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The Impact of Childhood Obesity on Skeletal Health 
and Development
Paul Dimitri*
Academic Unit of Child Health, The University of Sheffield, Sheffield, UK

Increased risk of fracture identified in obese children has led to a focus on the relationship between fat, bone, 
and the impact of obesity during skeletal development. Early studies have suggested that despite increased 
fracture risk, obese children have a higher bone mass. However, body size corrections applied to account for 
wide variations in size between children led to the finding that obese children have a lower total body and re-
gional bone mass relative to their body size. Advances in skeletal imaging have shifted the focus from quantity 
of bone in obese children to evaluating the changes in bone microarchitecture that result in a change in bone 
quality and strength. The findings suggest that bone strength in the appendicular skeleton does not appropri-
ately adapt to an increase in body size which results in a mismatch between bone strength and force from falls. 
Recent evidence points to differing influences of fat compartments on skeletal development—visceral fat may 
have a negative impact on bone which may be related to the associated adverse metabolic environment, while 
marrow adipose tissue may have an independent effect on trabecular bone development in obese children. The 
role of brown fat has received recent attention, demonstrating differences in the influence on bone mass be-
tween white and brown adipose tissues. Obesity results in a shift in growth and pubertal hormones as well as in-
fluences bone development through the altered release of adipokines. The change in the hormonal milieu pro-
vides an important insight into the skeletal changes observed in childhood obesity.
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INTRODUCTION

Childhood and adolescence marks a period of significant skeletal 
development and maturation. Cellular activity in the bone micro-
environment favors net bone gain with the greatest increases in bone 
mass taking place during adolescence, a period of peak bone mass 
accrual.1 Whilst up to 80% of peak bone mass is genetically deter-
mined, the remaining 20% is modulated by environmental factors2 
which have the potential to result in a deviation away from the nor-
mal trajectory of bone mass accrual, and if deleterious, may result 
in low bone mineral density (BMD) and an increased risk of frac-
ture in childhood (Fig. 1). Furthermore, it is now well-accepted 
that factors that impact bone mass in childhood are important de-

terminants of osteoporotic risk later in life3, thus highlighting the 
importance of maximizing bone mass accrual during skeletal devel-
opment.4 Evidence over the last two decades demonstrating that 
obese children are overrepresented in fracture groups5-9 has raised 
concerns that the global rise in childhood obesity could have a sig-
nificant impact on bone heath in the short- and long-term. This 
was considered particularly important given that adolescence is a 
time when there is a considerable rise in the incidence of fracture10 
due to changes in bone microarchitecture.11-13 Fractures occur in 
nearly one in three children who are otherwise healthy11, and chil-
dren who suffer a fracture are two to three times more likely to sus-
tain a repeat fracture compared to age-matched peers with no frac-
ture history.14 Therefore, a significant body of work has emerged in 
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an attempt to understand the impact of childhood obesity on skel-
etal health in children. On a pragmatic level, some have suggested 
that the increase in fracture risk simply results from the increased 
propensity to falls seen in obese children due to changes in postural 
stability and gait.15-17 However, this also raises the question as to 
whether there has been a suboptimal response of skeletal adaption 
to body size resulting in a mismatch between body and bone size 
thus increasing fracture risk. The improved resolution of skeletal 
imaging modalities has led to a shift towards considering the rele-
vant biomechanical differences in the skeleton observed in obese 
children and elucidating differences in bone microarchitecture. 
Given that bone and fat are metabolically active tissues, changes in 
the hormonal milieu during growth and development and alterna-
tions in the bone marrow microenvironment have provided some 
insight into the mechanisms that may result in changes in the skele-
tal structure in childhood obesity. Specific skeletal sites (e.g., weight- 
bearing versus non-weight-bearing) as well as skeletal compartments 
(e.g., cortical versus trabecular) may also be differentially affected by 
obesity. Moreover, as with other metabolic risk factors, the deleteri-
ous effect of fat on bone may be confined to visceral fat deposits.18,19 

THE IMPACT OF CHILDHOOD OBESITY ON 
BONE MASS

Fractures during growth can be associated with skeletal fragili-
ty.20,21 A recent systematic review demonstrated that obese children 
are 25% more likely to experience an extremity fracture suggesting 
that appropriate skeletal adaptation to increasing body mass does 
not take place.22 A recent study reviewing the medical records of 
913,178 children aged 2–19 years reported that moderately obese 
and extremely obese children had an increased odds ratio (OR) of 
lower limb fractures including those of the foot (OR, 1.23 and 1.42, 
respectively, with 95% confidence interval [CI], 1.12–1.35 and 
1.26–1.61, respectively) along with the leg (OR, 1.51; 95% CI, 
1.33–1.72) with children aged 6–11 at the greatest risk of lower ex-
tremity fractures.23 Evidence demonstrating that obese children are 
at an increased risk of fracture originally led to studies using dual 
energy x-ray absorptiometry (DXA) to determine whether obesity 
impacted the developing skeleton. However, using a scanning mo-
dality that utilized two-dimensional imaging to evaluate a three-di-
mensional structure created challenges with interpreting findings 

Figure 1. Bone mass acquisition during childhood. Up to 25% of peak bone mass accrual occurs during adolescence with subsequent bone loss in later life. Suboptimal 
lifestyle factors (which may include childhood obesity in adolescence) have an impact on bone mass accrual and peak bone mass increasing fracture risk and osteoporosis 
later in life.
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leading to conflicting studies, either demonstrating a positive or 
deleterious effect of fat mass on bone, with others suggesting that 
no relationship existed, citing lean mass rather than fat mass as the 
constituent of body composition that best predicted bone density. 
DXA measured areal bone density (g/cm2), overestimates true 
bone density (g/cm3) in taller children with larger bones, and un-
derestimates true bone density in shorter children with smaller 
bones24 creating challenges in the measurement of bone density in 
obese children who are taller for their age and enter into puberty at 
an earlier age. A recent meta-analysis of the literature incorporating 
27 studies and 5,958 children aged 2 to 18 years demonstrated that 
obese children have higher BMD and bone mineral content com-
pared to children of normal weight.25 However, body size was not 
accounted for in this meta-analysis implying that bone density may 
have been inherently overestimated due to body size. In studies 
where bone mass is corrected for body size, several studies have 
demonstrated that bone mass is reduced in obese children, particu-
larly in those that have a previous history of fracture26 though this 
finding appears to be inconsistent.27 To date, no agreement has 
been reached regarding the most reliable method to limit size-de-
pendence for areal BMD.

The strong influence of genes on skeletal development means 
that bone mass “tracks” through childhood28 and low bone mass 
seen in early childhood persists into adulthood.29 Achieving opti-
mal peak bone mass in childhood may result in the delayed onset 
of osteoporosis later in life and reduce fracture risk.3,28 During 
growth, absolute or relative gains in lean mass and fat mass appear 
to result in a positive or negative deviation from bone mass track-
ing, respectively, suggesting that body composition may be one of 
the key modifiable factors that determines bone mass accrual.30 Ex-
cess fat mass may directly impact bone mass accrual or indirectly 
impact the positive effect of lean mass on bone during growth. Cu-
mulatively, however, cross-sectional studies suggest differential ef-
fects of obesity on bone in relation to age. Studies in young chil-
dren have demonstrated a positive relationship between obesity 
and bone mass, which starts to attenuate later in childhood and 
then reverses during adolescence31-35 and could potentially persist 
into early adulthood.36 This changing relationship between obesity 
and bone during development may be altered in certain ethnic 
groups and in children who lead a more sedentary lifestyle.36,37 

Therefore, differences seen across cross-sectional studies describ-
ing the impact of obesity on bone may be partially explained by the 
heterogenous age ranges and stage of pubertal development within 
and between studies. Furthermore, the contradictory findings seen 
across studies may be related to a “fat threshold” by which the dele-
terious effects of fat mass on bone during childhood may only be 
observed in relation to the accumulation of excess fat38 or following 
the evolution of an adverse metabolic profile. Recently, insulin re-
sistance has been proposed as a key link between the negative rela-
tionship between fat mass and bone mass in obese children.39 
Overweight prepubertal children with pre-diabetes and other car-
diometabolic risk factors have a lower bone mass compared to 
those without risk factors, suggesting that the metabolic conse-
quences of escalating adiposity may have an unfavorable impact on 
bone mass accrual and cortical development at a critical stage of 
development, resulting in an overall deficit in bone strength.40-42 
However, other studies have shown that the overall influence of in-
sulin resistance to bone mass in obese children may be relatively 
small, but may accumulate over time.43

CHILDHOOD OBESITY AND BONE 
MICROARCHITECTURE

The lack of agreement between studies using DXA to determine 
the relationship between childhood obesity and bone has prompt-
ed a move to determine the impact of excess fat mass on bone mi-
croarchitecture and biomechanics as the resolution and capability 
for bone imaging has improved over time.26 The introduction of 
peripheral quantitative computed tomography (pQCT) scanning 
and subsequent high-resolution pQCT (HRpQCT) has led to the 
ability to measure the volumetric parameters of the cortical and 
trabecular compartments in vivo.44 Studies using HRpQCT have 
the ability to determine microarchitectural changes in cortical and 
trabecular compartments due its ability to image bone to a resolu-
tion of 64 μm, providing a means for virtual in vivo “noninvasive 
bone biopsy” of the distal radius and tibia for the evaluation of cor-
tical and trabecular volumetric components, trabecular connectivity, 
thickness and spacing, and cortical porosity (Fig. 2). Furthermore, 
the application of an engineering model known as micro-finite ele-
ment analysis to HRpQCT images of the ultradistal tibia and radi-
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us allows for the estimate of bone strength relative to load and stiff-
ness.12,13,45 pQCT evaluates the trabecular and cortical bone com-
partments with an in-plane voxel dimension of 200 μm, calculating 
BMD, and skeletal geometrical parameters including cortical cross-
sectional area (CSA), cortical thickness, periosteal and endosteal 
circumference, and biomechanical parameters including cross-sec-
tional moment of inertia, a measure of bending, polar moment of 
inertia indicating bone strength in torsion, strength-strain index 
(SSI) at metaphysical sites, and bone strength index (BSI) at me-
taphyseal sites. BSI and SSI have been shown to predict up to 85% 
of the variance in bone failure properties in human cadaveric tis-
sues suggesting that these are reasonable proxies of bone strength.46 
The major advantage over HRpQCT is the ability of pQCT to de-
fine the CSA of muscle and fat which allows for a better under-
standing of the relationship between muscle and bone given that 
the current thinking is that these two compartments interact as a 
“muscle-bone unit.”47 Despite the increase in spatial resolution in 
pQCT, there remains lack of clarity as to the relationship between 
obesity and bone in children and adolescents which may be in part 
related to the determination of the degree of adiposity. At a body 
mass index (BMI) > 85th percentile, children are reported to have 
increased bone strength at the tibia as compared to normal weight 
children (BMI ≤ 75th percentile), but bone strength is adapted to 
lean mass rather than fat mass.48 However, evidence suggests that 
the accumulation of site-specific deposits of fat may have an impact 
on the muscle-bone relationship resulting in a negative impact on 
cortical and trabecular compartments.49,50 Notably, an increase in 
the fat-muscle ratio at the radius is negatively correlated with bone 
strength and size which could explain the increased risk of radial 

fractures in obese children.49

To resist fracture from a fall, the developing skeleton should ide-
ally adapt to body weight to prevent an increased risk of fracture. 
Despite the presence of a greater lean mass in obese children, skele-
tal adaptation does not appear to be sufficient to resist fracture. Stud-
ies using HRpQCT to compare bone microarchitecture between 
obese and lean children suggest that an appropriate increase in bone 
strength does not occur in obese children despite the increase in 
body weight51,52, or moreover, may be reduced in the tibia reflecting 
a negative impact of fat mass on bone strength in weight-bearing 
sites.51 Trabecular bone in obese children appears to undergo a re-
organization by which trabeculae are thinner (which would confer 
a structural disadvantage), but trabecular numbers increase relative 
to a reduction in trabecular spacing which would confer a structural 
advantage.51,52 The timing and mechanism by which this reorgani-
zation occurs is not understood. Given the paucity of studies using 
HRpQCT, further investigations are required to delineate the lon-
gitudinal impact of obesity on skeletal microarchitecture and strength 
during skeletal development, whether the changes are sex specific, 
and to determine whether these changes persist into adulthood. 
Furthermore, the timing of skeletal changes and the “fat threshold” 
required that leads to these changes must be defined. 

CHILDHOOD OBESITY AND BONE 
MARROW FAT

More recently, the adipogenic capacity of the marrow compart-
ment in relation to bone mass in childhood has been examined. In 
elderly adults, bone loss with ageing is likely the consequence of 

Figure 2. High-resolution peripheral quantitative computed tomography image of the distal 9 mm of left tibia (A) and left radius (B) in an adolescent healthy male showing 
trabecular and cortical compartments at high resolution.
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preferential differentiation by mesenchymal cells into the adipocyte 
cell lineage such that osteoporosis may result from an increased 
number of adipocytes at the expense of osteoblasts.53,54 The finding 
that other pathologies with increased fracture risk including an-
orexia nervosa, Cushing disease, osteopenia, and those with poorly 
controlled type 2 diabetes mellitus (T2DM) resulting in an in-
crease in bone marrow fat, has led to a focus on whether obesity 
may also result in alterations in the bone marrow compartment 
causing a change in bone density.55 Adolescence is a time when he-
matopoietic marrow is progressively converted to fatty marrow. 
Red marrow is progressively replaced by fatty marrow in the long 
bones beginning in the epiphyses, followed by the diaphyses, and 
then the distal and proximal metaphyses. In contrast, red marrow 
may persist in the axial skeleton into adulthood.56 Therefore, an 
understanding of the relationship between marrow adipose tissue 
(MAT) and bone microarchitecture may provide insight into some 
of the changes in trabecular microarchitecture observed in obese 
children, and an understanding as to why a reduction in BMD in 
obese children is primarily observed during adolescence. Earlier 
studies using computed tomography (CT) pointed towards a re-
ciprocal relationship between bone marrow adiposity and the 
amount of bone in the axial and appendicular skeleton in healthy 
adolescents and young adults regardless of sex, that was unrelated to 
BMI or adiposity, supporting the concept that subcutaneous and 
visceral fat compartments are unrelated to and possess different 
functional properties compared to bone marrow fat. Instead, the in-
verse relationship observed between marrow fat and bone may un-
derpin the common mesenchymal origin of adipocytes and osteo-
blasts.57,58 In a more recent study of obese adolescents aged 17–21 
years, proton magnetic resonance spectroscopy was used to mea-
sure MAT, total, and trabecular volumetric BMD. Trabecular num-
ber at the distal tibia measured by HRpQCT was inversely associ-
ated with MAT at the distal tibia, but not with lumbar spine 
MAT.59 Conversely, trabecular spacing was positively correlated 
with distal tibial MAT. A reduction in distal tibial strength proxies 
was also observed with higher distal tibial MAT, although correla-
tions were not significant. Notably, appendicular and axial MAT 
were not associated with BMI or DXA measured fat mass (al-
though the BMI range was already high at 35.2–55.5 kg/m2), sug-
gesting that MAT in obese adolescents is regulated differently from 

subcutaneous and visceral adipose tissue, and that the effects of 
distal tibial MAT on the surrounding trabecular compartment may 
result from paracrine and physical interactions with the microenvi-
ronment. For example, age-related marrow adipogenesis is linked 
to an increased expression of RANK-ligand with the downregula-
tion of osteoprotegerin (an osteoclastogenic inhibitor), which in 
turn may promote osteoclastogenesis and subsequent bone resorp-
tion.60 Given that osteoblasts and bone marrow adipocytes share a 
common mesenchymal stromal cell progenitor, the lineage com-
mitment of the progenitor cells towards a specific cell type based 
upon mutually exclusive transcriptional activators61 may play a key 
role in the fate of skeletal development in the bone microenviron-
ment.

THE INFLUENCE OF VISCERAL AND 
SUBCUTANEOUS ADIPOSE TISSUE ON 

BONE MASS IN CHILDREN

Until recently the majority of childhood studies focused on the 
overall relationship between excess fat and bone without consider-
ing the relative influence of different fat compartments. Adverse 
metabolic changes in relation to obesity leading to diseases includ-
ing T2DM, stroke, and cardiovascular disease are associated with 
an increase in visceral adiposity, a fat compartment that has re-
mained relatively unexplored in pediatric studies of skeletal struc-
ture and development.62,63 Similarly, regional analysis of fat demon-
strates that visceral adipose tissue may confer a more deleterious 
effect on bone compared to subcutaneous fat in obese children due 
to the excess production of visceral adipose tissue cytokines, an al-
teration in serum adipokines19, resulting in a reduction in bone 
mineral accretion38 that persists into young adulthood.64 This has 
been observed in the lower limbs at femoral sites suggesting that 
the weight bearing effects of increasing fat mass are counteracted 
by the deleterious effects of visceral fat accumulation.38 Further-
more, evidence suggests that the accumulation of visceral fat may 
impair the development of cortical bone during skeletal develop-
ment19, supporting cross-sectional observations demonstrating that 
the positive relationship between fat and bone attenuates and re-
verses with increasing adiposity.34 More work is required to deter-
mine the threshold of central adiposity required to impair skeletal 
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development and to further explore the previous observation that 
ethnic origins may influence the impact of intra-abdominal and 
subcutaneous fat on bone mass in children.65 While evaluating the 
impact on bone quantity is important, assessing the impact of adi-
pose compartments on bone strength provides better insight as to 
why obesity during skeletal growth incurs a higher fracture risk. 
Moreover, sex-related changes in body fat distribution that occur 
during development are often not accounted for in cross- sectional 
studies. Recently, a longitudinal study in 11–19-year-olds evaluat-
ing the relationships between visceral and subcutaneous adipose 
tissue in relation to SSI measured by pQCT demonstrated possible 
sex differences in the fat-bone relationship relating to fat compart-
ments.66 In females, visceral fat was inversely related to radial bone 
strength whereas subcutaneous and total fat mass were negatively 
related to radial bone strength in males. These sex differences in the 
relationship between fat deposits and bone strength in children and 
young people require further exploration.

BROWN ADIPOSE TISSUE AND BONE IN 
CHILDREN

While the relationship between white adipose tissue and skeletal 
development has been extensively studied, the role of brown adi-
pose tissue (BAT) in relation to skeletal development and bone 
mass has only recently emerged. BAT, derived from the same pro-
genitors as myocytes, is a metabolically active form of fat, with a 
primary function of thermoregulation by nonshivering thermogen-
esis. Through the action of uncoupling protein-1, BAT dissipates 
the electrochemical energy in the mitochondrial respiratory chain 
as heat. BAT is relatively abundant in newborns and diminishes in 
adults as they age, but remains in adults as supraclavicular, renal, 
and spinal deposits.67,68 While still relatively limited, evidence is 
emerging that BAT is positively correlated to bone mass. Women 
with detectable cold-activated BAT (in the supraclavicular and 
paravertebral regions), as determined by fluorodeoxyglucose posi-
tron emission tomography/CT, have a higher total and vertebral 
BMD with a positive correlation between BAT volume and 
BMD.69,70 At a microarchitectural level, BAT appears to be positive-
ly correlated with the femoral CSA in children and adults.71,72 Fur-
ther work is needed to define the role of BAT in skeletal metabo-

lism and development. Interestingly, despite a long period of inac-
tivity, hibernating mammals maintain muscle and bone mass in an 
environment of increased brown fat suggesting that brown fat may 
be fundamental for the maintenance of bone mass.73 The finding 
that brown fat is inversely related to BMI particularly during aging74 
may point to novel mechanisms underpinning the relationship be-
tween obesity and skeletal development.

HORMONAL MECHANISMS 
UNDERPINNING THE FAT-BONE 

RELATIONSHIP

The accumulation of excess adipose tissue in childhood obesity 
results in an alteration in the hormonal environment that could po-
tentially alter skeletal development. This includes a change in adi-
pokines and inflammatory cytokines. Leptin is a hormone that is 
produced exclusively by fat and was initially identified as a hor-
mone fundamental in the control of satiety. Leptin is an adipocyte-
produced hormone that inhibits appetite and favors energy expen-
diture primarily through its action on the arcuate nucleus of the hy-
pothalamus.75 Given the emerging relationships between fat mass 
and bone in adults and children on a background of increasing 
obesity, leptin was identified as a possible candidate hormone link-
ing fat and bone. Early studies demonstrated that leptin directly ex-
erts an osteogenic effect on bone. In both in vitro and in vivo stud-
ies, leptin acts directly through osteoblast receptors on human mar-
row stromal cells to promote osteoblast proliferation and differenti-
ation while inhibiting adipocyte differentiation and osteoclastogen-
esis through generation of osteoprotegerin.76,77 In studies in mice 
that followed, it was demonstrated that leptin also acts centrally on 
the ventromedial hypothalamus and through efferent sympathetic 
pathways exerting an antiosteogenic effect through β2 adrenergic 
receptors in osteoblasts.78,79 Later studies revealed that sympathetic 
signaling in osteoblasts is responsible for a more complex regulatory 
control of osteoblast function through the inhibition of osteoblast 
proliferation via circadian clock genes and that the sympathetic 
nervous system also favors bone resorption by increasing the ex-
pression of RANK-ligand.80

Children with congenital leptin deficiency are profoundly over-
weight yet they appear to have normal age and sex-related whole 
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body BMD despite being hypogonadal and having hyperparathy-
roidism.81,82 A recent report of two children with mutations in the 
leptin receptor demonstrated a high bone mass phenotype83 sup-
porting animal studies that leptin acts centrally to control bone 
mass and that leptin deficiency is protective for the developing 
skeleton. In studies of obese children, leptin is associated with a re-
duction in bone mass and trabecular thickness and an increase in 
cortical porosity which may be related to changes in bone signaling 
and subsequently bone turnover.42,50,84 In cohorts of predominantly 
normal weight children, these associations are not demonstrated.85,86 
In vivo studies in tail-suspended rats demonstrated that lower doses 
of leptin appeared to be osteoprotective, but at higher doses, bone 
loss is increased by bone resorption and reduced bone formation. 
Cumulatively, this implies that a threshold exists by which leptin 
may change from exerting a positive to a detrimental effect on bone 
as fat mass increases. Adiponectin, like leptin, is an adipocyte-de-
rived hormone encoded by the ADIPOQ gene and is well-known 
for its role in energy metabolism, but is paradoxically lower in obe-
sity.87 In children and adults, an inverse relationship exists between 
adiponectin and bone suggesting that lower adiponectin in obesity 
may protect the skeleton88,89, an observation that contradicts find-
ings in animal studies demonstrating that adiponectin deficiency 
has a negative impact on both cortical and trabecular compart-
ments.90 More recently, animal studies have demonstrated oppos-
ing peripheral and central effects of adiponectin on the skeleton 
during ageing. Early in life adiponectin acts directly on osteoblasts 
to prevent their proliferation and increase osteoblast apoptosis; as 
animals mature this action is obscured by adiponectin signaling 
centrally in the neurons of the locus coeruleus to decrease sympa-
thetic tone increasing bone mass and decreasing energy expendi-
ture.91 However, studies in humans have yet to demonstrate a dif-
ferential action of adiponectin on the developing skeleton or related 
to ageing.

Childhood is a time of significant hormonal changes that can be 
altered by obesity. Growth hormone is fundamental for bone min-
eral accretion in the developing skeleton and promotes osteoblast 
differentiation, myogenesis, and muscle development.92,93 As high 
levels of visceral adiposity in both children and adults impairs 
growth hormone secretion and the response of growth hormone 
secretion to stimuli94,95, this may have a negative impact on bone 

mass accrual. The obesity-related rise in insulin may have a direct 
effect on pituitary inhibiting growth hormone secretion.96 Growth 
hormone is also fundamental in promoting the hepatic release of 
insulin-like growth factor 1 which in-turn promotes growth plate 
chondrogenesis97 and osteoblastogenesis.98 Insulin resistance re-
sults from the long-term accumulation of excess fat. Therefore, in 
early years, obesity-related excess secretion of insulin may result in 
an overall net gain in bone, given that osteoblasts express insulin re-
ceptors99 and insulin is anabolic promoting osteoblast proliferation, 
collagen synthesis, and alkaline phosphatase production.100 How-
ever, over time, the development of insulin resistance results in 
lower bone mass in obese children42 and an increased fracture risk 
in patients with T2DM.101,102 This proposed change in the relation-
ship between insulin, insulin resistance, and bone development 
over time may provide a mechanistic explanation as to the chang-
ing relationship between fat mass and bone mass seen across child-
hood and adolescence. 

Many of the hormonal changes seen during adolescence appear 
to confer a positive effect on skeletal development which is under-
standable given that around 25% of bone mass is achieved, and peak 
bone mass accrual occurs during this period.3 Testosterone and es-
trogen rise in both females and males during the pubertal period 
and adrenal androgen levels are higher in prepubertal obese children 
compared to healthy weight children, but this only appears to per-
sist in obese pubertal females.103 Similarly, the adrenal secretion of 
11-deoxycortisol, cortisol, and cortisone collectively known as glu-
cocorticoids is also elevated in prepubertal obese children.104 An-
drogens stimulate the differentiation and proliferation of osteoblasts 
through androgen receptors, decrease osteoblast and osteocyte 
apoptosis, and indirectly and directly modify osteoclastogenesis in 
favor of a reduction in bone resorption.105-107 In mice completely 
lacking androgen receptors, a reduction in trabecular and cortical 
bone mass has been observed.108 Conversely, the excessive produc-
tion of glucocorticoids results in the inhibition of osteoblastogene-
sis, reduced bone formation through the canonical Wnt-signaling 
pathway109, increased osteoblast apoptosis, and a reduction in os-
teoclast differentiation through the upregulation of the RANK-li-
gand pathway.110 Fat deposits contain aromatase, and thus child-
hood obesity may result in the increased aromatization of testoster-
one and other androgens to estrogens which may augment bone 
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mass in a protective manner similar to that observed in obese post-
menopausal women.107 Therefore, it is surprising that despite a hor-
monal environment in obese adolescents that should confer a rela-
tively favorable environment for skeletal development and adapta-
tion, bone mass accrual does not appear to respond appropriately 
to an increase in mechanical loading or hormonal stimuli which in 
turn leads to an increased propensity to fracture. In summary, obe-
sity results in a significant number of hormonal changes during growth 
and development either directly through the release of adipokines, 
or indirectly through an alternation in sex steroids, metabolic hor-
mones, and androgens. One of the challenges ahead is to determine 
the hierarchical role of each of these hormones on influencing bone 
accretion during development in an obesogenic environment. 

CONCLUSION

The recent decades have seen a considerable increase in our un-
derstanding of the relationship between fat and bone, and the im-

pact of childhood obesity on the developing skeleton. A multitude 
of factors contribute to the complex interaction and relationship 
between fat and bone in children summarized in Fig. 3 that merit 
further research. Other factors may be identified in the future that 
will add to the growing list of environmental and physiological 
changes that affect the growing skeleton in relation to childhood 
obesity. Despite progress in this field, further clarity is required to 
determine whether the deleterious effect of fat is site- and sex-spe-
cific, related to changes that also occur within the bone marrow mi-
croenvironment, and confined to a specific age range or associated 
with visceral fat and a metabolically unfavorable environment. A 
wide variation exists among children in stature, body composition, 
rate of growth, and timing of biological maturation. Since obese 
compared to healthy weight children of the same age are generally 
further advanced in physiological and skeletal maturity, comparing 
the effects on obesity on bone at any given age presents challenges. 
Moreover, the relationship between obesity and bone is likely to 
change during childhood and adolescence. It is likely that a critical 

Figure 3. A summary of the environmental and physiological factors impacting the relationship between childhood obesity and bone, providing a platform for further work 
in these areas. The diagram summarizes the factors influencing skeletal changes and skeletal factors that may change as a result of childhood obesity.
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threshold of excess fat mass needs to be reached to reverse the po-
tentially positive effects of fat on bone which in part may be related 
to a change in the hormonal milieu that may be dependent on the 
stage of physiological maturity. The advent of new skeletal imaging 
modalities has led to a shift in focus from assessing the quantity of 
bone to evaluating the biomechanical determinants of bone under-
pinning bone strength and fracture risk. Given that obese children 
are over-represented in fracture groups and peak bone mass is a de-
terminant of future skeletal health and osteoporosis, further studies 
are required to understand how childhood obesity affects skeletal 
maturation and development.
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