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Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that
eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part
of the cell death machinery undergo ubiquitination, a post-translational modification
made by ubiquitin ligases that modulates protein abundance, localization, and/or activity.
For example, some ubiquitin chains target proteins for degradation, while others function
as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the
proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein sub-
strates. Here, we review the DUBs that have been found to suppress or promote apop-
tosis, pyroptosis, or necroptosis.

Introduction
Ubiquitination is the covalent, post-translational modification of a protein with the 8.4 kDa protein
ubiquitin. An isopeptide bond is formed between the C-terminus of ubiquitin and a lysine side chain
in the target protein, or less commonly, the C-terminal glycine is linked to either the N-terminus or a
serine or threonine side chain of the protein [1–3]. Moreover, ubiquitin itself can be modified at its
N-terminus or at one of its seven lysines allowing the assembly of polyubiquitin chains.
Ubiquitination is mediated by the concerted action of ubiquitin-activating E1, ubiquitin-conjugating
E2, and ubiquitin ligase E3 enzymes, resulting in altered protein stability, interactions, or localization.
Deubiquitinating enzymes (DUBs) counter ubiquitin ligases by cleaving ubiquitin from their protein
substrates (Figure 1). DUBs belong to the USP (ubiquitin-specific protease), UCH (ubiquitin
C-terminal hydrolase), OTU (ovarian tumor), MINDY (motif-interacting with ubiquitin-containing
novel DUB family), MJD (Machado–Josephin domain-containing), and JAMM ( JAB1/MPN/Mov34)
protease families [4]. Here we review our current understanding of DUBs that regulate the cell death
programs of apoptosis, pyroptosis, and necroptosis.

DUBs regulating caspase-8-dependent cell death and
necroptosis
Tumor Necrosis Factor Receptor 1 (TNFR1), Toll-like Receptor 3 (TLR3), and TLR4 contribute to
innate immune surveillance and defense against invading pathogens [5–7]. Endosomal TLR3 is acti-
vated by viral double-stranded RNA [6], whereas TLR4 on the plasma membrane responds to bacterial
lipopolysaccharide [7]. TNFR1 responds to either TNF or lymphotoxin-α [8,9], the former produced
by many cell types in response to infection. TNFR1, TLR3, and TLR4 each recruit ubiquitin ligases,
including the linear ubiquitin chain assembly complex (LUBAC) [10–12], to build a ubiquitin scaffold
for activating the protein kinases TAK1, IKKα/β, and IKKε/TBK1 [13–17]. Activation of these kinases
culminates in the transcription of proinflammatory genes, while formation of a secondary, death-
inducing signaling complex is suppressed. Genetic [11,12,18–26], small molecule [17,20,27,28], or
pathogen-induced perturbations [29] that compromise the assembly of the ubiquitin scaffold or activa-
tion of these kinases promotes the formation of the death-inducing complex. The nature of the per-
turbation governs whether the enzymatic activity of the kinase RIPK1 is required for assembly of the
death-inducing complex (reviewed in [30]).
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In the case of the more extensively studied TNFR1, ligation of the receptor triggers the assembly of the
TNFR1-associated signaling complex termed complex I [31] (Figure 2). The cytoplasmic death domain (DD)
of TNFR1 recruits the DD-containing proteins TRADD and RIPK1 via homotypic interactions, with TRADD
recruiting TRAF2, the adaptor for the E3 ubiquitin ligases cellular inhibitor of apoptosis protein 1 (cIAP1) and
cIAP2 [32–37]. Subsequently, cIAP1/2 modify themselves and RIPK1 with lysine 63 (K63)-linked polyubiquitin
and this contributes to the recruitment of TAB2 and TAB3, ubiquitin-binding adaptors for the kinase TAK1
[13,38]. K63-linked polyubiquitin within complex I also recruits LUBAC, composed of HOIP (also called
RNF31), HOIL-1 (also called RBCK1), and SHARPIN, as both HOIP and SHARPIN bind to K63-linked polyu-
biquitin [10,15,39]. LUBAC then modifies several proteins in TNFR1 complex I with M1-linked polyubiquitin,
including TNFR1 itself, TRADD, and RIPK1 [40–43]. Indeed, LUBAC can modify K63-linked polyubiquitin
on RIPK1 with M1-linked ubiquitin to create hybrid polyubiquitin chains [16]. The M1-linked polyubiquitin
in complex I recruits NEMO (also called IKKγ), the ubiquitin-binding regulatory subunit of the canonical IκB
kinase (IKK) [14,44,45]. Hybrid polyubiquitin chains may position TAK1 and IKK to facilitate the activating
phosphorylation of IKK by TAK1 [15,16,46]. Collectively, these molecular events stabilize complex I for pro-
ductive signal transduction.
Many cells are not killed by TNF because the formation of a death-inducing complex II is transient and

unproductive [31]. TRADD and RIPK1 move into the cytoplasm where they interact with FADD,
caspase-8, and the long isoform of cFLIP (cFLIPL) [31], but cleavage of RIPK1 by the caspase-8/cFLIPL
heterodimer then disrupts the complex [47–50]. Accordingly, heterozygous mutations altering the aspartic
acid cleavage site in RIPK1 sensitize cells to TNF killing [48–50]. Notably, these mutations give rise to an
autoinflammatory syndrome in humans [49,50]. Loss of the labile protein cFLIP, as in cells treated with the
translational inhibitor cycloheximide, also sensitizes to TNF-induced cell death [31]. In this case, cells die
because caspase-8 homodimers assemble within a stabilized complex II, autoprocess, and then cleave and
activate caspases 3 and 7 to execute the apoptotic program [51–53]. If caspase-8 is eliminated or inacti-
vated, however, cells may still die because RIPK1 in complex II can interact with RIPK3, if it is expressed,
to form the necrosome [54–56]. Activation of RIPK3 within the necrosome leads to phosphorylation of the
pseudokinase MLKL, which then mediates a lytic form of cell death termed necroptosis [57–61]. TLR3 and
TLR4 utilize slightly different combinations of adaptor proteins and E3 ubiquitin ligases when compared
with TNFR1, but they elicit similar death-inducing signaling complexes if LUBAC [11] or caspase-8 is com-
promised [62,63].

Figure 1. Deubiquitinases (DUBs) counteract protein modifications made by E3 ubiquitin ligase enzymes.

Figure created with BioRender.com.
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A20
The deubiquitinase and ubiquitin-binding protein A20 (also called TNFAIP3) confers a degree of protection
against TNF-induced apoptosis [64–66] or necroptosis [43,67,68]. Accordingly, loss of A20 in intestinal epithe-
lial cells sensitizes mice to TNF toxicity that requires, in part, the kinase activity of RIPK1 [66,69,70]. It is
worth noting, however, that enforced expression of A20 in intestinal epithelial cells also sensitizes mice to TNF
toxicity driven by the kinase activity of RIPK1 [71]. Thus, the expression of Tnfaip3, which is an
NF-κB-inducible gene [72], must be finely tuned for optimal signal transduction.
A20 is recruited to TNFR1 complex I by virtue of its ubiquitin-binding zinc finger 4 (ZnF4) and ZnF7

motifs [73–78]. ZnF4 binds to monoubiquitin or K63-linked polyubiquitin [79], while ZnF7 binds to

Figure 2. Deubiquitinases OTULIN, CYLD, and OTUB1 modulate sensitivity to TNF-induced cell death.

OTULIN suppresses cell death by removing M1-linked polyubiquitin from LUBAC and preserving its ligase activity. LUBAC modifies components of

TNFR1 complex I with M1-linked polyubiquitin, which serves as a scaffold for the recruitment of kinases that activate gene expression via the MAPK

and NF-κB pathways. Stabilization of complex I in this manner limits assembly of the death-inducing complex II/necrosome. CYLD promotes cell

death by removing K63- and M1-linked polyubiquitin from components of TNFR1 complex I, which facilitates complex II/necrosome assembly.

OTUB1 limits sensitization to TNF-induced cell death by TWEAK, which is the ligand for the receptor Fn14. cIAPs recruited to Fn14 modify the

signaling complex with K48-linked polyubiquitin and target it for degradation. By removing this polyubiquitin, OTUB1 preserves the pool of cIAP1

available for recruitment into TNFR1 complex I. Within TNFR1 complex I, cIAP1 builds a K63-linked polyubiquitin scaffold that limits activation of

the kinase RIPK1 and complex II/necrosome formation. Whether there are DUBs that limit ubiquitination of RIPK1 in the necrosome [216] or

ubiquitination of MLKL [214,215] is unclear. Adaptor proteins are colored green, E3 ubiquitin ligases are purple, kinases are red, and proteases,

including DUBs, are blue. Figure created with BioRender.com.
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M1-linked polyubiquitin [73,74]. The ubiquitin-binding protein ABIN1 has also been implicated in the recruit-
ment of A20 to TNFR1 complex I [80]. Ubiquitin binding by ZnF7, in particular, appears crucial for A20 to
suppress TNF-induced NF-κB activation and cell death [66,73,74,77,78]. In mice, mutation of A20 ZnF7
results in TNF-dependent arthritis [78]. Mutation of A20 ZnF7 and ZnF4, however, results in lethal inflamma-
tion soon after birth [77,78] similar to A20 deficiency [65]. It is unclear if aberrant cell death is a major driver
of lethality in either model. RIPK3 deficiency, but not MLKL deficiency, prolongs survival of A20-deficient
mice [68,81], but the effect of eliminating both MLKL and caspase-8 to disable both caspase-8-dependent cell
death and necroptosis has not been reported. When A20 deficiency is restricted to myeloid cells, however, mice
develop arthritis that requires TLR4, RIPK3, and MLKL, but not TNFR1 [76,82]. These genetic data indicate
that suppression of necroptosis is an important physiological function of A20 not only in the context of
TNFR1 signaling. Consistent with A20 also suppressing caspase-8-dependent cell death, lethal inflammation in
mice lacking both ABIN1 and A20 in intestinal epithelial cells is prevented by the combined loss of RIPK3 and
caspase-8 [83].
Despite having an OTU domain that cleaves K48- or K63-linked polyubiquitin in vitro [84], the deubiquiti-

nating activity of A20 appears largely dispensable for suppressing inflammation [43,75,85,86]. Mutation of the
OTU catalytic cysteine in mice does not give an overt phenotype [75,85,86], although the mice are more sensi-
tive to TNF toxicity [86]. Whether RIPK1 is a substrate of A20 in this context requires further study. Overall,
available data indicate that A20 binding to polyubiquitin in TNFR1 complex I is more important than its DUB
activity for suppressing complex II assembly. Recruitment of A20 to TNFR1 complex I may preserve the ubi-
quitin scaffold by protecting polyubiquitin from cleavage by the death promoting DUB CYLD (described in the
next section) [43]. In keeping with this notion, M1-linked polyubiquitin in TNFR1 complex I is reduced by
A20 deficiency or mutation of A20 ZnF7 [43,66,76,77].

CYLD
CYLD (encoded by the cylindromatosis gene) promotes assembly of the TNFR1-induced necrosome [87–89].
Accordingly, knockdown, deletion, or inactivation of CYLD renders cells less sensitive to TNF-induced necrop-
tosis [88–91]. CYLD also promotes, to varying degrees, caspase-8-dependent cell death induced by TNF plus
cIAP antagonist [87], TNF plus cycloheximide [92], and TNF plus SHARPIN deficiency [93]. The role of
CYLD in promoting cell death is evident in mice as well as cell culture. For example, inactivation of CYLD pre-
vents RIPK3- and MLKL-dependent colitis in the FADD-deficient mouse intestine [91], and ameliorates
RIPK3-dependent inflammation in the FADD-deficient mouse epidermis [94]. CYLD deficiency ameliorates
TNFR1-, FADD- and RIPK1-dependent skin inflammation in SHARPIN-deficient mice [18,19,93,95].
CYLD is recruited to TNFR1 complex I via the adaptor protein SPATA2, which in turn binds to HOIP

within LUBAC [96–99]. A PUB domain-interacting motif (PIM) in SPATA2 binds to the same HOIP PUB
domain as the PIM in the DUB OTULIN (described in the next section). Consequently, OTULIN and CYLD
exhibit mutually exclusive recruitment to LUBAC [43]. CYLD cleaves M1- or K63-linked ubiquitin chains
[100], with phosphorylation of CYLD boosting its activity towards K63-linked polyubiquitin [101]. Contrary to
expectations, however, ubiquitination of RIPK1 and TNFR1 in complex I is either unchanged or decreased,
rather than increased in cells lacking either CYLD or SPATA2 [92,96,99,102]. Although one study reported that
SPATA2 deficiency increased M1-linked polyubiquitin in TNFR1 complex I [97], others found that SPATA2 or
CYLD deficiency decreased both M1- and K63-linked polyubiquitin in complex I [99,101]. Nonetheless, when
whole cell lysates are analyzed, TNF-induced ubiquitination of RIPK1, TNFR1, and TRADD is increased by
CYLD or SPATA2 deficiency [43,92,99,102]. M1-linked polyubiquitination, in particular, appears increased on
RIPK1 [98]. These alterations, in the context of the necroptosis stimulus TNF plus zVAD, coincide with
reduced activation of RIPK1 and reduced necrosome assembly [102]. Thus, the accumulation of polyubiquitin
on TNFR1 complex I in cells lacking SPATA2 or CYLD may promote dissociation of complex I, thereby limit-
ing dimerization and autophosphorylation of RIPK1, which in turn limits the ability of RIPK1 to engage
RIPK3 [54,55,103,104]. SPATA2 and CYLD have also been observed in the TNF-induced necrosome [102], so
deubiquitination of CYLD substrates may be important in both complexes. Whether hybrid polyubiquitin
chains on complex I components influence deubiquitination by CYLD is unclear. In the context of
interleukin-1 receptor signaling, however, modification of K63-linked ubiquitin chains with K48-linked chains
is reported to protect K63-linked polyubiquitin from cleavage by CYLD [105].
Despite SPATA2- or CYLD-deficient cells being less sensitive than their wild-type counterparts to various

forms of TNF-induced cell death, SPATA2-deficient mice are actually more sensitive than wild-type mice to
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TNF toxicity. Moreover, this toxicity requires the kinase activity of RIPK1 [102]. How SPATA2 suppresses acti-
vation of RIPK1 in this context and whether CYLD-deficient mice are also more susceptible to TNF toxicity is
unclear. Chronic NF-κB activation in intestinal epithelial cells sensitizes mice to TNF toxicity [106] and an
early study identified CYLD as a negative regulator of TNF-induced NF-κB signaling [107]. However, it is
unclear if there is aberrant NF-κB activation in SPATA2-deficient mouse intestines. Mouse macrophages, fibro-
blasts and keratinocytes lacking SPATA2 or CYLD exhibit, at best, a modest enhancement in TNF-induced
activation of MAPKs or NF-κB [97,98,102,108–110].
Although SPATA2-deficient mice and several different strains of CYLD-deficient mice are viable [102,108–111],

mice expressing inactive CYLD, owing to truncation of the C-terminal USP domain, die soon after birth [112].
Whether this lethality reflects a gain-of-function of the mutant CYLD scaffold remains unclear. In humans, germ-
line mutations in CYLD are associated with a predisposition to tumors of skin appendages, with a majority of the
disease-causing mutations predicted to C-terminally truncate CYLD [113]. Details of the pathway(s) perturbed in
this setting by aberrant ubiquitination are unclear.

OTULIN
OTULIN (OTU DUB with linear linkage specificity; also known as FAM105B or GUMBY) cleaves M1-linked
polyubiquitin with exquisite specificity via substrate-assisted catalysis, a mechanism in which selective binding
of OTULIN to M1-linked polyubiquitin activates its catalytic triad [41]. Strikingly, patients carrying biallelic
loss-of-function OTULIN mutations develop a severe autoinflammatory syndrome termed OTULIN-related
autoinflammatory syndrome (ORAS; also known as Otulipenia). These patients suffer from recurrent fevers,
skin rashes, panniculitis, arthritis, and diarrhea, among other symptoms, and have been successfully treated
with TNF-blocking therapeutics [114–118], highlighting the essential role of OTULIN in regulating TNF
signaling.
In addition to its OTU domain, OTULIN possesses a PIM domain that interacts with the PUB domain in

HOIP, and a PDZ-binding motif that interacts with the PDZ-containing protein SNX27 [41,119–121]. The
physiological significance of the OTULIN-SNX27 interaction is unclear. Intriguingly, although OTULIN binds
to HOIP, only HOIP is readily detected within TNFR1 complex I [43]. Why the CYLD-SPATA2-HOIP
complex associates with complex I, but the OTULIN-HOIP complex does not remains unknown. One study
that characterized complex I using mass spectrometry detected a small amount of OTULIN [96], raising the
possibility that OTULIN is actively excluded from complex I. Cells lacking OTULIN or expressing catalytically
inactive OTULIN contain more total M1-linked polyubiquitin than their wild-type counterparts, but have less
M1-linked polyubiquitin in complex I [22,43,117]. The latter may stem from decreased expression of LUBAC
components and/or reduced recruitment of LUBAC to complex I [22,115,117,122–124]. In some cell types,
however, OTULIN mutations have less of an impact on LUBAC levels [117,118]. Thus, distinct OTULIN muta-
tions and/or cell types may give rise to variable effects on LUBAC levels.
OTULIN bound to HOIP is thought to sustain LUBAC levels by cleaving M1-linked polyubiquitin attached

to LUBAC itself [22,43]. Autoubiquitination of LUBAC is mediated by HOIL-1 monoubiquitinating itself,
HOIP, and/or SHARPIN [2,125], and then HOIP modifying this monoubiquitin with M1-linked polyubiquitin
[125]. The dynamic exchange of LUBAC components between OTULIN-containing complexes and the com-
plexes assembled by receptors such as TNFR1 is poorly understood. Phosphorylation of tyrosine 56 within the
OTULIN PIM limits HOIP binding [119,120], and appears to be increased in cells undergoing TNF-induced
necroptosis [126], but whether this post-translational modification is crucial for OTULIN- and
LUBAC-dependent functions in vivo remains to be shown.
By diminishing LUBAC activity, OTULIN deficiency destabilizes TNF-induced complex I and promotes the

formation of complex II, leading to increased cell death [22,117,122–124,127]. Homozygous mutations com-
promising OTULIN DUB activity in mice cause embryonic lethality owing to excessive cell death, particularly
among endothelial cells [22,128]. Embryonic lethality is prevented by the combined loss of RIPK3 and
caspase-8, although the mice still die perinatally from RIPK1-dependent inflammation [22]. Systemic inactiva-
tion of OTULIN in adult mice [22], or Otulin deletion in keratinocytes [123,127], leads to severe inflammation
that is ameliorated by Tnfr1 deletion or the combined loss of RIPK3/MLKL-dependent necroptosis and FADD/
caspase-8-dependent cell death. In contrast, while Otulin deletion in hepatocytes also produces a severe inflam-
matory phenotype, this is not ameliorated by Tnf or Tnfr1 deletion [122,124], but is improved by Fadd deletion
[124]. These data are consistent with OTULIN preventing autoinflammation by suppressing aberrant cell death,
with intriguing differences observed in the TNF-dependence of these death programs in different cell types.
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Similar phenotypes have been reported for mice deficient in HOIL-1 [21], further supporting the notion that
LUBAC and OTULIN act in concert to favor signal transduction over cell death in TNF signaling.
In humans, loss of function mutations in LUBAC components cause a syndrome characterized variably by

systemic autoinflammation, immunodeficiency, and amylopectinosis [129–131]. Thus, while these conditions
partially overlap with those of ORAS, they differ in key features as well. Overall, these findings point to a
model in which OTULIN and LUBAC act cooperatively in a linear pathway downstream of TNFR1 that favors
complex I-mediated signaling over complex II-driven cell death. Functions of OTULIN and LUBAC that may
be independent of one another, and their importance in certain cell types, remain an important area of study.
The mechanism by which autoubiquitination destabilizes LUBAC and/or alters its activity also awaits
elucidation.

OTUB1
OTU deubiquitinase, ubiquitin aldehyde binding 1 (OTUB1) suppresses TNF-induced cell death in a manner
that is distinct from A20 and OTULIN [132]. It functions in the signaling complexes of TNF receptor family
members, such as Fn14, that recruit cIAP1/2, TRAF2, and TRAF3 (Figure 2). These receptors activate MAPKs
and NF-κB, leading to increased expression of many genes, including Tnf. Both the canonical and non-
canonical NF-κB pathways are stimulated. The non-canonical pathway is mediated by the kinase NIK, which is
freed from constitutive cIAP-dependent ubiquitination and degradation when cIAP1/2, TRAF2, and TRAF3 are
sequestered by the ligated receptor [27,28,133,134]. cIAP-dependent ubiquitination of the receptor complex
eventually culminates in the degradation of cIAP1/2, which sensitizes cells to TNF-induced apoptosis
[135,136]. Cell death is tempered by OTUB1 removing the K48-linked polyubiquitin on cIAP1 that marks it
for degradation [132]. Accordingly, loss of OTUB1 in certain cell lines exacerbates apoptosis induced by
TWEAK, the ligand for Fn14.
Interestingly, loss of OTUB1 in hepatocytes sensitizes mice to intravenous infection with Listeria monocyto-

genes in an MLKL-dependent manner. Thus, exacerbated pathology is due to aberrant necroptosis rather than
apoptosis [137]. However, the use of full body Mlkl knockout mice makes it unclear if MLKL acts in Kuppfer
cells and/or hepatocytes of the infected liver. The role of RIPK3, which is difficult to detect in healthy hepato-
cytes [138], was not assessed genetically. Restricting deletion of both Otub1 and Mlkl (or Otub1 and Ripk3) to
hepatocytes would be informative. Another study suggested that MLKL inhibits Listeria replication in epithelial
cells without inducing necroptosis [139]. Thus, the mechanisms underlying MLKL-dependent pathology in
Listeria-infected Otub1 hepatocyte-specific knockout mice warrant further study.

DUBs regulating pyroptosis
Pyroptosis is a lytic form of cell death mediated by members of the gasdermin family [140]. Gasdermins are
intracellular proteins expressed in latent form that promote cell death after their pore-forming domain (PFD) is
liberated by proteolytic cleavage. For example, gasdermin D (GSDMD) induces pyroptosis after it is cleaved by
human caspases 1, 4, and 5 (mouse caspases 1 and 11) (Figure 3). These caspases get activated when cells are
exposed to pathogen-derived molecules (examples include toxins, cytoplasmic lipopolysaccharide (LPS), and
cytoplasmic DNA) or sterile insults (examples include uric acid and cholesterol crystals, which are associated
with gout and atherosclerosis, respectively) [141,142]. The N-terminal PFD of GSDMD, having been released
from its C-terminal inhibitory domain, assembles oligomeric pores in the plasma membrane that disrupt the
electrochemical gradient and release small proteins such as IL-1α, IL-1β, and IL-18 [143–147]. Subsequent
rupture of the plasma membrane through the ill-defined activity of membrane protein NINJ1 then allows
larger intracellular components, including lactate dehydrogenase (LDH), to escape the dying cell [148]. In
other contexts, caspase-8, neutrophil elastase or cathepsin G may cleave GSDMD to unleash pyroptosis
[29,149,150].
Caspase 1 is activated within canonical inflammasome complexes whose makeup is governed by the nature

of the cellular insult. The NLPR3-ASC inflammasome activates caspase-1-dependent pyroptosis in response to
diverse cellular perturbations, including extracellular ATP, bacterial toxin nigericin, non-canonical caspase-11-
dependent pyroptosis, and RIPK3-dependent cell death [141,151–153]. In many cell types, including mouse
macrophages and hepatocytes, optimal activation of the NLRP3 inflammasome relies on transcriptional
up-regulation of Nlrp3 gene expression by NF-κB [154,155]. This priming step is satisfied in culture by treat-
ment with TLR agonists, including LPS. Loss of WDR48 (also called UAF1), a cofactor that stimulates the
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DUB activity of USP1, USP12, and USP46 [156–158], impairs LPS-induced up-regulation of NLRP3 in mouse
macrophages [159]. Therefore, WDR48-associated DUBs may facilitate pyroptosis indirectly.

BRISC
The K63 linkage-specific DUB BRCC3 (also called BRCC36) [160] promotes activation of the NLRP3 inflam-
masome by deubiquitinating NLRP3 [161,162] (Figure 3). Belonging to the JAMM DUB family, BRCC3 may
cleave K63-linked polyubiquitin that is conjugated to NLRP3 by the ubiquitin ligase RNF125 [163]. BRCC3 is
part of the BRCC3 isopeptidase complex (BRISC), wherein the activity of BRCC3 is dependent on interactions
with the pseudoDUB ABRAXAS2 (also called KIAA0157 and ABRO1) [164]. Accordingly,
ABRAXAS2-deficient mouse macrophages phenocopy BRCC3-deficent macrophages and exhibit impaired
NLRP3-dependent processing of caspase-1, despite evidence of normal priming [162]. Aberrant ubiquitination
of NLRP3 in ABRAXAS2-deficient cells appears to limit interactions between NLRP3 and ASC, rather than
target NLRP3 for degradation.
Biochemical experiments suggest that ABRAXAS2 and BRCC3 associate with NLRP3 after priming. This

interaction requires phosphorylation of NLRP3 serine 194 and the NLRP3-interactor NEK7. However,
ABRAXAS2- and BRCC3-dependent deubiquitination of NLRP3 also requires an NLRP3 activation stimulus
[162,165]. Thus, priming is proposed to recruit BRISC to NLRP3 so that it is poised to deubiquitinate NLRP3
upon receipt of an activation stimulus [162]. Activating stimuli may induce conformational changes in NLRP3
that facilitate its deubiquitination by BRISC. The autoactivating mutant NLRP3 A350V (equivalent to human

Figure 3. Deubiquitinase BRISC promotes pyroptosis induced by the NLRP3 inflammasome.

Assembly of the NLRP3 inflammasome is triggered by a range of cellular insults. BRISC interacts with NLRP3 in complex with NEK7 and removes

K63-linked polyubiquitin from NLRP3. Deubiquitination of NLRP3 is required for NLRP3 to interact with ASC, the adaptor for caspase-1. Activation

of caspase-1 within the NLRP3-nucleated complex results in cleavage of its substrates pro-IL-1β and pro-IL-18, yielding the biologically active

cytokines. Caspase-1 also cleaves GSDMD, producing an N-terminal fragment that assembles oligomeric pores in the plasma membrane capable

of releasing IL-1β and IL-18. GSDMD pores also disrupt the electrochemical gradient and kill the cell. Pyroptosis culminates in large scale rupture of

the plasma membrane, which is mediated by the membrane protein NINJ1. Precisely how NINJ1 triggers membrane breakdown and the release

larger intracellular proteins such as lactate dehydrogenase (LDH) is unclear. Other proteases that can elicit the pore-forming fragment of GSDMD

include human caspase-4 (mouse counterpart caspase-11) and caspase-5, which are activated by cytosolic lipopolysaccharide (LPS).

Figure created with BioRender.com.
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Muckle–Wells syndrome mutant NLRP3 A352V) is deubiquitinated in macrophages after priming alone [162],
consistent with this mutation destabilizing the inactive conformation of NLRP3 [166].
Interestingly, BRISC is bound and inhibited by the inactive form of the metabolic enzyme serine hydroxy-

methyltransferase 2 (SHMT2) [167,168], suggesting a connection between metabolism and deubiquitination of
BRISC substrates. Contrary to what might be expected, however, interactions between SHMT2 and BRISC are
required for the latter to deubiquitinate type I interferon (IFN) receptor IFNAR1 at the cell surface [167,169].
Deubiquitination of IFNAR1 limits internalization and lysosomal degradation of the receptor, and thereby pro-
motes IFN signaling. It was suggested that SHMT2 involvement in substrate targeting combined with its revers-
ible inhibition of BRISC, perhaps through its displacement by K63-linked polyubiquitin on BRISC substrates,
might prevent non-specific BRISC DUB activity [167]. Deubiquitination of the HIV-1 Tat protein by BRISC
has also been shown to require SHMT1 or SHMT2 [170]. Whether deubiquitination of NLRP3 by BRISC is
dependent on SHMT enzymes has not been investigated.
Small molecule inhibitors of JAMM DUBs, thiolutin and holomycin, limit pyroptosis and inflammation

induced by both wild-type and autoactivating NLRP3 mutants, in large part by inhibiting BRCC3 [171].
Therefore, inhibition of BRISC with more specific inhibitors may represent an alternative strategy to NLRP3
inhibitors for the treatment of NLRP3-driven diseases. However, effects on other BRISC substrates, including
IFNAR1 [169] and JAK2 [172] must be considered. Further complicating matters, BRCC3 has been implicated
in oligodendrocyte differentiation [173], plus BRCC3 and some of the other BRISC components also function
in the nuclear BRCA1-A complex involved in DNA repair [168].

Other DUBs
In contrast with BRCC3, CYLD and its binding partner SPATA2 suppress activation of the NLRP3 inflamma-
some [174]. Mechanistically, it was suggested that CYLD deubiquitinates centrosomal PLK4, leading to interac-
tions between NEK7 and PLK4 at the centrosome that interfere with inflammasome assembly by preventing
interactions between NEK7 and NLRP3. NEK7 serves as a scaffold bridging adjacent NLRP3 subunits [166].
A20 also suppresses activation of the NLRP3 inflammasome [175]. Eliminating A20 from mouse macrophages
causes arthritis that involves NLRP3, ASC, IL-1R, RIPK3, and MLKL [76,176]. RIPK3-dependent cell death can
activate the NLRP3 inflammasome [152,153]. Therefore, aberrant necroptosis of A20-deficient macrophages is
thought to activate the NLRP3-ASC-caspase-1 inflammasome to processes pro-IL-1β into biologically active
IL-1β [76]. Cleavage of GSDMD by caspase-1 and subsequent pyroptosis are probably dispensable because
MLKL-dependent necroptosis suffices to release proinflammatory IL-1α and IL-1β [76].
DUBs regulating activation of the other inflammasomes have been described, but the details are still

emerging. For example, USP21 was shown to deubiquitinate and stabilize AIM2 that is activated by cytosolic
double-stranded DNA [177], whereas CYLD may remove K63-linked polyubiquitin from NLRP6 to suppress
inflammasome activation in mice infected with Citrobacter rodentium [178].

DUBs regulating intrinsic apoptosis
The intrinsic apoptosis pathway is triggered by diverse cellular insults, including DNA damage, oncogene acti-
vation, and survival factor withdrawal. The pathway is regulated by members of the BCL-2 protein family,
which feature up to four BCL-2 homology domains (BH1-4). Death is unleashed when the BH3-only proteins
(BAD, BID, BIK, BIM, BMF, HRK, NOXA, or PUMA) are up-regulated. BH3-only proteins bind to a selection
of their pro-survival relatives (BCL-2, BCL-2 related protein A1, BCL-W, BCL-XL, or MCL-1) and prevent
them from sequestering the pro-apoptotic effectors BAK and BAX (Figure 4). Certain BH3-only proteins may
also activate BAK and BAX directly. Oligomerization of BAX and BAK leads to permeabilization of the outer
mitochondrial membrane and cytochrome c is released into the cytoplasm. Interactions between cytochrome c
and cytoplasmic APAF1 lead to assembly of the apoptosome complex that activates caspase-9, the apical
caspase in a proteolytic cascade that dismantles the cell (reviewed by [179,180]). Another pro-apoptotic
effector, BOK, appears to disrupt mitochondria and trigger apoptosis only when it escapes ubiquitin-dependent
proteasomal degradation mediated by the gp78 ubiquitin ligase complex [181]. Whether there is a DUB that
can reverse the constitutive ubiquitination of BOK is unclear.
MCL-1 is the most labile of the pro-survival proteins, being modified with K48-linked polyubiquitin and tar-

geted for proteasomal degradation by several ubiquitin ligases, including HUWE1 (also called MULE) [182],
SCFFBW7 [183,184], and MARCH5 [185]. Different ligases appear to act in different contexts. For example,
MARCH5 drives degradation of MCL-1 that is bound to NOXA [186,187], HUWE1 promotes degradation of
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MCL-1 in response to DNA damage [182], and SCFFBW7 instigates degradation of MCL-1 by antitubulin che-
motherapeutics [184]. DUBs shown to enhance cell survival by deubiquitinating MCL-1 and limiting its turn-
over include USP9X, DUB3 (also called USP17L2), and USP13 [188–190]. Elevated expression of these DUBs
correlates with elevated expression of MCL-1 protein in certain patient tumors [188–190]. Thus, aberrantly
high expression of DUBs that can stabilize MCL-1 may contribute to tumor development and resistance to
chemotherapy. Interactions between MCL-1 and its DUBs may be regulated. For example, phosphorylation of
MCL-1 following DNA damage was shown to limit interactions between MCL-1 and USP9X [188].
USP9X is essential for mouse embryogenesis [191–194], but whether MCL-1 instability and activation of the

intrinsic apoptosis pathway contributes to lethality in USP9X-deficient embryos is unclear. USP9X has other
substrates besides MCL-1 that are essential for normal embryogenesis, including PEG10 and polycomb repres-
sive complex 2 (PRC2) components SUZ12 and EZH2 [194,195]. DUB3 and USP13 also have other substrates
that regulate diverse cellular processes [196–198].
BAP1 is a UCH family DUB that suppresses intrinsic apoptosis in some mouse cell types by promoting the

expression of Mcl1 and Bcl2 [199]. In complex with ASXL1, ASXL2, or ASXL3, BAP1 removes monoubiquitin

Figure 4. Deubiquitinases USP9X, DUB3, and USP13 promote cell survival by stabilizing MCL-1.

Activation of the intrinsic apoptosis pathway is regulated by members of the BCL2 protein family. The BH3-only pro-apoptotic

proteins (colored yellow) bind to and neutralize their pro-survival relatives (colored pink), thereby unleashing the pro-apoptotic

effectors BAX and BAK (colored red) to permeabilize the mitochondrial outer membrane. Some BH3-only proteins may also

engage BAX and BAK directly. Mitochondrial cytochrome c is released into the cytoplasm, triggering assembly of an APAF1

complex that activates caspase-9. The executioner caspases 3 and 7 are cleaved and activated by caspase-9 resulting in the

highly orchestrated proteolytic events that dismantle the cell. Deubiquitinases, including USP9X, DUB3, and USP13, promote

cell survival by cleaving K48-linked polyubiquitin from MCL-1 that would otherwise target it for proteasomal degradation. The

pro-apoptotic effector BOK is unstable owing to its constitutive ubiquitination. A DUB that removes ubiquitin from BOK has not

been described. Figure created with BioRender.com.
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from histone H2A lysine 119 and thereby counters transcriptional repression mediated by ubiquitin ligases
RNF2 and RING1 of the polycomb repressive complex 1 (PRC1) [199–203]. There is considerable interest in
understanding gene regulation by BAP1 because it is a potent tumor suppressor. Humans with an inactivating
germline mutation in BAP1 are predisposed to cancer, especially uveal melanoma and mesothelioma (reviewed
by [204]). The transcriptional changes that promote tumor development upon loss or inactivation of the other
BAP1 allele remain unclear.
USP7 (also called HAUSP) is another DUB that suppresses intrinsic apoptosis indirectly. In unstressed cells,

USP7 deubiquitinates the ubiquitin ligase HDM2 (or its mouse counterpart MDM2) to limit proteasomal deg-
radation of HDM2 and its binding partner HDMX (MDMX in mice) (reviewed by [205]). Stabilization of the
HDM2-HDMX ligase promotes ubiquitination and proteasomal degradation of the tumor suppressor and tran-
scription factor p53, whose target genes include BBC3 (encoding PUMA), PMAIP1 (encoding NOXA), and
BAX [206]. Thus, one role of USP7 in healthy cells is to limit p53-dependent expression of pro-apoptotic
BCL-2 family members. After DNA damage, however, phosphorylation of the HDM2-HDMX ligase disrupts
interactions between HDM2 and USP7, leading to degradation of the ligase and activation of p53-dependent
transcription [205]. This regulatory mechanism is reminiscent of how USP9X activity towards MCL-1 is dis-
rupted after DNA damage. Disabling the pro-survival roles of DUBs in stressed cells makes sense because it
favors activation of the intrinsic apoptosis pathway if the cells are damaged beyond repair. USP7, like most of
the DUBs reviewed here, can deubiquitinate several substrates. For example, it can also deubiquitinate histone
H2B [207] and N-MYC [208]. Accordingly, USP7 deficiency in mice has both p53-dependent and
p53-independent consequences [209,210].
In contrast with USP7, OTUB1 can stabilize p53 in cells, but this activity does not require its catalytic activ-

ity [211]. OTUB1 may instead interfere with ubiquitination of p53 by inhibiting the E2 enzyme UbcH5. Other
DUBs implicated in the deubiquitination and stabilization of p53 include USP10 [212] and the MJD DUB
Ataxin-3 [213].

Conclusions and future directions
DUBs cleaving either monoubiquitin or polyubiquitin can modulate the cell death machinery directly (for
example, USP9X and BRISC) or indirectly (for example, OTULIN and BAP1) by controlling the abundance,
conformation, and/or interactions of key cell death proteins. Although this review has discussed some of the
DUBs regulating cell death signaling, there are ubiquitination events in these pathways where the ubiquitin
ligases and DUBs have yet to be identified. For example, the enzymes controlling ubiquitination of MLKL to
either limit [214] or promote necroptosis [215] remain unknown. The mechanisms regulating DUB-substrate
interactions are also an area of interest. Relatively little is known about the regulation of DUBs such as
OTULIN and BAP1. Finally, most of the DUBs reviewed here do not target a single protein or cell death signal-
ing alone, but have multiple substrates involved in diverse biological processes. Thus, much remains to be
uncovered in exploring the therapeutic potential of targeting DUBs to manipulate cell death signaling.
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