC7A5, SLC3A2 were associated with the expression of 
PD1 and PD-L1, and might be associated with subtypes 
of immune cell infiltration. Therefore, we speculated that 
the SLC family could play a role in the TME of PDAC, 
especially TIICs (28).

In this study, we collected data from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) databases, using bioinformatics tools to explore 
the relationship between SLC family genes and prognosis 
of PDAC patients, the underlying molecular mechanisms, 
and the density of numerous TIICs associated with 
clinicopathological characteristics. These results are 
promising for providing a new perspective on the TME and 
identifying potential biomarkers to achieve better clinical 
outcomes of PDAC.

We present the following article in accordance with 
the TRIPOD reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-21-6341/rc).

https://atm.amegroups.com/article/view/10.21037/atm-21-6341/rc
https://atm.amegroups.com/article/view/10.21037/atm-21-6341/rc
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Methods

Data collection

We downloaded RNA-Seq expression profiles and 
clinical data from the publicly available TCGA (https://
cancergenome.nih.gov/) and the University of California, 
Santa Cruz Xena (UCSC Xena: https://xena.ucsc.edu/) 
databases, respectively (29). The raw expression profiles 
were normalized using DESeq package in R (29). The 
following inclusion criteria were previously published by 
our research team: (I) complete survival data available; (II) 
histology type was PDAC; (III) pathologic stage I or II; and 
(IV) patients underwent pancreaticoduodenectomy. Any 
PDAC patients with pathologic stage III or IV disease who 
underwent other types of surgery were excluded (30). To 
investigate whether there are differences in gene expression 
in the peripheral blood (PB) and peripheral blood 
mononuclear cells (PBMCs), GSE49641 and GSE74629 
were downloaded from the GEO database. If there were 
multiple expression values for the same gene name, the 
average value and expression profiles were normalized 
using the limma package in R (https://bioconductor.org/
packages/release/bioc/html/limma.html). The study was 
conducted in accordance with the Declaration of Helsinki  
(as revised in 2013).

Survival analysis

A Kaplan-Meier analysis was used to assess prognosis-
related clinical factors. Patients were divided into low- 
and high-expression groups according to the median 
gene expression value. We used Kaplan-Meier analysis to 
preliminarily screen for the genes related to prognosis. 
Next, a least absolute shrinkage and selection operator 
(LASSO) algorithm was used to select the strongest 
prognostic-related genes. Prognostic-related genes were 
finally defined by a Cox proportional risk regression model 
that was adjusted by prognostic-related clinical factors. 

Bioinformatics analysis

The Gene Expression Profiling Interactive Analysis 
(GEPIA; https://gepia.cancer-pku.cn/index.html) website 
was used to evaluate differences in gene expression in 
both the tumor and non-tumor tissues (31). The protein-
protein interaction (PPI) network, Gene Ontology (GO), 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis was obtained from the Search Tool for the Retrieval 

of Interacting Genes/Proteins (STRING; https://string-db.
org/, version 11) (32). The results of the LASSO analysis of 
SLCs were entered into the website, and further obtained 
after setting Homo sapiens and an interaction score >0.150. 
The KEGG results were visualized using R. We then used 
GeneMANIA (https://genemania.org/) to acquire details 
of gene-gene interactions (33). A Pearson’s correlation 
coefficient between the SLC genes was calculated, and 
the corrplot package in R (https://cran.r-project.org/web/
packages/corrplot/index.html) was used to visualize the 
results. The differences in SLC expression between PDAC 
and healthy controls in PB and PBMCs were analyzed and 
plotted using the ggplot2 package in R (https://cran.r-project.
org/web/packages/ggplot2/index.html).

Joint-effect analysis and prognostic signature construction

To increase the applicability of the results, we used 
the prognostic-related genes to establish a joint-effect 
analysis with a Kaplan-Meier analysis. Nomograms were 
constructed using clinical variables and prognostic-related 
genes were used to predict the overall survival (OS) for 
PDAC using the rms package (https://cran.r-project.org/
web/packages/rms/index.html). A prognostic risk model 
was constructed using prognostic-related genes. SLC19A3, 
SLC25A39, and SLC39A11 were included in nomogram 
because only they satisfied prognosis-related genes and 
differential expression in both the tumor and normal tissues. 
Regression coefficients were obtained from the results 
of the multivariate Cox proportional hazards regression 
analysis. The calculation formula for the risk score was as 
follows (30):

Risk score = expression of gene1 × β1 + expression of 
gene2 × β2+… expression of Genen × βn.

The participants were divided into high- and low-
risk groups based on their risk score. Receiver operating 
characteristic (ROC) curves were constructed to assess 
the accuracy of the prognostic signature using prognostic-
related genes and risk score. A forest plot was constructed 
to assess whether the risk model was combined with other 
clinical factors, which has an impact on the prognosis.

CIBERSORT estimation

To investigate the TIIC landscape in the PDAC tissue 
between the high- and low-risk groups, the Cell-type 
Identification by Estimating Relative Subsets of RNA 
Transcripts (CIBERSORT) algorithm (https://cibersort.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://xena.ucsc.edu/
https://string-db.org/, version 11
https://string-db.org/, version 11
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cran.r-project.org/web/packages/rms/index.html
https://cibersort.stanford.edu
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stanford.edu) was used to calculate the absolute proportions 
of 22 types of TIICs (34). CIBERSORT, which contained 
547 genes, could accurately differentiate 22 individual 
immune cell types from the tumor is a deconvolution 
algorithm and is the most widely used method to date (35). 
A normalized PDAC dataset was input as a mixture file, 22 
immune cell types (LM22) were set as the signature gene 
file, and an analysis was performed at 1,000 permutations. 
The samples which resulted in P<0.05 were considered 
statistically significant. We used the corrplot package in R 
to visualize the Pearson’s correlation coefficient between 
different immune cells. A bar graph was constructed using 
barplot packages to demonstrate a landscape of TIICs for 
statistically significant cases. The differences in TIICs 
between high- and low-risk groups were shown in a  
violin plot.

Gene set enrichment analysis (GSEA)

GSEA is an algorithm that can use known gene expression 
to calculate the potential mechanisms of differential gene 
expression, affecting the prognosis of patients (36). High- 
and low-group files determined by prognostic-related 
genes and genome-wide expression profile were uploaded 
to the GSEA. We included C2 and C5 of the Molecular 
Signatures Database (MSigDB) in the enrichment  
analysis (37). Meeting both the false discovery rate (FDR) 
<0.25 and P<0.05 was considered statistically significant 
evidence (38).

Statistical analysis

The statistical analyses were conducted using SPSS software 
version 22.0 (IBM Corp., Armonk, NY, USA) and R-project 
version 3.6.3 (https://cran.r-project.org/bin/windows/
base/old/3.6.3/). The Kaplans://cr method was used to 
calculate the median survival time and log-rank P value. 
Hazard ratios (HRs) and 95% confidence intervals (CI) 
were calculated using the univariate and multivariate Cox 
proportional hazards regression model. A P value <0.05 was 
considered statistically significant.

Results

Data collection

A total of 183 pancreatic adenocarcinoma (PAAD) cases 
were downloaded, and after applying the inclusion and 

exclusion criteria, 112 PDAC cases were finally included in 
the follow-up research in TCGA. In total, 36 and 50 PDAC 
and non-tumor patients, respectively, were included from 
GSE49641 and GSE74629 in the subsequent analyses.

Survival analysis

Prognosis-related cl inical  variables are shown in  
Table S1, and the histologic grade, targeted molecular 
therapy, radiation therapy, and residual resection were 
shown to significantly affect the patient’s prognosis. The 
results of the prognostic differences from the low- and 
high-expression groups of each SLC are presented in  
Table S2. In addition, 32 SLC genes were significantly 
associated with the OS. The genes SLC19A3, SLC22A23, 
SLC22A4, SLC25A11, SLC25A39, SLC26A10, SLC35B4, 
SLC35E2, SLC39A11, SLC46A2, SLC47A1, and SLC52A1 
were the results of the LASSO analysis (Figure 1A,1B and 
Figure S1). After calculation using a Cox proportional risk 
regression model, SLC19A3 (adjusted P=0.007), SLC22A23 
(adjusted P=0.035), SLC25A39  (adjusted P=0.027), 
SLC39A11 (adjusted P=0.043), and SLC47A1 (adjusted 
P=0.024) were significantly correlated with the prognosis 
(Table 1).

Bioinformatics analysis

The Pearson’s correlation coefficient from the 12 
genes selected from LASSO analysis are presented in  
Figure 1C. The genes SLC47A1 and SLC46A2, SLC35B4 
and SLC47A1, and SLC46A2 were moderately positive 
in relation to each other (coefficient >0.5), whereas 
SLC35B4 was moderately negative in relation to SLC25A39 
(coefficient <−0.5). The gene-gene interactions displayed in 
Figure 2A show a strong co-expression relationship between 
these genes. The PPI is presented in Figure 2B and shows 
interactions in expression, experiment, text-mining, and 
co-expression. The GO and KEGG pathway enrichment 
analyses were mainly enriched in acids, inorganic ions, 
and essential metal transmembrane transporter activity  
(Figure 2C). The distribution in SLC expression between 
PAAD tumor and normal tissues from GEPIA suggested 
that the expression of SLC39A11, SLC25A39, SLC22A4, 
SLC35B4, SLC25A11, and SLC19A3 were significantly 
higher in the tumor tissue (Figure 3). In PB, the level of 
SLC22A4, SLC25A11, and SLC46A2 expression in PDAC 
patients was higher than that in the control samples  
(Figure S2).  In PBMCs, only SLC35E2 exhibited 

https://cibersort.stanford.edu
https://cran.r-project.org/bin/windows/base/old/3.6.3/
https://cran.r-project.org/bin/windows/base/old/3.6.3/
https://cdn.amegroups.cn/static/public/ATM-21-6341-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6341-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6341-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-6341-Supplementary.pdf
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significantly higher expression in PDAC patients  
(Figure S3).

Joint-effect analysis and prognostic signature construction

According to the above study, we found that only SLC19A3, 
SLC25A39, and SLC39A11 satisfied prognosis-related genes 
and differential expression in both the tumor and normal 

tissues. Thus, a joint-effect analysis and prognostic signature 
were comprised of SLC19A3, SLC25A39, and SLC39A11. 
In the joint-effect analysis, compared with Group A, Group 
III and Group 4 had the best prognosis in their large group 
(Table 2). We constructed a nomogram using clinical factors 
and the 3 SLC genes mentioned above which can be used 
to predict the 1-, 2-, and 3-year OS of PDAC patients  
(Figure 4A). The forest plot indicated that patients in 
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Table 1 Prognostic values of SLC genes expression in PDAC

Gene expression Events/total (n=112) MST (days) Crude HR (95% CI) Crude P value
Adjusted HR  

(95% CI)
Adjusted P valuea

SLC19A3

Low 39/56 449 1 1

High 30/56 756 0.460 (0.276–0.766) 0.003 0.447 (0.250–0.800) 0.007

SLC22A23

Low 43/56 497 1 1

High 26/56 756 0.447 (0.272–0.732) 0.001 0.526 (0.289–0.956) 0.035

SLC22A4

Low 38/56 506 1 1

High 31/56 732 0.581 (0.357–0.945) 0.029 0.676 (0.397–1.151) 0.149

SLC25A11

Low 38/56 554 1 1

High 31/56 681 0.598 (0.368–0.971) 0.038 0.647 (0.382–1.096) 0.105

SLC25A39

Low 30/56 748 1 1

High 39/56 503 1.880 (1.153–3.065) 0.011 1.852 (1.071–3.202) 0.027

SLC26A10

Low 43/56 549 1 1

High 26/56 684 0.613 (0.375–1.003) 0.051 0.931 (0.528–1.641) 0.804

SLC35B4

Low 37/56 504 1 1

High 32/56 714 0.582 (0.356–0.953) 0.031 0.707 (0.402–1.244) 0.229

SLC35E2

Low 42/56 534 1 1

High 27/56 754 0.584 (0.356–0.955) 0.032 0.674 (0.401–1.133) 0.137

SLC39A11

Low 32/56 705 1 1

High 37/56 538 1.699 (1.046–2.761) 0.032 1.749 (1.017–3.009) 0.043

SLC46A2

Low 37/56 524 1 1

High 32/56 727 0.549 (0.336–0.895) 0.016 0.783 (0.454–1.350) 0.378

SLC47A1

Low 39/56 459 1 1

High 30/56 769 0.409 (0.249–0.670) <0.001 0.504 (0.278–0.913) 0.024

SLC52A1

Low 40/56 544 1 1

High 29/56 688 0.611 (0.376–0.993) 0.047 0.774 (0.430–1.289) 0.292

Italic P values indicate statistically significant. a, adjusted for histologic grade, radiation therapy, radical resection, and targeted molecular 
therapy. SLC, solute carrier; MST, median survival time; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; HR, hazard ratio; 
CI, confidence interval.
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Table 2 Joint-effects survival analysis of SLC family genes expression levels with OS in patients

Group SLC19A3 SLC25A39 SLC39A11 Patients
Number of 

events
MST Crude HR (95% CI)

Crude  
P value

Adjusted HR  
(95% CI)

Adjusted  
P valuea

A Low High – 24 15 501 1 1

B Low Low – 32 24 407 1.272 (0.664–2.435) 0.469 1.229 (0.541–2.796) 0.622

C High Low – 32 15 883 3.533 (1.730–7.215) 0.001 4.598 (1.948–10.851) <0.001

D High High – 24 15 592 1.549 (0.786–3.055) 0.206 1.797 (0.782–3.682) 0.181

I Low – High 25 17 521 1 1

II Low – Low 31 22 373 0.531 (0.275–1.025) 0.057 0.511 (0.232–1.129) 0.097

III High – Low 31 15 826 2.221 (1.063–4.639) 0.034 3.294 (1.265–8.574) 0.015

IV High – High 25 15 652 1.269 (0.611–2.635) 0.523 1.216 (0.530–2.791) 0.645

1 – Low Low 42 21 773 1 1

2 – Low High 14 9 630 0.671 (0.303–1.484) 0.324 0.705 (0.273–1.819) 0.47

3 – High Low 14 11 506 0.546 (0.257–1.159) 0.115 0.495 (0.215–1.139) 0.098

4 – High High 42 28 509 0.442 (0.245–0.797) 0.007 0.448 (0.225–0.891) 0.022

Italic P values indicate statistically significant. a, adjusted for histologic grade, radiation therapy, radical resection, and targeted molecular 
therapy. SLC, solute carrier; MST, median survival time; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; HR, hazard ratio; 
CI, confidence interval.

the low-risk group had a significantly better prognosis 
than the high-risk group under the following conditions: 
young patients (young patients condit alcohol history, 
high histologic grade (G3 + G4), no radical resection, no 
radiation therapy, and those who received targeted macular 
therapy (Figure 4B).

The prognostic signature model, which included 
SLC19A3, SLC25A39, and SLC39A11 for OS is shown 
in Figure 5A. The prognosis of the high-risk group was 
significantly worse than that of the low-risk group (778 
vs. 478 days; P=0.001). The risk score, survival status, and 
heatmap are presented from top to bottom. The ROC 
curves for predicting the OS of PDAC patients according 
to SLCs and risk score showed diagnostic value. The area 
under the curve (AUC) of SLC19A3 for predicting the 
1-, 2-, and 3-year survival was 62.2%, 73.3%, and 74.1%, 
respectively, which was the highest among the genes  
(Figure 5B).

The situation of immune infiltration

After CIBERSORT calculations, 63 out of 112 PDAC 
samples with P values <0.05 were included in the subsequent 
analyses. Since the percentage of eosinophils and gamma 
delta T cells could not be counted, 20 types of immune 

cells in 63 PDAC samples were analyzed. The proportion 
of 20 types of immune cells in each sample and a heat map 
of the immune cells are presented in Figure 6A,6B. Naïve 
B cells and M2 macrophages were moderately negatively 
correlated. The proportion of memory B cells (P=0.004), 
naive B cells (P=0.007), CD8 T cells (P=0.003), activated 
memory CD4 T cells (P=0.004), and activated NK cells 
(P=0.019) were significantly higher in the low-risk group 
compared to that of the high-risk group. In contrast, the 
proportion of follicular helper T cells (P<0.001), regulatory 
T cells (Tregs) (P=0.005), M0 macrophages (P<0.001), and 
M2 macrophages (P=0.017) were higher in the high-risk 
group (Figure 6C). The Pearson’s correlation coefficient was 
presented in the matrix box of the correlation graph, and 
activated natural killer (NK) cells and regulatory T cells 
(Tregs), naïve CD4 T cells, and memory B cells constituted 
the median and were moderately positively correlated 
(Figure 7).

GSEA

In the ROC curves,  SLC19A3  was the most  eye-
catching gene with a high AUC. Therefore, the potential 
mechanisms associated with the level of SLC19A3 
expression on the prognosis of patients with pancreatic 
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cancer were explored in GSEA. In the c2 gene set, the low 
SLC19A3 expression group was enriched for genes in the 
cell cycle, base excision repair, DNA replication, MYC 
active pathway, WNT signaling pathway, and p53 signaling 
pathway (Figure 8A). The c5 gene set results suggested 
that base excision repair, cell cycle checkpoint, damaged 
DNA binding, DNA replication, DNA damage checkpoint, 
and DNA integrity checkpoint were the main associated 

functions (Figure 8B).

Discussion

In this  s tudy,  we performed both a  surviva l  and 
bioinformatic analysis using high-throughput RNA-
sequencing data obtained from TCGA. In the survival 
analysis, the expression of SLC19A3, SLC25A39, and 
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SLC39A11 was found to have the ability to significantly 
affect the prognosis of PDAC patients; however, the 
expression of SLC19A3 was completely opposite to that 
of SLC25A39 and SLC39A11, and overexpression led to 
a better patient prognosis. This finding is also consistent 
with previous research. In particular, SLC5A8 also acted 
as a tumor suppressor gene, and SLC7A11 inhibited 
pancreatic carcinoma via the PI3K/Akt signaling pathway 
(39,40). However high SLC28A1 expression indicated a 
worse prognosis, and SLC22A3 and SLC29A3 affected the 

therapeutic effect of nucleoside drugs in PC (41). Due to the 
substantial heterogeneity of both tumors and individuals, 
a single gene often cannot reflect the effect of the level of 
gene expression on the prognosis of PDAC. Hence, we 
constructed a prognostic signature and genetic risk score 
model to assess the prognosis. In addition, the forest plot 
showed some differences in clinical factors and patient 
sensitivity to certain treatment modalities. For example, in 
the context that radiotherapy can indeed prolong the OS 
of patients, patients in the low-risk group did not receive 
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radiotherapy, and the OS was similar to those who received 
radiotherapy. Therefore, we believe that our prognostic 
signature could predict the prognosis and also provide some 
evidence for clinical decision-making. In our ROC curves 
and nomogram, all 3 genes showed excellent efficacy for 
predicting the prognosis, of which SLC19A3 was the most 
remarkable. Therefore, we inferred that the 3 genes were 
independent prognostic factors for PDAC patients.

 In most of the previous research, variation of SLC19A3 
lead to a thiamine deficiency and resulted in certain 

genetic disorders, including biotin thiamine responsive 
basal ganglia disease (BTRBGD), Leigh syndrome, and 
mitochondrial disorders (42,43). Thiamine transporter-2 
(ThTR-2, encoded by SLC19A3) is a specific transporter 
that plays a role in small intestinal absorption and cellular 
uptake when thiamine is a critical cofactor for nucleic acid 
synthesis (44,45). These conclusions are also consistent 
with our GSEA findings that SLC19A3 participates in the 
cell cycle, DNA replication, and DNA damage checkpoints. 
In addition, diabetes is a proven risk factor for PC, and 
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metformin is an effective oral medicine. A study conducted 
by Liang et al. reported that metformin was a substrate of 
thiamine transporters and that inhibiting ThTR-2 could 
reduce the uptake of metformin (5,46). Similarly, cigarette 
smoking is also a well-known risk factor. Srinivasan et al. 
reported that chronic nicotine exposure inhibited the uptake 
of thiamin, as well as the level of ThTR-2 and SLC19A3 
expression in pancreatic acinar cells (47). Furthermore, a 
breast cancer (BC) study performed by Liu et al. reported 
that the down-regulation of gene expression contributes to 
the resistance of tumor cells to apoptosis (48). The above 
results indicate that the level of SLC19A3 expression can 
affect prognosis and is also associated with the risk factors 
of PC. Thus, SLC19A3 could act as a new tumor suppressor 
in PDAC.

We also investigated the potential mechanism of 
SLC19A3 on PC by GSEA. The results showed that the 
expression of SLC19A3 was associated with cell cycle, 
DNA replication, DNA damage, and integrity checkpoints. 
These findings indicate that SLC19A3 may be involved in 
the transportation of substances during DNA synthesis and 
replication to ensure normal gene replication. In addition, 
the low expression of SLC19A3 is enriched in the MYC 
and p53 signaling pathways, which are considered the key 
mutation signaling pathways in PC (49,50). 

Mutation of p53 is one of the most common genetic 
mutations in tumors, and it has been reported that p53 
is missing or mutated in approximately 75% of PDAC 
patients (51). In a mouse model of PDAC, the presence of 
KRAS and the loss of p53 resulted in a loss in autophagy 
that did not stop tumor progression but actually accelerated 
tumor progression (52). Therefore, a lack of SLC19A3 
was associated with the p53 signaling pathway, and finally 
resulted in the loss of autophagy and progression of PDAC.

Some researchers have demonstrated that transcriptomic 
analysis can be used to explore the immune infiltration 
microenvironment (53). Tumor-recruited M2 macrophages 
promote gastric and breast cancer metastasis via M2 
macrophage secreted CHI3L1 protein, and it was one 
the mechanism of M2 macrophages leading to poor  
prognosis (54). CD8 T cells, CD4 T cells, and NK cells 
could inhibit tumor progression and metastasis through 
cytotoxic effects (55). Different types of immune cells also 
have different effects on tumor progression. For example, 
cytotoxic CD8 T cells and CD4 helper T cells can inhibit 
tumor progression, and a high level of activated CD8 T 
cells can prolong the prognosis of patients (56). In contrast, 
macrophages, mast cells, and neutrophils can promote 

tumor progression and are not conducive to the patient’s 
prognosis (56). We analyzed the situation of TIICS in 
both high- and low-risk groups using CIBERSORT and 
found that the TICCs favorable to prognosis (e.g., CD8 
T cells, CD4 T cells, and NK cells) were significantly 
higher in the low-risk group. Simultaneously, M0 and M2 
macrophages, which have been found to be less favorable 
for prognosis were significantly higher in the high-risk 
group. Immunotherapy including immune checkpoint 
blockade is not effective in PDAC (57). Therefore, there 
is an urgent need for new immunotherapy targets to 
improve the prognosis of patients in PDAC. A recent 
report demonstrated that the selective targeting of MHC-I 
molecules for degradation could enhance autophagy 
and leads to an improved therapeutic strategy (58). It is 
known that autophagy and apoptosis are indispensable 
steps in immunotherapy, as well as the suppression of 
tumorigenesis and progression. Moreover, some SLCs have 
been shown to participate in glucose uptake and lactate 
release, as well as the promotion phagocyte engulfment 
of apoptotic cells (59). In addition, SLC genes can modify 
dendritic cells and induce an anti-gastric cancer immune  
response (60). Therefore, SLCs may be a potential target 
of PDAC immunotherapy, which can promote patient 
prognosis in the high-risk patient group.

Previous studies on SLCs have suggested that the level 
of SLC expression is related to the prognosis of certain 
tumors. For example, SLC39A7, SLC39A11, and SLC39A14 
have been associated with the prognosis in GC, and the 
co-expression of SLC1A5, SLC7A5, and SLC3A2 has been 
shown to affect aggressive BC which is driven by c-MYC 
(61,62). However, we first pointed out that SLC19A3, 
SLC25A39, and SLC39A11 were significantly associated 
with the prognosis of PDAC, and the potential mechanisms 
were explored. A prognostic signature was proposed when 
immunotherapy did not have a good effect on PDAC, and 
it was calculated that TIICS differed between the high- and 
low-risk groups. These findings are promising for providing 
new targets for treatment and biomarkers for predicting the 
prognosis of PDAC patients.

This study had several limitations. First, the analysis 
involved publicly available data, and thus, information for 
some patients was missing (e.g., the patient’s medication, 
and immune-related medical history), which prevented us 
from performing further research on these patients. Second, 
although we established strict inclusion and exclusion 
criteria, our research was based on a bioinformatics 
analysis. Therefore, the obtained results still require further 
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experimental verification. Third, due to the difficulty in 
obtaining PDAC tumor tissue, the level of messenger 
(mRNA) expression for some SLCs was derived from 
a single cohort, and a verification cohort was lacking. 
Fourth, in order to enhance the credibility of these results, 
we established strict standards, which also led to a small 
number of samples. A larger sample size is required to 
minimize bias in future studies. 

Despite these limitations, this was the first study to 
report that SLC19A3, SLC25A35, and SLC39A11 and the 
prognosis of PDAC patients are significantly correlated. 
The mechanism by which SLC19A3 expression affects 
PDAC and the differences in tumor infiltrating cells within 
the tumor were explored using GSEA and CIBERSORT, 
respectively. Upon future confirmation of these conclusions, 
SLC19A3 may represent a new PDAC tumor suppressor 
that can contribute to the management and treatment of 
PDAC patients.

Conclusions

The SLC19A3, SLC25A35, and SLC39A11 genes are 
significantly associated with the prognosis of PDAC patients 
and may act as a potential biomarker for predicting the 
prognosis of PDAC following a pancreaticoduodenectomy. 
The SLC19A3 gene may represent a tumor suppressor 
in PDAC and affect tumor development and progression 
through the MYC and p53 signaling pathways and changes 
in immune cell infiltration. However, these findings should 
be verified through future functional experiments.
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