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Stroke is the second leading cause of global mortality and continued efforts

aim to identify predictive, diagnostic, or prognostic biomarkers to reduce the

disease burden. Circulating microRNAs (miRNAs) have emerged as potential

biomarkers in stroke. We performed comprehensive circulating miRNA

profiling of ischemic stroke patients with or without type 2 diabetes mellitus

(T2DM), an important risk factor associated with worse clinical outcomes in

stroke. Serum samples were collected within 24 h of acute stroke diagnosis

and circulating miRNAs profiled using RNA-Seq were compared between

stroke patients with T2DM (SWDM; n = 92) and those without T2DM (SWoDM;

n = 98). Our analysis workflow involved random allocation of study cohorts

into discovery (n = 96) and validation (n = 94) datasets. Five miRNAs were

found to be differentially regulated in SWDM compared to SWoDM patients.

Hsa-miR-361-3p and -664a-5p were downregulated, whereas miR-423-3p,

-140-5p, and -17-3p were upregulated. We also explored the gene targets

of these miRNAs and investigated the downstream pathways associated with
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them to decipher the potential pathways impacted in stroke with diabetes

as comorbidity. Overall, our novel findings provide important insights into

the differentially regulated miRNAs, their associated pathways and potential

utilization for clinical benefits in ischemic stroke patients with diabetes.
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Introduction

Based on data gathered from 204 countries and territories
between 1990 and 2019 (1), stroke remains the second leading
cause of global mortality and has shown staggering increases in
overall incidence, prevalence and death. These surges have been
predominantly observed in younger populations belonging to
low-income countries. At the same time, elevated blood pressure
(BP), high body mass index (BMI), elevated fasting glucose
levels, ambient particulate matter and smoking are considered
the leading risk factors for stroke (1). In contrast, the incidence
of ischemic strokes has been shown to steadily decline between
1993 and 2015 in studies conducted in the USA, with evidence
of increased risk among Black and Hispanic females (≥70 years)
in follow-up studies till 2019, while adults with treated BP also
showed a significant reduction (42%) in stroke risk (2).

Stroke refers to a neurological deficit caused by acute
focal injury of the central nervous system (CNS) due to
a vascular cause (3). It is broadly classified into ischemic
and hemorrhagic strokes, with the former caused by arterial
occlusions, constituting most of stroke cases (4). Ischemic
strokes are further divided into small-vessel occlusions, large-
artery atherosclerosis, cardioembolism, or strokes of other
determined or undermined etiologies (5). Treatment options
for ischemic strokes are dependent on the duration from stroke
onset, the extent of neurologic deficit and observations recorded
by neuroimaging (3), while the clinical outcomes are widely
assessed by the modified Rankin scale (mRS), which is also
utilized as a robust tool for assessing the efficacy of treatment
(6). Importantly, while diabetes is a known important risk factor
for stroke (7), evidence has shown that it is also associated with
worse clinical outcomes and fatal ischemic strokes (8, 9).

Diabetes is strongly associated with vascular diseases
(10) and uncontrolled hyperglycemia can lead to ischemic
or hemorrhagic strokes (11). In a 20-year follow-up data
of more than 13,000 subjects, the risk of stroke was two-
to threefold higher in type 2 diabetes mellitus (T2DM)
patients, independently of other known risk factors (12).
A meta-analysis covering ∼360,000 individuals showed that
around one third of all stroke patients had diabetes and
the presence of hyperglycemia/diabetes were associated with
poor stroke outcomes (13). Notably, hyperglycemia included

both pre-existing diabetes as comorbidity and post-stroke
surges in fasting-blood glucose levels in stroke patients (13).
Similarly, newly diagnosed diabetes cases were associated
with more severe strokes, poorer outcomes, and increased
mortality than pre-existing diabetes (14). In addition, the impact
of pre-existing diabetes, acute hyperglycemic events during
a stroke and post-reperfusion outcomes in stroke patients
with diabetes can also have significant implications on stroke
management (15). Fasting hyperglycemia recorded a day after
mechanical thrombectomy in acute ischemic stroke patients
was associated with worse clinical outcomes (16). Consequently,
the associations between administration of anti-diabetic drugs
and stroke risk have been thoroughly explored and evidence
shows that selective anti-diabetic therapies such as metformin
can have favorable effects on reducing stroke risk, while others
may increase or pose no effect on the risk of ischemic strokes (17,
18). Additionally, investigations on the effects of cholesterol-
lowering statins for reducing stroke risk showed elevated risk
for diabetes due to statin use. However, cardiovascular events
and clinical outcomes were favorable and exceeded the risk-to-
benefit ratio for diabetes in favor of cardiovascular and mortality
benefits of statin therapy (19, 20).

A stroke results in molecular imbalances due to the
pathological and physiological events that take place.
MicroRNAs (miRNAs) are small non-coding RNAs that
form a regulatory network by affecting gene expression and
are altered in various pathological conditions (21). Performing
next-generation sequencing (NGS) on peripheral blood
samples is a robust approach to decipher the global miRNA
expression profiles (miRnome) and is increasingly utilized
to improve understanding of various clinical pathologies
including aneurysmal subarachnoid hemorrhages (22) and
chronic kidney disease (23). Notably, miRNAs are consistently
being explored as predictive, diagnostic, prognostic, and
therapeutic markers in stroke (24). Accumulating evidence
has shown the differential gradients in the expression
levels of various miRNAs incurred transiently during
ischemic strokes or with long-term alterations in peripheral
blood samples from stroke patients (25–34). Likewise, the
miRNA regulatory network affected in diabetes and its
complications has been extensively explored and has led to
the identification of various candidate miRNAs with potential
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FIGURE 1

Study cohort and analysis workflow. (A) The study comprised acute ischemic stroke patients with and without type 2 diabetes mellitus (SWDM;
n = 92, SWoDM; n = 98). Patients were randomly divided into discovery and validation cohorts with comparable distribution of covariates (age,
gender, diabetes and statin treatment). Statistically significant parameters (P < 0.05) between SWDM and SWoDM patients are marked with an
asterisk (*). (B) Serum samples were collected within 24 h of clinical diagnosis of acute ischemic stroke from SWDM and SWoDM patients.
Differentially regulated and statistically significant miRNAs detected in the discovery dataset generated from miRNA transcripts by RNA-Seq
were investigated in the validation dataset. Combined analysis was then performed to identify FDR-significant miRNAs presented as validated
differentially regulated miRNAs in SWDM compared to SWoDM patients.

diagnostic and prognostic ability (35, 36). However, very few
studies have explored and linked the aberrant expression
of miRNAs in diabetes and stroke (37–40). Importantly,
these studies have exclusively utilized targeted approaches
using real-time quantitative PCR. Combined, the impact
of diabetes on stroke and the associated fluctuations in
the miRNA regulatory network warrant comprehensive
investigations for their potential to further improve our
understanding of the molecular pathways involved in
diabetes-associated stroke.

In the present study, the circulating miRNAs in serum
samples from acute ischemic stroke patients with or without
clinically diagnosed T2DM were profiled using RNA-Seq and
thoroughly investigated. We used a rigorous analysis approach
for the robust identification of differentially expressed miRNAs.
Using a similar approach, we have recently reported a panel
of 10 differentially regulated miRNAs with remarkably high
discriminatory performance between acute ischemic stroke
patients and healthy controls (41). In the present study
we focused our investigations on T2DM, a critical factor
associated with stroke outcomes. We identified a panel of five
differentially regulated miRNAs between stroke patients with
T2DM (SWDM) and stroke patients without T2DM (SWoDM).
We also probed the previously experimentally validated gene
targets and potential pathways affected by these miRNAs.
Our findings warrant further functional investigations and
validations for their ultimate clinical translation.

Materials and methods

Patient samples

This study was approved by the Institutional Review Boards
of Qatar Biomedical Research Institute (Approval no. 2019-
013) and Hamad Medical Corporation (Approval no. 15304/15),
Doha, Qatar. Written informed consents were taken from all
participating individuals prior to sample collection. The study
population (n = 190) comprised clinically diagnosed patients
with acute ischemic stroke admitted to Hamad General Hospital
(Doha, Qatar). Fresh serum samples were collected (within
24 h of stroke onset) and stored at −80◦C for downstream
analysis. Patients were divided into two groups based on
clinical diagnosis of T2DM; SWDM (n = 92) and SWoDM
(n = 98). Patients’ clinical records covering information on prior
treatments administered for T2DM or cholesterol-lowering
drugs (statins) were also retrieved from hospital records. The
characteristic features of study population are presented in
Figure 1A.

Study design and analysis workflow

The overall study cohort comprised acute ischemic stroke
patients with and without T2DM. The study cohort was
randomly divided into discovery and validation cohorts with
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FIGURE 2

Identifying differentially regulated miRNAs in SWDM compared to SWoDM patients. Volcano plots show the number of differentially regulated
miRNAs in SWDM versus SWoDM patients: red dots depict statistically significant (P < 0.05) and gray dots depict unsignificant miRNAs, while bar
plots show the number of statistically significant miRNAs: downregulated in teal and upregulated presented in crimson color in (A) discovery
and (B) validation datasets.

TABLE 1 Differentially regulated miRNAs in SWDM compared to SWoDM patients.

miRNA Discovery Validation Combined

FC* P-value FC P-value FC P-value**

hsa-miR-361-3p −1.28 2.95 × 10−2
−1.39 4.67 × 10−3

−1.34 1.57 × 10−4

hsa-miR-423-3p 1.45 1.34 × 10−2 1.40 4.76 × 10−3 1.37 5.53 × 10−4

hsa-miR-664a-5p −1.38 7.43 × 10−3
−1.35 1.85 × 10−2

−1.29 3.44 × 10−3

hsa-miR-140-5p 1.39 1.57 × 10−2 1.40 1.88 × 10−3 1.24 5.20 × 10−3

hsa-miR-17-3p 1.60 4.35 × 10−2 1.61 1.67 × 10−2 1.45 5.23 × 10−3

*Fold change. **FDR < 0.05.

comparable distribution of covariates (number, gender, age, and
treatment for T2DM and statin administration), and analyzed
by RNA-Seq (n = 190) (Figure 1A). Briefly, the miRNA profiles
of SWDM patients were first compared with SWoDM patients
in the discovery cohort. The panel of differentially regulated
and statistically significant (P < 0.05) miRNAs identified in
the discovery dataset was validated in the validation cohort
(Figure 1B). Combined analysis was then performed using more
stringent analysis criteria (false discovery rate; FDR < 0.05)
to identify robust differentially regulated miRNAs. This panel
of miRNAs represented the differentially regulated miRNAs in
SWDM compared to SWoDM and further downstream analyses
were performed to explore the potential pathways affected by
their targets.

MicroRNA purification and sequencing

RNA-Seq was performed on collected samples as
previously described (41). Briefly, circulating miRNA from
serum samples (200 µl) were extracted using miRNeasy
Serum/Plasma Advanced Kit (Qiagen, Hilden, Germany) and
RNA concentrations were measured by Qubit RNA Broad

Range Assay Kit (Invitrogen, CA, USA). Library preparation
was carried out using QIAseq miRNA NGS Library Kit (Qiagen)
and indexing was done using QIAseq miRNA NGS 96 Index
IL kit (Qiagen). The quality control measures for generated
libraries were performed using Qubit dsDNA HS assay kit
(Invitrogen) and Agilent 2100 Bioanalyzer DNA1000 chip
(Agilent Technologies, Santa Clara, CA, USA). The pooled
libraries were clustered using TruSeq PE Cluster Kit v3-cBot-
HS (illumina, San Diego, CA, USA). Sequencing was performed
on illumina HiSeq 4000 system (10 million reads per sample)
using HiSeq 3000/4000 SBS kit (illumina).

Data processing

The NGS data generated as single reads (at 75 cycles)
were aligned to the human miRbase v22 reference genome in
CLC Genomics Workbench (v.21.0.5, Qiagen). The expression
levels of miRNA transcripts were presented as counts per
million (CPM) of the total count of mapped miRNA reads.
Calibration for RNA spike-in (RNA transcript of known
sequence and quantity) was also performed. The differential
miRNA expression analyses were carried out on RStudio
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(version 4.1.1; RStudio, MA, USA) utilizing the DSEq2 method
(V. 1.32.0) (42), while adjusting for covariates (age, gender,
diabetes, and statin treatment). Statistical analyses and data
visualization were performed using GraphPad Prism 9.1.2
(GraphPad Software, MD, USA).

MicroRNA target and pathway analysis

The miRNA targets were identified from the miRTargetLink
2.0 (43). The gene enrichment and functional protein
association network analysis of the target gene panel was
performed by STRING (44), while functional pathway analyses
were performed using QIAGEN Ingenuity Pathway Analysis
(IPA) software (QIAGEN Inc.1) (45).

Results

Identification of differentially regulated
microRNAs in stroke patients with type
2 diabetes mellitus

Our study cohort comprised clinically diagnosed stroke
patients with or without T2DM as a comorbidity (Figure 1A).
The study population was predominantly comprised of males,
while SWDM patients were also significantly older than
SWoDM patients. In addition, T2DM and statin therapies were
administered to significantly higher proportions of SWDM
compared to SWoDM patients, as expected. Considering these
differences in characteristics of study cohorts, we corrected for
these covariates in our analysis model and workflow, which
involved random allocation of SWDM and SWoDM patients
into discovery and validation datasets for the identification of
replicated and statistically significant (FDR < 0.05) differentially
regulated miRNAs (Figure 1B).

We first compared the circulating miRNA profiles of
SWDM patients with SWoDM patients in the discovery
cohort datasets (Figure 2A). We found that 51 miRNAs were
differentially regulated between the two groups (P < 0.05) and
showed varying degrees of fold change (FC) (Supplementary
Table 1). We then tested these miRNAs in the validation
cohort (Figure 2B) and out of the 51 miRNAs, 10 miRNAs
showed significant dysregulation in the validation dataset
(P < 0.05). Next, we performed combined analysis and five
miRNAs remained statistically significant at FDR < 0.05 for
the expression levels of the identified miRNA panel between
SWDM and SWoDM patients with consistent direction of effect
as shown in Table 1.

1 https://digitalinsights.qiagen.com/IPA

Differentially regulated microRNAs
validated in stroke patients with type 2
diabetes mellitus

Five miRNAs; hsa-miR-361-3p, hsa-miR-423-3p, hsa-
miR-664a-5p, hsa-miR-140-5p, and hsa-miR-17-3p were
dysregulated between SWDM and SWoDM patients
(Figure 3A). Out of these, two showed downregulation,
while the remaining showed upregulation in SWDM versus
SWoDM patients. Although these miRNAs showed moderate
dysregulation in terms of FC, they showed high statistical
significance (FDR < 0.05). Hsa-miR-361-3p was the most
significant differentially regulated miRNA (Figure 3A). In
addition, we also compared the CPM values of the five validated
miRNAs, which also revealed significant differences between
SWDM and SWoDM patients (Figure 3B).

Identifying potential
microRNA-mediated pathways
affected in stroke patients with type 2
diabetes mellitus

To explore the potential pathways affected by the panel of
the statistically dysregulated five miRNAs in SWDM compared
to SWoDM, we retrieved the experimentally validated molecular
targets of these miRNAs in the miRTargetLink 2.0 database
with strong experimental evidence. We compiled a list of
47 gene targets (Table 2). We first performed protein–
protein interaction (PPI) and functional enrichment analysis
of the proteins encoded by the 47 genes using STRING
(Figure 4). The generated PPI network showed high statistical
significance (P = 1.0 × 10−16) of the protein associations with
strong involvement of VEGFA, STAT1, CDKN1A, and PTEN,
among others (Figure 4A). Moreover, Gene Ontology (GO),
biological process (BP), and molecular function (MF), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
gene enrichment analysis predominantly showed vasculature-
related pathways and the involvement of molecular pathways
associated with disrupted homeostasis also observed in cancer
(Figure 4B).

Next, investigating the clinical pathologies associated with
these gene targets showed marked associations with cardiac
anomaly-, hepatic-, and renal damage-related annotations
(Figure 5A). In addition, the Ingenuity pathway and network
analysis for the genes affected by dysregulated miRNAs in
SWDM patients showed significant enrichment for two major
pathways; histone H3 variants and TP53 canonical pathways.
Gene networks related to histone H3 highlighted enrichment
in gastric development and function, neurological disease
and organismal injury and abnormalities, which include
edema, hemorrhage and lesions (Figure 5B). Additionally,
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FIGURE 3

Validated miRNAs in SWDM patients compared to SWoDM patients. (A) Column plot shows the fold change (FC) and standard error of the mean
(SEM) of FDR-significant validated, differentially regulated miRNAs (n = 5) in SWDM versus SWoDM patients: downregulated in teal and
upregulated in crimson color. (B) Box and whiskers plots show the difference in counts per million (CPM) of the five validated miRNAs in SWDM
and SWoDM patients. Mean with minimum and maximum values, upper and lower quartiles, and statistical significance (P < 0.05) marked by an
asterisk (*) are shown for each dataset.

cancer, hematological and immunological disease-related
pathways, mediated by TP53 gene network, were also
annotated with interactions between miRNA panel gene
targets (Figure 5C).

Discussion

In this study, we identified five differentially regulated
circulating miRNA in SWDM compared to SWoDM patients.
While some of the miRNAs have been previously explored in
relation to stroke or T2DM separately, their contribution to
the impact of T2DM on stroke remains largely unexplored.
SWDM patients have been previously reported to show worse

TABLE 2 The experimentally validated miRNA targets of the identified
panel of differentially regulated miRNAs in SWDM compared
to SWoDM patients.

miRNA Target

hsa-miR-361-3p SH2B1

hsa-miR-423-3p TCEAL1, CDKN1A, PA2G4, BCL2L11

hsa-miR-664a-5p *

hsa-miR-140-5p ALDH1A1, DNMT1, DNPEP, SOX2, HDAC4, VEGFA,
PDGFRA, OSTM1, FGF9, TGFBR1, SOX9, FZD6, SEPT2,
IGF1R, RALA, MMD, PAX6, HDAC7, LAMC1, ADA,
SNORD12C, STAT1, PIN1, MEG3, GALC, GALNT16,
SOX4, HMGN5, FGFRL1, SMURF1

hsa-miR-17-3p ICAM1, KDR, VIM, SOD2, GPX2, TXNRD2, GALNT7,
TIMP3, ITGA5, ITGB3, NCOA3, PTEN

*No experimentally validated gene target.

disease outcomes, high recurrence and mortality compared to
SWoDM patients (46). Deciphering the changes in the miRNA
regulatory network in SWDM patients has, therefore, a potential
therapeutic and prognostic significance.

Our data showed significant downregulation of miR-361-3p
in SWDM compared to SWoDM. The downregulation of hsa-
miR-361-3p has been previously reported in a cerebral artery
occlusion-induced ischemic stroke murine model and presented
as a potential therapeutic target following cerebral ischemic
reperfusion injury (47). miR-361-3p has also been previously
linked with vascular hemostasis. Upregulation of miR-361-
3p was observed in patients with hereditary hemorrhagic
telangiectasia (HHT) (48). Moreover, Huang et al., showed
the involvement of miR-361-3p in inhibiting high-glucose
induced vascular endothelial injury (49). Notably, the sole
experimentally validated gene target of hsa-miR-361-3p, SH2B1
is identified as a crucial protein involved in regulating
energy balance, body weight, insulin sensitivity and glucose
metabolism/homeostasis (50, 51). SH2B1 is also associated with
myocardial infarction in diabetic patients (52) while, Genome-
Wide Association Studies (GWAS) have associated variants in
SH2B1 with BMI (53, 54). The dysregulation of miR-361-3p in
SWDM patients indicates the impact on glucose metabolism
but further studies are required to investigate this relation.
Similarly, miR-664a-5p has been shown to promote neuronal
differentiation (55) and its downregulation in SWDM patients
indicates the suppression of neuroprotective machinery. Of
note, dysregulation of miR-664a-5p has also been associated
with the senescence of vascular smooth muscle cells and it has
been proposed as a potential diagnostic marker and therapeutic
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FIGURE 4

Functional enrichment analysis of the proteins encoded by the gene targets of dysregulated miRNAs in SWDM versus SWoDM patients. (A) The
protein–protein interaction (PPI) network generated for the 47 gene targets of the identified miRNA panel is shown. Network nodes represent
proteins, while edges depict protein–protein associations. The key network statistics are also presented. (B) The top functional enrichment
annotations from Gene Ontology (GO), biological process (BP)/molecular function (MF), and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways are listed.

target for cardiovascular diseases (56, 57). Moreover, Kim et al.,
reported upregulation of exosomal miR-664a-5p in obese T2DM
patients compared to healthy controls (58). The dysregulation
of miR-664a-5p could be associated with disease complications
in SWDM patients but further investigations are required to
confirm this association and also to experimentally validate
its gene targets.

The downregulation of hsa-miR-423-3p has been previously
reported as a biomarker for acute ischemic stroke patients
(30) and has been associated with worse overall survival in
patients with heart failure (59). However, its upregulation has
been linked with onset and severity of Type 1 diabetes (60,
61) and it also showed high predictive potential in identifying
T2DM remission after sleeve gastrectomy (62). We found that
miR-423-3p was upregulated in SWDM patients compared to
SWoDM patients, which suggests its association with diabetes.
Importantly, upregulation of CDKN1A, an experimentally
validated gene target of mir-423-3p, is presented as a specific
marker of ischemic brain (63). GWAS also showed that variants
in CDKN1A are associated with ischemic strokes (64), atrial
fibrillation and cardioembolic stroke (65), while variants in
other experimentally validated gene targets of mir-423-3p;

PA2G4 are associated with BMI (66) and BCL2L11 with T2DM
and cholesterol levels (67).

Ortega et al., reported upregulation of hsa-miR-140-
5p in T2DM patients compared to healthy controls and
showed its high discriminant capacity for T2DM (68). miR-
140-5p was also upregulated in a blood stasis syndrome
(BSS) model with diabetes compared to diabetes without
BSS (69). Notably, it was reported that miR-140-5p could
nullify the high glucose-induced inflammation and apoptosis
in renal tubular cells (70) and mediate neuroprotection in
ischemic strokes via exploitation of TLR4/NF-κB pathway
(71). Of note, miR-140-5p has been also presented as an
early biomarker for late-onset post-stroke depression (72). Our
data showed upregulation of miR-140-5p in SWDM patients,
which is in agreement with the findings of Ortega et al.
(68) and suggests its involvement in diabetes-related pathways.
Elevated activity of the experimentally validated gene target
of mir-140-5p, ALDH1A1 was associated with severity of
T2DM (73). Among other experimentally validated miR-140-
5p gene targets, DNMT1, HDAC4, and HDAC7 are involved
in epigenetic machinery. The associations between DNA
methylation patterns and increased risk of various pathologies
including diabetes, cancer, hypertension and atherosclerosis are
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FIGURE 5

Disease annotation and Ingenuity pathway analysis for the gene targets of dysregulated miRNAs in SWDM versus SWoDM patients. The gene
targets of the five dysregulated miRNAs in SWDM patients compared to SWoDM patients were analyzed for disease/function annotation and
network analysis. (A) Bar plot shows the diseases annotations. (B,C) Ingenuity pathway network analysis of the gene targets of dysregulated
miRNAs in SWDM patients are shown.

well documented (74). The miRNA modulation of these gene
targets coupled with modulation of additional gene targets
associated with vasculature such as VEGFA and MMD by
miR-140-5p indicates the potential involvement of another
mechanism responsible for worse disease outcomes in SWDM
patients via atherosclerotic vascular diseases or via epigenetic
mechanisms (75). Additionally, GWAS have associated single
nucleotide polymorphisms (SNPs) in miR-140-5p gene targets
such as SEPT2 (SEPTIN2) with T1DM (76), DNMT1 with CVD
(77) and HDAC4 with increased susceptibility to myocardial
infarction following coronary artery bypass surgery (78).

The upregulation of hsa-miR-17-3p was previously
identified as a diagnostic and potential biomarker for acute
ischemic strokes in two independent studies but it was not
replicated in the validation cohorts (31, 79). Herein, we
validated that miR-17-3p is upregulated in SWDM patients.
miR-17-3p has been also associated with diabetic retinopathy
(80, 81), coronary artery disease, cardiac ischemia (82–84) and

has been previously presented as a circulating biomarker for
T1DM (85, 86). Importantly, the experimentally validated gene
target of miR-17-3p, ICAM1 is strongly associated with poor
prognosis in acute ischemic strokes (87). Changes in ICAM-1
serum concentration were reported in ischemic stroke patients
with cerebral microbleeds and were associated with increased
risk of hypertension and diabetes (88). Additionally, variants
in ICAM1 and serum ICAM-1 levels are also associated with
the development of diabetes and diabetic nephropathy (89).
However, targeting ICAM-1 in ischemic stroke patients is not a
viable therapeutic strategy as using anti-ICAM-1 antibody led to
worse clinical outcomes in a clinical trial of 625 ischemic stroke
patients (90). Among other gene targets of miR-17-3p, VIM
has been associated with total/LDL-cholesterol measurement
(91) and PTEN with T2DM (92) in GWAS. Combined, these
data reflect the potential significance of miR-17-3p in ischemic
strokes with T2DM and highlights pathways related to diabetic
complications such as diabetic retinopathy.
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To understand the potential clinical implication of the
dysregulation in our miRNA panel in SWDM patients, we
performed protein interaction network, functional gene
enrichment and disease annotation and pathway analysis. The
integration of functional annotations and disease mapping is
widely followed and provides crucial understanding related to
genes involved. miRNAs primarily regulate gene expression via
repression during translation or degradation of target mRNA.
The downregulation of miRNAs can promote expression of
its target genes and consequently their protein-associated
pathways. Conversely, miRNA upregulation can impede
expression and function of target genes and their encoded
proteins. However, since gene expression is influenced by
various factors, functional validation of the effects of miRNAs
on their targets is essential for confirmation.

Investigating the predicted interactions between proteins
encoded by the gene targets of differentially regulated miRNAs
in SWDM patients showed strong interaction enrichment.
These interactions predominantly corresponded to vascular
processes, mediated by VEGFA. Atherosclerosis is a known
factor for impaired life expectancy, while diabetic nephropathy
and retinopathy lead to renal diseases and blindness in diabetic
patients (93). However, the disease complications observed
in diabetic patients are multifaceted and involve modulation
of multiple homeostasis-associated processes, also observed
in various human malignancies. For instance, FoxO signaling
regulates multiple processes such as cell cycle, apoptosis
and metabolism, and is dysregulated in both cancer and
diabetes (94). Of note, T2DM patients are at a higher risk
of developing certain cancers including pancreatic and kidney
cancer (95), potentially attributed to metabolic imbalances or
genetic susceptibility. Our findings indicate the influence of
diabetes-related complications and imbalances/exploitation of
cancer-related pathways in SWDM patients.

Linking gene enrichment with disease and function
annotations revealed associations with cardiac-, hepatic-,
and renal-related pathologies, which are strongly associated
with the clinical complications of diabetes. Physiological
changes in cardiac and hepatorenal functions are also
associated with stroke and imbalances in hematological
indicators are commonly observed in diabetes and stroke
patients. Moreover, the Ingenuity pathway analysis of the
gene targets of dysregulated miRNAs in SWDM patients
revealed gastric-, neurological-, and organismal injury-related
pathways and cancer-, hematological-, and immunological
disease-related pathways in SWDM patients. These networks
encompass gastrointestinal disturbances, neurological deficits,
inflammatory and immune imbalances in wound healing,
atherosclerosis and vascular anomalies and reiterate the
significance of underlying pathways, which are potentially
exploited in SWDM patients and affect disease outcomes.
Importantly, we identified several gene/protein targets which
may be explored in future studies.

Investigating the delineation of the miRNA profiles of the
ischemic brain from the healthy brain can potentially disclose
critical pathways affected in stroke. However, the difficult
accessibility to brain tissue renders investigating circulating
miRNAs as the most feasible approach for use as disease
biomarkers. Our findings provide insights into the differentially
expressed miRNAs and their potential effects in SWDM
compared to SWoDM patients. Importantly, our panel of
differentially regulated miRNAs highlights the critical pathways
potentially involved in the neuronal, cardiac, and diabetes-
related complications observed in stroke patients with diabetes
comorbidity and worse clinical outcomes. However, functional
studies are warranted to investigate the biological significance
of the identified dysregulated miRNAs and their associated
pathways. Additionally, the relatively modest sample size of our
study requires validation in a larger sample size in an external
dataset. Of note, females represented a small proportion of our
overall study cohort and repeating the analysis by excluding
females generated essentially the same results. Overall, the gene
targets of the panel of differentially expressed miRNAs and
protein interactions uncovered in our study can be explored
further for their clinical utilization for therapeutic benefits.
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