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Abstract

Environmental exposures to essential and toxic elements may alter health trajectories,

depending on the timing, intensity, and mixture of exposures. In epidemiologic studies,

these factors are typically analyzed as a function of elemental concentrations in biological

matrices measured at one or more points in time. Such an approach, however, fails to

account for the temporal cyclicity in the metabolism of environmental chemicals, which if

perturbed may lead to adverse health outcomes. Here, we conceptualize and apply a non-

linear method–recurrence quantification analysis (RQA)–to quantify cyclical components of

prenatal and early postnatal exposure profiles for elements essential to normal develop-

ment, including Zn, Mn, Mg, and Ca, and elements associated with deleterious health

effects or narrow tolerance ranges, including Pb, As, and Cr. We found robust evidence of

cyclical patterns in the metabolic profiles of nutrient elements, which we validated against

randomized twin-surrogate time-series, and further found that nutrient dynamical properties

differ from those of Cr, As, and Pb. Furthermore, we extended this approach to provide a

novel method of quantifying dynamic interactions between two environmental exposures.

To achieve this, we used cross-recurrence quantification analysis (CRQA), and found that

elemental nutrient-nutrient interactions differed from those involving toxicants. These rhyth-

mic regulatory interactions, which we characterize in two geographically distinct cohorts,

have not previously been uncovered using traditional regression-based approaches, and

may provide a critical unit of analysis for environmental and dietary exposures in epidemio-

logical studies.
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Introduction

Exposures to exogenous elements commence early in fetal development and continue

throughout life, with marked changes in the routes of exposures and pathways that regulate

them. These provide nutrients critical to healthy development, including Ca and Zn, but may

also include elements with generally toxic effects or low physiologic tolerance, including Pb,

Cr, and As [1–3]. The relevance of exposure timing, intensity, and elemental composition to

developmental outcomes is a critical focus in environmental epidemiology, with relevance to

the etiology of multiple disease areas and health outcomes.

Elemental exposure biomarkers in blood and urine can provide a window to elemental con-

centrations at specific points in time, but do not provide a fine-scale temporal history of expo-

sure. This has limited the ability of exposure biologists to study cycles that are inherent in the

metabolism of toxic metals and dietary elements. For example, it has been shown by repeated

blood sampling at 4 hourly intervals that zinc levels follow a daily cycle characterized by peaks

in early morning and markedly lower levels at night [4]. However, it has not been possible to

obtain such refined data in large epidemiologic studies, nor to study these rhythms over pro-

longed periods, using traditional biomarkers. Consequently, environmental epidemiologic

methods have largely failed to uncover the cyclical context of endogenous biological and envi-

ronmental systems. Methods that can characterize the dynamic components of an exposure

profile over time are therefore a clear necessity.

The recent development of methods to assay elemental exposures in tooth dentine matrices

expands this capacity by allowing continuous longitudinal assessments of elemental concentra-

tions throughout pre- and post-natal development [5,6]. The ebb and flow of elemental con-

centrations over time can thus be studied to identify critical developmental windows for

exposure-related health effects, but may also provide insight into the mechanisms involved in

metabolizing elemental exposures. Arora et al. [7] applied a statistical solution, the distributed

lag model (DLM), to the challenge of identifying critical developmental windows in longitudi-

nal exposure profiles derived from teeth. This approach allowed a precise specification of

developmental windows relevant to a given health outcome, but the fundamental unit of analy-

sis was the elemental concentration at a given time-point. An analytical approach to character-

ize cyclical components in elemental exposures thus remains elusive.

Analytical methods appropriate for characterizing dynamic periodic components in time

series data are abundant in signal processing and physical sciences. Fourier analyses, and

wavelet transformations, particularly, are ubiquitous in diverse fields and applications related

to time-series analysis. These traditional approaches are nonetheless best-suited to stationary

signals with high sampling rates and low noise, and thus poorly suited to an exposures context

[8–10].

Recurrence quantification analysis (RQA) [11–13] presents an alternative non-linear

method of characterizing signal dynamics that is particularly robust in contexts with short,

noisy, and non-stationary signals [8–10, 14–16]. For these reasons, RQA appears in diverse

applications in biological fields, including neuroscience, proteomics, cardiology, and behavioral

psychology (reviewed in [15–19]). For example, RQA has been used to analyze periodicities in

posture and gait [20–22] and eye movement [23, 24]. RQA has also been applied in the analysis

of cardiac rhythmicity [25–28], for quantitative assessments of respiratory dynamics [29, 30],

and in the analysis of electrophysiological recordings [31–35]. RQA has further proven useful

in the analysis of genetic and proteomic sequences [36–40]. Thus, overall RQA is a useful tool

for characterizing periodic properties of biological signals at multiple stages of organization.

In the present paper we describe the key concepts underpinning RQA and provide a step-

by-step development of the RQA method for an epidemiologic audience. We demonstrate the
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application of this technique to environmental health studies by using time series data on

developmental element exposure profiles. The data we use were generated using laser ablation

inductively coupled plasma mass spectrometry (LA-ICP-MS), and tracked pre- and post-natal

dentine concentrations of elements. Our analysis reveals significant differences in the cyclical

properties of exposure profiles associated with nutrient elements (Zn, Mn, Mg, Ca), as com-

pared to toxicants (Pb, Cr, As). We characterize these effects in two distinct cohorts, with a dis-

covery cohort from Sweden [41] and a replication cohort in the United States, demonstrating

both the consistency of these patterns and their broad relevance to human health.

Materials and methods

Study samples and laboratory analyses

In our Swedish discovery cohort [41], we studied elemental distribution in the deciduous

teeth of 17 females and 25 males who had no known developmental disorders. Our validation

cohort in the United States was composed of 12 males and 13 females. Our approach to mea-

suring elements in teeth using laser ablation-inductively coupled plasma mass spectrometry

(LA-ICP-MS) and assigning developmental times has been detailed elsewhere [5–7]. The anal-

ysis of teeth data in our study received ethical approval from the review board of the Icahn

School of Medicine at Mount Sinai, New York (IRB no. IRB-16-00742).

Recurrence plots

Recurrence plots (RPs) are a graphical tool for the visualization and analysis of temporal struc-

tures in longitudinal experimental data; RPs are additionally critical in the quantitative analysis

of temporal structures with recurrence quantification analysis (RQA; see below section). The

theoretical basis, development, and application of RPs in diverse research fields are well-

described in reviews by Marwan et al. [17–19] and Webber et al. [15,16]. However, these meth-

ods have not been used in environmental epidemiologic studies. We therefore provide suffi-

cient details of the theoretical framework underpinning this method for readers to interpret

our results. In Fig 1, we provide a graphical outline describing the construction and interpreta-

tion of RPs.

Fig 1A illustrates a sinusoidal waveform generated as an exemplar signal for RP analysis.

Fig 1B shows the first stage in the construction of an RP analysis, the delay embedding process.

With delay embedding the original signal is duplicated but delayed by a given interval of length

τ, yielding two dimensional vectors (red and blue lines) with dissimilar values at a given index

time-point. For simplicity, in this example only a single additional vector is created but this

process may yield additional higher dimensions, as well. The number of additional vectors cre-

ated in the delay embedding process is represented as m, a critical parameter in recurrence

analysis (see below).

In Fig 1C, the signals yielded from the delay embedding process are used to construct a

phase portrait, which takes the range of values in the embedded signals as its axes. For exam-

ple, if at a given time point the value of the original signal (blue line) is 3 and delayed signal

(red line) is 5, then a point is plotted in the phase portrait at coordinates x = 3, y = 5. The full

range of values for each vector is iteratively plotted in the construction of the phase portrait,

thus capturing the full motion of the system as a function of multiple embeddings. While in

this simplified example only two dimensions are plotted, the delay embedding process typically

yields additional higher dimensions to allow the construction of 3-dimensional portraits.

Because here we embedded a perfectly rhythmic sinusoid, the resultant phase portrait is circu-

lar/ellipsoid. The shape of this ellipsoid captures the movement of the system across one

Recurrence quantification analysis of environmental elemental exposures

PLOS ONE | https://doi.org/10.1371/journal.pone.0187049 November 7, 2017 3 / 16

https://doi.org/10.1371/journal.pone.0187049


period/wavelength, with each subsequent cycle creating overlapping points as the system

repeats.

Fig 1D presents the recurrence plot which is the final culmination of this process. The RP is

constructed by first determining a threshold value, ε, illustrated in Fig 1C as a black circle that

is applied to points in the phase portrait. This threshold is iteratively applied to each point in

the phase portrait, and a matrix is constructed to capture the index value (timing) of each

point that falls within that threshold, thereby capturing the timing of each repetition of the sys-

tem’s movement. This is represented on the RP as a black dot; for example, within the blue-

highlighted rectangle on the RP (Fig 1D), every black dot we see represents a point where

the system returned to the same value (within-threshold, ε) it held at that time-point. With

Fig 1. Construction of recurrence plots. A) A 10 Hz sinusoid of wavelength 100 ms. B) In blue, 200 ms of the signal shown in A (indicated

by the black box in panel A). Red line is a vector generated by a delay embedding, whereby the original signal is duplicated with a time-

lagged delay of interval (τ), here 10 ms. C) Phase-portrait of the 10 Hz sinusoid in (A) plotted in two-dimensions (see text). The x-y

coordinates of a given point are determined by the value of amplitude of the delayed embedded signals at each sampling interval. Black

circle indicates an exemplar threshold (ε) used to construct recurrence matrix (D). D) Recurrence plot of 10 Hz sinusoid. Blue rectangle

highlights the points captured by the threshold in C (see text). Black points indicate the timing of repetitions as the system returns to a given

state, defined by threshold ε.

https://doi.org/10.1371/journal.pone.0187049.g001
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reference to the x-axis and y-axis, the timing of these repetitions can be identified; in this

example, with the highlighted rectangle located at approximately 0.5 s on the x-axis, the inter-

vals at which the system enters this state can be identified by aligning recurrence points along

the y-axis. This process is iterated for all time points across the signal, with the resultant struc-

tures reflecting the periodic properties of the signal.

In this example (Fig 1D), using a perfectly periodic sinusoid, the RP yields a structure com-

posed entirely of diagonal lines, indicative of a system smoothly proceeding in periodic

motion. In total 10 lines are apparent, reflecting the 10 cycles of the exemplar signal chosen,

and these are each separated vertically by 100 time intervals (ms), reflecting the exemplar sig-

nal’s wavelength. The features of the RP thus capture the temporal structure of the original sig-

nal, and, further, these features are easily amenable to cross-signal qualitative and quantitative

comparison. Appendix A and B (in S1 File) show similarly presented examples with a sinusoid

injected with random noise, and with an elemental exposure profile like the profiles analyzed

in this study. The latter example is additionally embedded in three dimensions, as is typical.

In Fig 2, we contrast RPs generated from simulated periodic data (Fig 2A), simulated white

noise (Fig 2B), and experimental data reflecting longitudinal measurements of dentine Ca con-

centrations (Fig 2C). As before, a perfectly periodic system yields a recurrence plot entirely

composed of diagonal structures. The randomly generated signal (Fig 2B), in contrast, yields a

scattering of recurrence points (black dots) which fail to coalesce in any vertical, horizontal, or

diagonal structures, reflecting the absence of temporal organization. The experimental data

(Fig 2C), unlike either simulated data series, yields both diagonal elements, indicative of

complex (varying in length) and intermittent periodic signal components, and accompanying

scattered singular recurrence points. These properties can be further characterized in a quanti-

tative analysis.

Fig 2. Recurrence plots for periodic, random, and experimental data. A) Top: A 10 Hz sine wave of wavelength 100 ms. Bottom:

Recurrence plot (RP) of a 10 Hz sine wave (embedding dimension = 6, time delay = 6, Fixed Recurrence Rate (RR) = 10%. B) Top: Time

series of random noise with a mean of 0, and standard deviation of 1. Bottom: RP of random noise (embedding dimension = 6, time

delay = 1, Fixed RR = 10%. C) Top: Time series of Ca exposure profile, showing Ca concentration from -89 to 300 days since birth, reflecting

160 samples with an average sampling interval of 2.4 days. Bottom: RP of Ca count (embedding dimension = 4, time delay = 1, Fixed

RR = 10%).

https://doi.org/10.1371/journal.pone.0187049.g002
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The Cross-Recurrence Toolbox package developed by Marwan [42] for Matlab (Math-

works, MA) was used in the construction of RPs, and in the calculation of the critical parame-

ters in the recurrence analysis. The determination of an appropriate delay interval, τ, was

calculated with a mutual information algorithm, as per the method of Marwan [17, 18]. Simi-

larly, the appropriate number of embedding dimensions, m, was determined with a false near-

est neighbors (FNN) algorithm. To facilitate comparisons of diverse signals, an adaptive

algorithm was used to set threshold (ε) values such that recurrence rates (see below section)

were fixed to 10% in all plots.

Recurrence quantification analysis (RQA)

Recurrence quantification analysis (RQA) focuses on derived measures of the principle struc-

tural elements evident in RPs; that is, the diagonal, vertical, and horizontal lines formed by suc-

cessive recurrent points, i.e., the black dots in recurrence plots. Of these, diagonal lines are of

principle interest in characterizing periodic components in time-series data, as their distribu-

tion and duration indicate the abundance and timing of periodic signal components. Laminar

structures, e.g. vertical or horizontal lines, are also of interest as indicators of signal stability,

for example when a signal stabilizes at a given intensity for a period of time.

Mean diagonal length, consequently, is a critical measure derived from RQA, reflecting a

straightforward measurement of the average length of diagonal lines present in a recurrence

matrix. This measure can be taken as an absolute indicator of the duration of periodic compo-

nents in a given signal. Determinism, similarly, is derived from analysis of diagonal structures,

but here quantifies the relative ratio of diagonal elements to other components in a recurrence

matrix, thus indicating the overall periodic content of a given signal. Recurrence time captures

the mean interval between diagonal elements, while Shannon entropy reflects the variability in

the distribution of diagonal lengths, with low entropy signals exhibiting little complexity in the

distribution of periodic components, and high entropy signals exhibiting diversity in short-

and long-duration periodicities.

RQA also captures the extent to which vertical and/or horizontal structures emerge in

recurrence matrices, reflecting signal constancy. Trapping time describes the mean length of

laminar (vertical/horizontal) structures, analogous to how mean diagonal length captures peri-

odic durations. Laminarity, an overall measure of signal stability, quantifies the ratio of recur-

rence points belonging to laminar structures against the total frequency of recurrence points.

The validity of these measures was tested with a twin-surrogate analytical procedure [43–

45], whereby the sequential data are randomly shuffled and re-analyzed with RQA, in order to

confirm the observed recurrence features are a product of the temporal organization of the

data rather than a spurious auto-correlation. From this perspective a meaningful measurement

of dynamical features should be statistically different from the measurement of the surrogate

time series.

In these analyses, all RPs and RQA analyses were calculated with the Cross-Recurrence

Toolbox package [42] in Matlab 2016a (Mathworks, MA).

Cross-recurrence quantification analysis (CRQA)

Recurrence analyses can be extended to multivariate contexts via the implementation of cross-

recurrence quantification analysis (CRQA). Fig 3 illustrates this process which closely follows

the methods employed in the construction and analysis of RPs. Briefly, two signals in our

experiments comprising of the developmental exposure profiles of different elements are

simultaneously delay embedded following the procedures outlined in the prior section. These

embeddings are then projected in a mutual phase portrait, as in Fig 3A, with different elements
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represented as green or blue, and a threshold value, ε, is iteratively applied to each point to

generate a recurrence matrix, as in Fig 3B. Unlike in a singular recurrence analysis, with cross-

recurrence the threshold captures when each signal enters the threshold range of the other sig-

nal, thus capturing their co-evolution through phase-space.

The recurrence matrix generated in cross-recurrence analysis is amenable to quantitative

assessment of diagonal and laminar structural elements via CRQA. In CRQA, however, the

interpretation of these measures differs from a univariate analysis, in that the co-evolution of

two systems can be determined. Diagonal structures thus represent intervals of synchronous

periodicity, while laminar structures reflect shared intervals of signal stability.

As with RQA, all cross-recurrence plots and CRQA analyses were implemented in the

Cross-Recurrence Toolbox package [42] in Matlab 2016a (Mathworks, MA).

Statistical analysis

Measures derived from RQA/CRQA were analyzed in SAS version 9.4 with linear mixed mod-

els (PROC MIXED) treating elemental type as a repeated measure across subjects with age and

sex as covariates. Post-hoc tests (Tukey) were adjusted for multiple-comparisons. Shapiro-

Wilks tests were used to confirm the normal distribution of continuous variables used in linear

models.

Results

Developmental elemental exposure profiles

In our discovery cohort, we initially measured dentine elemental exposure profiles in 42

teeth covering a mean period of 327.45 days (SD = 107.24), with a mean range of 116.83

(SD = 16.86) days before birth to 210.61 (SD = 110.46) days post-birth. Elements were sampled

from teeth at approximately 2 day intervals (M = 2.27, SD = 0.81), with a mean of 147.93

Fig 3. Cross-recurrence plots. A) Phase-portrait of two elements (see text), sampled between -111 to 304 days since birth, plotted in two

dimensions. Black circle indicates exemplar threshold (ε). B) Cross-recurrence plot of two elements from A.

https://doi.org/10.1371/journal.pone.0187049.g003
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(SD = 23.88) samples per tooth. Fig 4 illustrates the timing parameters of a copper develop-

mental exposure profile for one tooth.

Recurrence quantification analysis (RQA)

We began by constructing recurrence matrices to examine temporal structures of subjects’

developmental exposure profiles to various elements. Fig 5 illustrates this process, with recur-

rence matrices shown for three different elements from a single subject in our discovery

cohort. These exhibit notably different properties, with the element in Fig 5A yielding long

diagonal recurrence structures characteristic of a periodic process, while the element in Fig 5B

exhibited more laminar structures (Fig 5B; note block-like structures composed of vertical/

horizontal lines) indicative of a stable system. Fig 5C, in contrast to each of these, exhibits only

minimal periodic structural features and these emerge only very briefly. Table 1 summarizes

quantification of these example elements via RQA. We confirmed the validity of these mea-

sures with an analysis of twin surrogates, in which each the sequential organization of each

developmental profile was randomized to create a surrogate and each surrogate was analyzed

with RQA. We consistently found significant differences between the original and randomized

signals on Mean Diagonal Length, Entropy, Determinism, Laminarity and Trapping Time,

where randomized signals were less periodic, persistent and complex (see Appendix C annota-

tions in S1 File and Table 2). These results confirm that the recurrence structures quantified in

Fig 4. Exemplar elemental exposure profile. In this example, Cu concentration (y-axis) is plotted over time (x-axis). This exposure profile

covered a developmental period of 198.14 days, beginning 113 days before birth and ending 85.14 days post-birth. Birth is represented by

the 0 point.

https://doi.org/10.1371/journal.pone.0187049.g004
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the observed data are genuine features reflecting an underlying temporal organization rather

than artifacts of autocorrelations.

In our statistical analysis of periodic components in our discovery cohort’s elemental expo-

sure profiles, we found that elemental type drove significant differences in Determinism
(F(6,244) = 11.03, p<0.0001), Mean Diagonal Length (F(6,244) = 18.18, p< 0.0001), Entropy
(F(6,244) = 19.03, p< 0.0001), and Recurrence Time (F(4,244) = 20.24, p < 0.0001), with peri-

odic components more abundant, more persistent, exhibiting greater complexity, and with

shorter intervals between periodic components in nutrient elements as compared to toxicants

(i.e., the distributions in pink are higher than those in blue). Post-hoc analyses (see Fig 6 anno-

tations and Appendix D in S1 File) confirmed these effects were generally attributable to

reduced periodicity in Cr and As profiles relative to nutrients, while Pb generally followed the

periodic signature of Ca exposure profiles. Interestingly, among nutrients Mn exhibited the

strongest periodic signature, with greater determinism, diagonal length, and entropy than

other nutrients. Additionally, the periodic properties of Mn signals were pronounced relative

to other essential elements, exhibiting longer diagonal lengths, entropy, and determinism,

with shorter intervals between cyclical processes (recurrence time). Sex was not a significant

determinant of any periodic signatures.

We identified remarkably similar patterns in our analysis of periodic components in the

elemental exposure profiles of our second replication cohort, and found again that elemental

Fig 5. Recurrence plots for elemental exposure profiles. Recurrence plots of three different elements (sampled in the same subject from

11 to 200 days since birth) showing variation in the diagonal, horizontal and vertical recurrence structures. A) Recurrence plot (RP) of Ca

time series. B) RP of Mn time series. C) RP of Cr time series.

https://doi.org/10.1371/journal.pone.0187049.g005

Table 1. Measures derived from recurrence quantification analysis (RQA) of the recurrence plots

shown in Fig 5.

Ca Mn As

Determinism 0.84 0.89 0.79

Mean Diagonal Length 4.24 3.88 3.23

Entropy 1.91 1.85 1.52

Laminarity 0.30 0.58 0.31

Trapping Time 2.12 3.12 2.48

Recurrence Time 11.11 6.74 10.62

https://doi.org/10.1371/journal.pone.0187049.t001
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type drove significant differences in Determinism (F(6,144) = 33.89, p< 0.0001), Mean Diago-
nal Length (F(6,144) = 28.98, p< 0.0001), Entropy (F(6,144) = 49.54, p< 0.0001), and Recur-
rence Time (F(6,144) = 40.39, p< 0.0001), with higher measured values for nutrients

compared to toxicants (see Fig 6 annotations, and Appendix E in S1 File). Furthermore, we

found again that the dynamical properties of Mn were pronounced relative to other essential

elements, exhibiting longer diagonal lengths, entropy, and determinism, and shorter recur-

rence time. Interestingly, we found reduced periodicity in all toxicants, including Pb, when

compared to nutrient elements. As in our discovery cohort, sex had no significant effect on

periodic signatures in the replication cohort.

We also analyzed signal stability in developmental exposure profiles, and found significant

differences across elements in Laminarity (F(7,244) = 70.59, p<0.0001) and Trapping Time
(F(7,244) = 22.41, p< 0.0001), with nutrients exhibiting greater signal stability and persisting

in stable states for longer than toxicants. Again, in the discovery cohort, Pb proved an excep-

tion to this general pattern, with properties most closely aligned to Ca signals. Sex was not a

significant determinant of Laminarity or Trapping Time. In the replication cohort, nutrients

were also more stable than toxicants with higher values of Laminarity (F(6,144) = 73.53,

p< 0.0001) and Trapping Time (F(6,144) = 25.68, p< 0.0001); however, we found reduced sta-

bility in all toxicants. Sex was also not a determinant on the persistence of elemental states in

the replication cohort.

Cross-recurrence quantification analysis

We next extended this technique to a multivariate analysis (CRQA) of periodic signal compo-

nents, focusing on the synchronization of periodic components in Zn exposure profiles with

other elements. In Fig 7 (top panel) we show the results of this CRQA in our discovery cohort,

emphasizing again that synchronous dynamics among nutrients differ from toxicants. We

confirmed statistically significant differences across Zn-based elemental cross-recurrences

in Determinism (F(5,203) = 25.53, p< 0.0001), Mean Diagonal Length (F(5,203) = 24.95,

p< 0.0001), Entropy (F(5,203) = 28.57, p< 0.0001), and Recurrence Time (F(5,203) = 25.63,

p< 0.0001), with nutrient cross-recurrences exhibiting greater periodic structure, more per-

sistent synchronization, and greater complexity than cross-recurrences with toxicants. Sex was

not a significant determinant of these processes. Post-hoc analyses (see Fig 7 annotations and

Appendix F in S1 File) confirmed a pattern consistent with analyses of individual elemental

periodicities, in that Zn cross-recurrences with Cr and As differed from nutrients, but interac-

tions with Pb continue to follow a signature consistent with Ca.

We further replicated the CRQA analysis in our replication cohort and confirmed the strik-

ing difference between nutrient and toxicant elemental profiles; the results are shown in Fig 7

(bottom panel). We found significant differences in Zn-focused CRQA across all measures,

Table 2. Surrogate recurrence quantification analysis.

Chi Square Goodness of Fit

Zn Ca Pb

Determinism <0.0001 0.0049 <0.0059

Mean Diagonal Length <0.0001 <0.0001 0.0005

Entropy <0.0001 <0.0001 0.001

Laminarity <0.0001 <0.0001 <0.0001

Trapping Time <0.0001 <0.0001 <0.0001

Recurrence Time 0.0004 ns 0.0035

https://doi.org/10.1371/journal.pone.0187049.t002
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Fig 6. Comparison of discovery cohort and replication cohort recurrence measures in nutrient (red) and toxicant (blue) elements.

Plots show the mean and 95% confidence intervals for Determinism (A, G), Mean Diagonal Length (B, H), Entropy (C, I), Laminarity (D, J),

Trapping Time (E, K), and Recurrence Time (F, L). Means that have no superscript in common are significantly different (p < 0.05).

https://doi.org/10.1371/journal.pone.0187049.g006
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Fig 7. Cross-recurrence quantification analysis of nutrient and toxic elements. Plots show the mean

and 95% confidence intervals in discovery (top panel) and replication (bottom panel) cohorts for Mean

Diagonal Length (A, E), Entropy (B, F), Determinism (C, G), Recurrence Time (D, H). Means that have no

superscript in common are significantly different (p < 0.05).

https://doi.org/10.1371/journal.pone.0187049.g007
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including Determinism (F(5,120) = 33.39, p< 0.0001), Mean Diagonal Length (F(5,120) =

39.56, p< 0.0001), Entropy (F(5,120) = 53.37, p< 0.0001), and Recurrence Time (F(5,120) =

40.35, p< 0.0001). Post-hoc analyses (Appendix G in S1 File) confirmed that toxicants have

reduced temporal dynamic properties, including Pb. In contrast to our discovery set, we did

not find a similar signature between Ca and Pb in our replication set.

Discussion

Our results emphasize that the dynamic properties of elemental exposure profiles during

development differ significantly across element types, and these differences, with some excep-

tions, generally partition broadly between nutrient elements and toxicant elements. We found

these patterns remarkably consistent in two distinct cohorts representing populations in Swe-

den and the United States, which suggests an underlying commonality in the processes under-

lying elemental metabolism across different environments.

The dynamic properties of Zn, Mn, Mg, and Ca differed from those of Cr and As in every

measure derived from recurrence quantification analysis (RQA). This pattern was again evi-

dent when we extended RQA to examine differences in cross recurrence focusing on Zn and

other elements, with Zn:Cr and Zn:As cross-recurrence differing from cross recurrence involv-

ing Zn and other elements on multiple measures. Two notable exceptions to these patterns are

discussed in greater depth in the following. First, in our discovery cohort we found that Pb,

unlike other toxicant elements, generally did not differentiate from nutrients on most mea-

sures; and, second, that Mn, among elements with nutrient qualities, generally differed from

other nutrients (as well as toxicants) in multiple dynamic properties.

The developmental exposure profiles of Pb and nutrient elements, particularly Ca, exhibited

surprisingly similar dynamical properties, given the stark contrasts evident between nutrients

and Cr and As. We suggest the framework of ‘ionic mimicry’ offers a plausible explanation for

this observation [46]. Since Pb is a non-essential toxicant and lacks specific endogenous trans-

porter systems, it is metabolized by Ca transporters due to its ionic similarity to Ca [46]. In

teeth and other apatite containing matrices, Pb replaces the Ca ions from the hydroxyapatite

lattice [47]. Supporting this interpretation, we found the dynamical properties of Pb exposures

profiles were most like Ca profiles, suggesting the rise and ebb of Pb and Ca signals were

driven by a common underlying mechanism. We did not, however, find that this pattern was

reproduced in our replication cohort, where Pb tended to differ from other nutrients, though

possibly the smaller sample size in our replication set occluded detection of this pattern.

In both our discovery and replication cohorts, we consistently found that the dynamic

properties of Mn signals differed from other nutrients, including Zn, Mn, Mg, and Ca. This

pattern was again apparent in cross-recurrence involving Zn and Mn, which yielded greater

determinism, longer diagonal lengths, and greater entropy than in interactions with other

nutrients. These distinctions may relate to the dynamic role of Mn in development where it

acts within some developmental windows as an essential nutrient, but can be neurotoxic at

other developmental periods [48].

We have presented the conceptual framework for RQA and CRQA, and demonstrated its

potential utility in environmental epidemiologic studies by using these methods to contrast

the dynamic properties inherent in the metabolism of essential elements and toxic elements.

These results present a critical baseline characterization of cyclical features in the metabolism

of exogenous elements, which appear broadly similar across different populations, and may

serve as the impetus for future studies to examine the role of these processes in human health.

In particular these methods lend themselves to epidemiological studies, where the dynamical

processes that metabolize various chemicals and biomolecules can be contrasted between
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health outcomes. This will allow future studies to identify the role of periodic endogenous

rhythms, and potentially their disruption, in the etiology of disease.
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Appendix E: Replication-cohort post-hoc analyses of elemental RQA. Appendix F: Discovery-
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post-hoc analyses of elemental cross-recurrences.
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