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Background. Metallothioneins (MTs) family comprises many isoforms, most of which are frequently dysregulated in a wide
range of cancers. However, the expression pattern and exact role of each distinct MT family isoform which contributes to
tumorigenesis, progression, and drug resistance of gastric cancer (GC) are still unclear. Methods. Publicly available databases
including Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, MethHC,
cBioportal, and GeneMANIA were accessed to perform an integrated bioinformatic analysis and try to detect fundamental
relationships between each MT family member and GC. Results. Bioinformatic data indicated that the mRNA expression of all MT
familymembers was almost lowly expressed inGC comparedwith normal gastric tissue (P<0.05), and patients with reducedmRNA
expression of each individual MT member had inconsistent prognostic value (OS, FP, PPS), which depended on the individual
isoform of MT. A negative correlation between the methylation in promoter region of majority of MT members and their mRNA
expression was detected from MethHC database (p<0.001). Data downloaded from TCGA revealed that MTs were rarely mutated
in GC patients and MT2A was frequently regulated by other three genes (FOS, JUN, SP1) in GC patients. Conclusion. MTs were
nearly downregulated, and distinct type of MT harbored different prognostic role in GC patients. Methylation in gene promoter
region of MTs partially contributed to their reduced expression in GC. Our comprehensive analyses from multiple independent
databases may further lead researches to explore MT-targeting reagents or potential diagnostic and prognostic markers for GC
patients.

1. Introduction

Epidemiological data from the WHO suggested that gastric
cancer (GC) is the fifth most common malignant tumor and
the third leading cause of cancer related death throughout
the world, with 1,033,701 new cases and 782,685 deaths in
2018 [1]. Despite a decline rate in incidence and important
advances in understanding of the epidemiology, pathology,
molecular mechanisms, and treatment options made, the
disease was still among the poorest of all solid-organ tumors,
predominately due to the frequent presence of advanced
stage of the cancer once at first diagnosis [2]. In order
to improve the survival of advanced GC patients, based

on palliative surgery and chemotherapy, targeted therapy
had been introduced and was expected to be an important
supplementary treatment for gastric cancer [3]. Furthermore,
exploring new highly specific and sensitive biomarkers and
new molecular targets can not only improve the prognosis
of GC patients, but also help to elucidate the molecular
mechanism of GC.

Metallothioneins (MTs) are a group of high conserved,
low molecular metal-binding proteins with a high content
of cysteinyl residues that had been found in bacteria, plants,
invertebrates, and vertebrates [4]. In mammals, MTs are
clustered on chromosome 16 and encode four protein iso-
forms whose amino acids varying from 61 to 68, labelled
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by numbers: MT1, MT2, MT3, and MT4 [5]. Despite the
physical and chemical similarity of MT isoforms, their roles
and presence in tissues vary significantly. MT1 comprises
eight functional paralogs, namedMT1A,MT1B,MT1E,MT1F,
MT1G, MT1H, MT1M, and MTX, present almost in all types
of soft tissue [6]. MT2 gene only encodes one isoform,
called MT2A, also existing prevalently like MT1. MT3 and
MT4 are both encoded by one single gene, whereas they
are expressed respectively in brain tissues and epithelial
cells [6]. Although abundant researches appeared, the proper
functions ofMTs are still illusive. Nevertheless,MTs had been
implicated in a wide range of properties like homeostasis
maintenance, detoxification, DNA damage protection, redox
pool maintenance, inflammation, and cancer regulation
[7].

It is not surprising that MTs are involved in many cancer
processes, but the expression and role of MTs is not uniform
in kinds of malignancy [8–11]. Discordant results regarding
the expression of MT and its association with clinicopatho-
logical parameters and prognosis were observed in gastric
cancer tissue compared to normal tissue in different studies
[12–20]. In addition, the change of MT1/2 protein expression
differs from the change of single MT isoform in malignant
melanoma tumor, like MT1E and MT1G [21–23]. As such, it
is urgent to systematically investigate the expression and role
of each isoform ofMTs in gastric cancer. In the present study,
we accessed into some available databases, like Oncomine,
Gene Expression Profiling Interactive Analysis (GEPIA),
Kaplan-Meier plotter, SurvExpress,MethHC, cBioportal, and
GeneMANIA to systematically evaluate MT family isoforms
in gastric cancer, which may be able to pave the way to
well-understand the expression and role of MTs in gastric
cancer.

2. Materials and Methods

All datasets obtained from various public databases were
analyzed to predict MTs mRNA expression levels, prognostic
values, methylation and mutation of metallothionein in
tumor tissue compared to normal gastric mucosae.

2.1. Comparison of MTs Gene Expression between Tumor
and Normal Samples. The cancer related public databases
Oncomine (https://www.oncomine.org/) was used to investi-
gate the mRNA expression level of MTs in tumor and normal
tissue [24]. In the Oncomine database, all members of MT
family were retrieved and the differential gene analysis (GC
versus normal) combinedwithmRNAdata typewere chosen.
In this study, the Student’s t-test was used to generate p
values of comparison.The cutoff p value and fold change were
defined as 0.01 and 2.

The expression of MTs between tumor and normal
gastric tissue was also studied using the GEPIA browser
(http://gepia.cancer-pku.cn/), which is an online tool for
estimating mRNA expression based on The Cancer Genome
Atlas (TCGA) and the Genotype-Tissue Expression (GTEx)
projects [25]. Box and stage plotting analyses were processed
on this database. The cutoff p value was defined as 0.01.

2.2. Analysis of Prognostic Values of MT Members in GC
Patients. The association among MTs expression and the
overall survival (OS), first progression (FP), and postpro-
gression survival (PPS) in GC was analyzed by data mining
in the Kaplan-Meier plotter database (http://kmplot.com),
which is an online database that enables assessment of
survival related biomarkers download fromGene Expression
Omnibus (GEO) [26]. In this study, clinical data including
subtypes, stage, differentiation, HER2 status, and treatment
was collected.

SurvExpress (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp), a large online database that enables
comparison and validation of survival related biomarkers for
cancer outcomes was used when the survival data of some
MT family members were not available in Kaplan-Meier
plotter [27].The parameters chosen for survival analysis were
as follows: larger stomach adenocarcinoma (STAD) sample
size (>200 patient), dataset from TCGA, duplicated genes-
show all, data-uniformized. The median MTs expression was
used as the cutoff. Hazard ratios with 95% CI and log-rank p
value were calculated.

2.3. Comparison of MTs Gene Methylation between Tumor
versus Nontumor Tissues and Analysis of Relationship between
Methylation and mRNA Expression in GC from MethHC.
DNA methylation of MTs between tumor and normal tissue
was compared through the human pan-cancer methylation
database-MethHC (http://methhc.mbc.nctu.edu.tw/), which
is a database focused on the DNAmethylation of human dis-
eases from TCGA [28]. In addition, the correlation between
MTs methylation and its mRNA expression in GC patients
was also analyzed using MethHC. In this study, the gene
region was chosen as promoter and the methylation level
evaluation method was defined as average.

2.4. Analysis of MTs Gene Mutations and Associated Network
in GC from TCGA. Clinical data from TCGA database for
GC patients were downloaded and processed in Microsoft
Excel andmanually checked on the base of the primary site of
tumor onset in a bid to exclude non-GC patients. Meanwhile,
the information ofGCdownloaded in the cBioPortal forCan-
cer Genomics (http://www.cbioportal.org) was processed to
analyze the presence of mutations, EBV infection rate, and
explore the associated network of MTs in GC [29, 30].
GeneMANIA, a flexible, accurate database that can generate
network information based on genes inputted including
protein and genetic interactions, pathways, coexpression,
colocalization, and protein domain similarity [31], was used
to find additional genes or proteins related to MTs.

3. Results

3.1. Downregulation of MTs mRNA in Patients with GC.
Oncomine and GEPIA databases data was used to examine
differential levels of MTs mRNA between gastric cancer
and normal gastric tissue. In addition to GC, difference
of MTs mRNA in other cancers and their paired normal
tissue was also assessed in Oncomine database. Among

https://www.oncomine.org/
http://gepia.cancer-pku.cn/
http://kmplot.com
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
http://methhc.mbc.nctu.edu.tw/
http://www.cbioportal.org
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Figure 1: Transcript levels of MT isoforms in different types of cancer (Oncomine). Notes: This figure indicates the numbers of datasets
with statistically significant MTs mRNA upregulation (red) or downregulation (blue) (different types of cancer versus corresponding normal
tissues) (threshold setting: p value, 0.05; fold change, 2; gene rank, top 10%).The numbers in the colored cell represent the numbers of dataset
meeting the threshold.

these cancer datasets, the expression of all MT isoforms
was downregulated significantly in 8 out of 20 cancer types
compared to paired normal tissue, including four digestive
system cancer types: gastric, colorectal, liver, and pancreatic
cancer (Figure 1). Apart from MT1B, MT1F, and MT4, other
MT isoforms in tumor tissue were both downregulated
significantly in Oncomine and GEPIA databases (Figures 1
and 2). The elaborating details of MTs expression in all GC
datasets in Oncomine database could be seen in Table 1. In
addition, the expression of MT family members in different
stages of GC was also analyzed using GEPIA, and none of
them varied with statistical significance in different stages of
GC (Supplementary Figure 1).

3.2. Prognostic Features of MTs in Patients with GC. Prog-
nostic features of MTs mRNA for GC patients including
OS, FP, and PPS were investigated, respectively, through
data mining in Kaplan-Meier plotter. It could be seen that
almost all MTs prognostic feature can be searched out in
GC patients other than MT1A and MT1B, both of which
were analyzed alternatively by using SurvExpress database.
Therewas no significant correlation in gastric cancer between
OS and either MT1A or MT1B (supplementary Figure 2).
Among these MTs available in the Kaplan-Meier, 6, 8, and
5 isoforms mRNA were significantly associated with OS, FP,

and PPS for GC patients, respectively (Figure 3 A1–A3). The
data from the respective probes showed reduced OS with low
MT1F, MT1H, and MT1X (Figure 3(b)) and reduced FP with
low MT1E, MT1F, MT1H, MT1M, and MT1X (Figure 3(c)).
Positive correlationwas found between PPS andMT1X, while
reversed relationship was shown between PPS and MT1G,
MT2A, MT3, and MT4 (Figure 3(d)). High MT1G, MT3,
and MT4 mRNA expression led to reduced OS, FP, and PPS
in GC patients. Notably, increased MT2A transcript level
only correlated significantly with reduced PPS, not correlated
significantly with OS and FP (Figures 3(b)–3(d)). The details
of these isoformswhosemRNAexpressionwas not correlated
with survival time (OS, FP, PPS) were listed in supplementary
materials (Supplementary Figures 2(A)–2(D)).

As per the Lauren’s classification of stomach adenocar-
cinoma, GC was classified into three subtypes: intestinal
type, diffuse type, and mixed type. As such, prognostic
value of MTs isoforms was also determined in different GC
subtypes using Kaplan-Meier plotter online tool. The data
from individual probe indicated that 8 out of 9 available
MT members mRNA expression were correlated with OS
in GC intestinal type (P<0.05; Table 2). Furthermore, the
majority of them (5/8) were with better prognosis (OS) (data
was not shown). In addition, other survival analysis revealed
that clinicopathological features including clinical stage,
differentiation, HER2 status, and treatment were significant
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Figure 2:The distinct expression ofMT family isoforms between cancer and normal tissues in GC patients (GEPIA).Notes: Box plots derived
from gene expression data in GEPIA comparing expression of a specific MT isoform in GC tissue and normal tissues; the P value was set up
at 0.05. Abbreviations: GC: gastric cancer; STAD: stomach Adenocarcinoma; T: tumor; N: normal.

parameters affecting the survival time ofGCpatients (Table 3,
supplementary Tables 1–3).

3.3. DNA Methylation of MTs and Its Correlation with mRNA
Expression in GC Patients. To identify the role ofmethylation
in regulating MTs expression in patients with GC, MethHC
was utilized to explore the level of methylation in promoter
region and its relationship with mRNA expression of MT
genes. Among all types of MT, the difference of methylation
level between cancer and normal samples was statistically

significant except gene MT1E (P<0.05, Figure 4). The major-
ity of MTs (8/11) in cancer exhibited extraordinarily methy-
lated variation in promoter region compared to normal tissue
(P<0.005, Figure 4). Notably, DNA methylation of some
MT isoforms in gastric cancer, like MT1A, MT1B, MT1H,
MT1M, MT3, and MT4, was higher than their paired normal
tissue except remaining isoforms (Figure 4). Additionally, an
inverse correlation between DNA methylation and mRNA
expression of most isoforms ofMT in GCwas observed other
than MT1A and MT4 isoforms (P<0.001, Table 4).
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Table 1: The transcription levels of MT family isoforms between different types of GC and normal tissues (ONCOMINE).

MT family members Types of GC vs. normal Fold change t-Test P value Reporter

MT1A

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.939 -5.52 1.48E-06 ILMN-1691156
Diffuse Gastric Adenocarcinoma vs. Normal -3.151 -6.36 1.04E-07 ILMN-1691156
Gastric Mixed Adenocarcinoma vs. Normal -3.053 -3.47 2.00E-03 ILMN-1691156

Gastric Adenocarcinoma vs. Normal -2.255 -0.99 0.196 ILMN-1691156

MT1B

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.496 -7.43 3.42E-09 IMAGE:232772
Diffuse Gastric Adenocarcinoma vs. Normal -2.037 -4.43 5.52E-05 IMAGE:232772
Gastric Mixed Adenocarcinoma vs. Normal -2.321 -4.43 2.26E-04 IMAGE:232772

Gastric Cancer vs. Normal -1.327 -1.65 0.051 3662190
Gastric Mixed Adenocarcinoma vs. Normal -1.111 -1.31 0.102 ILMN-1733758

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.065 -0.73 0.236 ILMN-1733758
Diffuse Gastric Adenocarcinoma vs. Normal 1.025∗ 0.223 0.588 ILMN-1733758

Gastric Adenocarcinoma vs. Normal 1.326∗ 0.793 0.76 ILMN-1733758

MT1E

Gastric Mixed Adenocarcinoma vs. Normal -3.006 -7.8 1.16E-08 ILMN-1718968
Gastric Intestinal Type Adenocarcinoma vs. Normal -3.014 -7.81 1.99E-09 ILMN-1718968

Diffuse Gastric Adenocarcinoma vs. Normal -3.042 -8.23 6.09E-10 ILMN-1718968
Gastric Adenocarcinoma vs. Normal -2.524 -4.05 0.005 ILMN-1718968

Gastric Cancer vs. Normal -3.942 -3.17 9.14E-04 3662139
Gastric Mixed Adenocarcinoma vs. Normal -5.468 -5.12 0.005 212859-x-at

Gastric Cancer vs. Normal -2.435 -2.79 0.006 212859-x-at
Diffuse Gastric Adenocarcinoma vs. Normal -1.97 -2.66 0.018 212859-x-at

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.74 -3.17 0.001 212859-x-at

MT1F

Gastric Intestinal Type Adenocarcinoma vs. Normal -5.011 -10.9 7.66E-14 IMAGE:78353
Diffuse Gastric Adenocarcinoma vs. Normal -3.821 -6.8 6.50E-08 IMAGE:78353
Gastric Mixed Adenocarcinoma vs. Normal -4.273 -4.69 3.35E-04 IMAGE:245990
Diffuse Gastric Adenocarcinoma vs. Normal -4.486 -8.37 2.13E-10 ILMN-1718766

Gastric Intestinal Type Adenocarcinoma vs. Normal -3.911 -6.22 1.69E-07 ILMN-1718766
Gastric Mixed Adenocarcinoma vs. Normal -4.355 -3.73 0.001 ILMN-1718766
Gastric Mixed Adenocarcinoma vs. Normal -4.283 -10.5 4.58E-06 213629-x-at
Diffuse Gastric Adenocarcinoma vs. Normal -2.712 -4.1 0.003 213629-x-at

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.095 -4.22 5.69E-05 217165-x-at
Gastric Cancer vs. Normal -3.148 -3.12 0.003 213629-x-at

Gastric Adenocarcinoma vs. Normal -2.514 -0.81 0.237 ILMN-1718766

MT1G

Gastric Cancer vs. Normal -3.231 -6.53 4.28E-10 3692999
Diffuse Gastric Adenocarcinoma vs. Normal -4.274 -6.82 4.25E-08 IMAGE:202535

Gastric Intestinal Type Adenocarcinoma vs. Normal -5.68 -10 1.04E-12 IMAGE:202535
Gastric Mixed Adenocarcinoma vs. Normal -5.508 -5.68 7.17E-05 IMAGE:202535
Diffuse Gastric Adenocarcinoma vs. Normal -4.092 -6.15 1.43E-04 204745-x-at

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.636 -5.41 1.02E-06 204745-x-at
Gastric Mixed Adenocarcinoma vs. Normal -6.734 -8.01 3.57E-04 204745-x-at
Diffuse Gastric Adenocarcinoma vs. Normal -8.187 -8.02 1.19E-10 ILMN-1715401

Gastric Intestinal Type Adenocarcinoma vs. Normal -6.637 -6.24 2.22E-07 ILMN-1715401
Gastric Mixed Adenocarcinoma vs. Normal -4.742 -3.31 0.003 ILMN-1715401

Gastric Cancer vs. Normal -4.655 -3.41 0.001 210472-at
Gastric Adenocarcinoma vs. Normal -3.824 -1.15 0.165 ILMN-1715401

MT1H

Gastric Intestinal Type Adenocarcinoma vs. Normal -4.137 -9.59 1.06E-12 IMAGE:214162
Diffuse Gastric Adenocarcinoma vs. Normal -3.314 -5.99 1.13E-06 IMAGE:214162
Gastric Mixed Adenocarcinoma vs. Normal -4.151 -4.5 8.45E-04 IMAGE:214162
Diffuse Gastric Adenocarcinoma vs. Normal -3.076 -5.1 4.59E-04 206461-x-at
Gastric Mixed Adenocarcinoma vs. Normal -4.261 -7.53 1.72E-04 206461-x-at
Diffuse Gastric Adenocarcinoma vs. Normal -6.768 -6.77 5.16E-08 ILMN-2124802

Gastric Intestinal Type Adenocarcinoma vs. Normal -5.882 -5.4 2.04E-06 ILMN-2124802
Gastric Mixed Adenocarcinoma vs. Normal -4.122 -2.75 0.008 ILMN-2124802

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.84 -3.76 2.21E-04 206461-x-at
Gastric Adenocarcinoma vs. Normal -2.701 -0.85 0.228 ILMN-2124802

Gastric Cancer vs. Normal -1.32 -2.25 0.013 2462589
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Table 1: Continued.

MT family members Types of GC vs. normal Fold change t-Test P value Reporter

MT1M

Gastric Cancer vs. Normal -4.451 -7.56 1.68E-12 3662150
Gastric Intestinal Type Adenocarcinoma vs. Normal -5.442 -11.2 8.37E-17 IMAGE:126458

Diffuse Gastric Adenocarcinoma vs. Normal -3.75 -6.3 9.03E-07 IMAGE:126458
Gastric Mixed Adenocarcinoma vs. Normal -6.244 -6.14 1.15E-04 IMAGE:126458
Diffuse Gastric Adenocarcinoma vs. Normal -8.169 -9 7.18E-10 ILMN-1657435

Gastric Intestinal Type Adenocarcinoma vs. Normal -5.42 -6.12 2.48E-07 ILMN-1657435
Gastric Mixed Adenocarcinoma vs. Normal -3.749 -3.03 0.004 ILMN-1657435

Gastric Intestinal Type Adenocarcinoma vs. Normal -5.088 -6.1 2.23E-07 217546-at
Diffuse Gastric Adenocarcinoma vs. Normal -4.402 -3.57 0.006 217546-at

Gastric Cancer vs. Normal -10.35 -3.32 0.003 217546-at
Gastric Adenocarcinoma vs. Normal -1.999 -0.87 0.221 ILMN-1657435

MT1X

Gastric Intestinal Type Adenocarcinoma vs. Normal -3.75 -9.04 8.45E-12 IMAGE:297392
Diffuse Gastric Adenocarcinoma vs. Normal -2.85 -5.07 1.17E-05 IMAGE:297392
Gastric Mixed Adenocarcinoma vs. Normal -3.223 -4.26 6.15E-04 IMAGE:297392

Gastric Intestinal Type Adenocarcinoma vs. Normal -4.098 -6.29 1.63E-07 ILMN-1775170
Diffuse Gastric Adenocarcinoma vs. Normal -3.782 -6.42 1.60E-07 ILMN-1775170
Gastric Mixed Adenocarcinoma vs. Normal -3.21 -3.71 8.60E-04 ILMN-1775170
Diffuse Gastric Adenocarcinoma vs. Normal -2.371 -4.44 0.001 208581-x-at
Gastric Mixed Adenocarcinoma vs. Normal -3.11 -4.86 0.004 208581-x-at

Gastric Cancer vs. Normal -3.261 -4.92 1.09E-06 3662247
Gastric Adenocarcinoma vs. Normal -2.329 -1.1 0.172 ILMN-1775170

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.55 -2.95 0.002 208581-x-at
Gastric Cancer vs. Normal -1.99 -2.18 0.021 208581-x-at

MT2A

Diffuse Gastric Adenocarcinoma vs. Normal -2.117 -4.32 0.001 212185-x-at
Diffuse Gastric Adenocarcinoma vs. Normal -2.308 -4.56 2.50E-05 ILMN-1686664

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.153 -3.85 2.25E-04 ILMN-1686664
Gastric Mixed Adenocarcinoma vs. Normal -2.68 -3.67 9.96E-04 ILMN-1686664

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.42 -2.7 0.005 208581-x-at
Gastric Adenocarcinoma vs. Normal -1.89 -0.86 0.224 ILMN-1686664

Gastric Cancer vs. Normal -1.87 -2.33 0.015 212185-x-at

MT3

Gastric Intestinal Type Adenocarcinoma vs. Normal -2.85 -8.47 1.47E-10 IMAGE:2019011
Diffuse Gastric Adenocarcinoma vs. Normal -2.312 -5.22 5.48E-06 IMAGE:2019011
Gastric Mixed Adenocarcinoma vs. Normal -2.688 -4.68 2.23E-04 IMAGE:2019011
Diffuse Gastric Adenocarcinoma vs. Normal -1.21 -3.71 3.47E-04 ILMN-1675947

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.14 -1.89 0.034 ILMN-1675947
Gastric Mixed Adenocarcinoma vs. Normal -1.11 -0.77 0.229 ILMN-1675947

Gastric Adenocarcinoma vs. Normal 1.107∗ 0.315 0.614 ILMN-1675947
Gastric Cancer vs. Normal -1.24 -2.81 0.003 3662093

Diffuse Gastric Adenocarcinoma vs. Normal -1.79 -1.63 0.079 205970-at
Gastric Mixed Adenocarcinoma vs. Normal -1.97 -2.04 0.061 205970-at

Gastric Intestinal Type Adenocarcinoma vs. Normal -1.21 -1.33 0.096 205970-at
Gastric Cancer vs. Normal -1.19 -0.57 0.288 205970-at

MT4

Gastric Cancer vs. Normal -2.723 -5.62 5.26E-08 3662086
Gastric Mixed Adenocarcinoma vs. Normal 1.02∗ 0.673 0.744 ILMN-1745345
Diffuse Gastric Adenocarcinoma vs. Normal 1.018∗ 1.026 0.844 ILMN-1745345

Gastric Intestinal Type Adenocarcinoma vs. Normal 1.032∗ 1.191 0.879 ILMN-1745345
Gastric Adenocarcinoma vs. Normal 1.461∗ 1.104 0.825 ILMN-1745345

Notes: P value was analyzed using the t-test.The bold font indicates that the difference was not statistically significant between the GC and normal tissue group.
The bold font with symbol “” indicates the fold change was no more than 2 folds. The bold font with symbol “∗” indicates the transcription level of MTs in
gastric cancer was slightly higher than normal tissue.

3.4. MTs Mutations and Associated Network in GC Patients.
Genetic mutations of MT family members were analyzed
through cBioPortal online tool forGCpatients. A total of 1443
patients from seven datasets of stomach adenocarcinoma

were analyzed. Among these seven datasets, mutation rate
of MTs calculated in three datasets was 1.36% (6/440), 2.51%
(12/478), and 3.39% (10/295), respectively, and no statistically
significant difference was observed for OS and DFS between
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Figure 3: Continued.
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Figure 3: The prognostic values of mRNA level of MTs in all GC patients (Kaplan-Meier plotter). Notes: Kaplan-Meier plots show the
association between the expression of MTs and OS, FP and PPS in GC patients, respectively, with statistical significance. A1–3: Prognostic
HRs of individualMT isoform in all gastric cancer for OS, FP, and PPS. (b) OS curves ofMT1F (Affymetrix ID:217165-x at);MT1G (Affymetrix
ID:210472-x at);MT1H (Affymetrix ID:206461-x at); MT1X (Affymetrix ID:204326-x at);MT3 (Affymetrix ID:205970-x at);MT4 (Affymetrix
ID:217395-x at). (c) FP Curves of MT1E (Affymetrix ID:212859-x at); MT1F; MT1G; MT1H; MT1M (Affymetrix ID:217546-x at); MT1X;
MT3; MT4. (d) PPS curves of MT1G; MT1X; MT2A (Affymetrix ID:212185-x at); MT3; MT4. Abbreviations: OS: overall survival; FP: first
progression; PPS: postprogression survival; GC: gastric cancer; HR: hazard ratio.

cases with and without MT mutation in gastric cancer (data
was not showed). The percentage of genetic mutation in
MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, MT1X,
MT2A,MT3, andMT4was 0.6% (deep deletion), 0.9% (0.21%
missense mutation, 0.62% deep deletion), 0.6% (deep dele-
tion), 0.6% (deep deletion), 0.9% (0.28% missense mutation,
0.62% deep deletion), 0.6% (deep deletion), 1.1% (0.42%
missense mutation, 0.62%Deep Deletion), 0.6% (deep deple-
tion), 0.8% (0.14%missensemutation, 0.62%deep depletion),
0.7% (0.07% truncating mutation, 0.62% deep depletion),
and 0.9% (0.27% truncating mutation, 0.62 deep depletion)
(Figure 5(a)). Data from in situ hybridization (ISH) revealed
that 20% (40/200) were EBV positive. In addition, crossing
data of primary site showed that 37.1% (161/434) of these
tumors were located at the antrum, followed by fundus/body
(35%), cardia/proximal (14.3%), gastroesophageal junction
(10.6%), and the unknowable site (3%) (Figure 5(a)).

The network established in cBioPortal demonstrated
that FOS, JUN, and SP1 control the expression of MT2A,
whereas HLA-DRA andHLA-DRB1 control the expression of
FOS. FOS controls the expression of JUN; meanwhile, B2M
and HLA-B control the state change of JUN (Figure 5(b)).
Furthermore, another network for MTs with the structure or

function of neighboring genes constructed from GeneMA-
NIA showed that other 20 genes—MT1HL1, BBS2, AAMDC,
CD160, MARC2, TMEM51, IYD, LGALS2, NEURL3, ASPA,
PTGDR, C11orf52, TMEM14C, SPP1, SYMM, ZSWIM5,
TNN, SORBS3, ACPP, and TLR3—were associated closely
with MTs. The result showed that all MTs protein shared
protein domains with each other and particularly shared
protein domains even with another protein named MT1H1
(Figure 5(c)).

4. Discussion

Up to date, accumulating studies were emerging to investigate
MTs expression and their roles in malignant tumors, but
only a minority of MT isoforms were evaluated in gastric
cancer and no unanimous agreement was reached. In an
immunohistochemical analysis, Ebert and his colleagues
showed overexpression of MT in GC tissues, independent
of tumor stage, differentiation, or tumor type [14]. Similar
outcome of MT in GC was also reported by other groups
[17, 32]. On the contrary, several studies reported a lower
MT expression in GC specimens than normal mucosae [15,
16, 18]. Until now, a minority of individual isoform of MTs
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Table 2: The prognostic values of MT isoforms in different pathological subtypes of GC patients (Kaplan-Meier plotter).

MT family Lauren classification OS PPS
cases HR 95%CI P value cases HR 95%CI P value

MT1E
intestinal 320 0.67 0.49-0.92 0.013 192 1.39 0.92-2.1 0.12
diffuse 241 0.55 0.38-0.79 0.0011 176 0.53 0.34-0.83 0.0045
mixed 32 5.92 0.77-45.35 0.053 16 – – –

MT1F
intestinal 320 0.63 0.46-0.88 0.0056 192 0.7 0.45-1.09 0.11
diffuse 241 0.62 0.44-0.88 0.0063 176 0.48 0.3-0.77 0.0019
mixed 32 2.02 0.68-5.99 0.2 16 – – –

MT1G
intestinal 320 1.99 1.42-2.8 0.00005 192 2.6 1.7-3.97 4.3E-05
diffuse 241 1.83 1.18-2.82 0.006 176 1.53 1.03-2.28 0.034
mixed 32 3.32 1.3-9.82 0.021 16 – – –

MT1H
intestinal 320 0.7 0.5-1 0.046 192 0.63 0.4-1.0 0.047
diffuse 241 0.55 0.39-0.77 0.00053 176 0.54 0.36-0.79 0.0015
mixed 32 0.33 0.07-1.47 0.13 16 – – –

MT1M
intestinal 320 0.59 0.42-0.84 0.0027 192 1.48 0.98-2.25 0.061
diffuse 241 0.59 0.39-0.89 0.011 176 0.54 0.34-0.84 0.0051
mixed 32 1.57 0.57-4.36 0.38 16 – – –

MT1X
intestinal 320 0.58 0.42-0.82 0.0015 192 0.65 0.42-0.99 0.041
diffuse 241 0.57 0.4-0.79 0.00087 176 0.56 0.38-0.83 0.0029
mixed 32 0.49 0.14-1.75 0.26 16 – – –

MT2A
intestinal 320 1.27 0.93-1.75 0.13 192 1.49 0.99-2.25 0.055
diffuse 241 0.59 0.41-0.86 0.0047 176 0.65 0.44-0.97 0.035
mixed 32 0.52 0.18-1.51 0.22 16 – – –

MT3
intestinal 320 2.34 1.69-3.26 1.8E-06 192 1.79 1.18-2.7 0.0051
diffuse 241 1.24 0.83-1.86 0.29 176 1.23 0.78-1.94 0.37
mixed 32 1.43 0.49-4.2 0.51 16 – – –

MT4
intestinal 320 2.58 1.87-3.56 1.8E-08 192 2.48 1.4-4.4 0.0013
diffuse 241 0.72 0.52-1.02 0.06 176 1.5 0.96-2.33 0.07
mixed 32 2.8 1.01-7.77 0.038 16 – – –

Notes: P value was analyzed using the survival analysis test. The fold indicates that the difference was statically significant. The P value was set up at 0.05.
Abbreviations: GC: gastric cancer; OS: overall survival; PPS: postprogression survival; HR: hazard ratio.

involved in GC was reported, such as MT1A, MT2A, and
MT3 [13, 14, 19, 20, 33, 34]. The upregulation of MT3 in
GC of one individual study was consistent with the result
demonstrated in our current study [33]. MT2A expression
in GC reported by pan’s group was in accordance with the
outcome of public database datamined in our study [13, 20,
34], but a paradoxical viewpoint was also reported [14]. With
respect to otherMT isoforms inGC, pan’s group also did parts
of the work, but no significant difference was found between
tumor and nontumor tissue and even no MT1B expression
was detected in gastric cells and tissues [34]. Taken together,
relatively limited studies focused on MT family, especially
individualMT isoform inGCandmore researches are needed
to make specific conclusions for each MT isoform in GC.

MTs overexpression was frequently reported to be associ-
ated with poor prognosis in a wide range of human cancers,
such as hepatocellular carcinoma, breast cancer, glioblas-
toma, oral cancer, and melanoma [23, 35–38]. Although the
prognostic role of MTs in gastric cancer was also evaluated
in several studies, it is still hard to conclude what exact
value they possessed. For instance, several studies argued that

no association was discovered among MT expression and
tumor stage, differentiation, and survival prognosis in gastric
cancer [14, 18, 32], while another research demonstrated that
MT overexpression was associated with a poor survival rate
[17]. In the current study, data showed that some specific
MT isoforms like MT1F, MT1G, MT1H, and MT1X were
associated with OS. Notably, the result reported by one group
showed that loss ofMT2Awas associatedwith poor prognosis
and advancedTNMstage, , whichwas not in accordancewith
the findings of our study [13, 19, 20].

The broad heterogeneity of MT expression and its prog-
nostic role in gastric cancer can be simplistically attributed to
shortage of case numbers and different ethnicity of patients
recruited or distinct transcripts of MT gene adopted in
their studies. However, more important reason may be the
facts that MT exists as a mixture of variable forms. Because
of the high structure similarity of MTs, present proteomic
methods lack the ability to distinguish all subisoforms. For
example, the antibodies used in many studies could not
specifyMT1 andMT2 isoform due to their physical-chemical
homology [39]. This speculation seems to be verified by the
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Table 3: The prognostic values of MT isoforms in GC patients with different clinical stage (Kaplan-Meier plotter).

MT family clinical stage OS PPS
cases HR 95%CI P value cases HR 95%CI P value

MT1E

I 67 0.43 0.16-1.16 0.085 31 0.1 0.02-0.71 0.007
II 140 0.63 0.32-1.23 0.17 105 0.6 0.26-1.35 0.21
III 305 0.72 0.54-0.96 0.026 142 0.7 0.45-1.1 0.12
IV 148 0.72 0.46-1.14 1.14 104 1.3 0.84-2.07 0.22

MT1F

I 67 0.27 0.1-0.72 0.005 31 0.1 0.02-0.69 0.006
II 140 0.54 0.27-1.08 0.075 105 0.6 0.27-1.41 0.25
III 305 0.66 0.49-0.88 0.004 142 0.7 0.44-1.03 0.068
IV 148 0.7 0.44-1.11 0.12 104 1.3 0.77-2.25 0.31

MT1G

I 67 2.87 0.92-8.96 0.058 31 6.6 6.25-34.15 0.011
II 140 1.69 0.88-3.23 0.11 105 2 0.79-5.24 0.13
III 305 1.68 1.26-2.23 4E-04 142 2 1.29-3.02 0.001
IV 148 1.78 1.16-2.73 0.007 104 2.4 1.46-3.97 4E-04

MT1H

I 67 2 0.71-5.57 0.18 31 0.2 0.02-1.79 0.12
II 140 0.54 0.28-1.04 0.061 105 0.5 0.25-1.07 0.07
III 305 0.75 0.57-1.01 0.054 142 0.7 0.45-1.04 0.076
IV 148 0.62 0.41-0.95 0.027 104 1.3 0.74-2.1 0.41

MT1M

I 67 2.34 0.67-8.23 0.17 31 2.8 0.55-14.59 0.2
II 140 0.82 0.44-1.52 0.52 105 0.7 0.37-1.42 0.35
III 305 0.73 0.52-1.02 0.067 142 0.7 0.45-1.11 0.13
IV 148 0.73 0.46-1.15 0.17 104 1.5 0.92-2.32 0.11

MT1X

I 67 0.29 0.1-0.8 0.011 31 0 — 0.002
II 140 0.49 0.22-1.11 0.081 105 0.6 0.29-1.33 0.22
III 305 0.61 0.46-0.81 7E-04 142 0.6 0.39-0.92 0.017
IV 148 0.66 0.45-0.99 0.041 104 1.4 0.79-2.35 0.27

MT2A

I 67 0.35 0.13-0.93 0.028 31 0.1 0.02-0.67 0.005
II 140 0.57 0.28-1.16 0.12 105 0.6 0.27-1.43 0.26
III 305 0.79 0.59-1.05 0.11 142 0.7 0.47-1.16 0.19
IV 148 0.78 0.51-1.18 0.24 104 1.5 0.93-2.27 0.095

MT3

I 67 1.79 0.61-5.21 0.28 31 3.5 0.76-16.1 0.089
II 140 2.07 1.14-3.74 0.014 105 2 0.99-3.82 0.049
III 305 2.05 1.48-2.83 1E-05 142 2.1 1.35-3.22 7E-04
IV 148 1.38 0.89-2.14 0.14 104 0.6 0.35-0.93 0.023

MT4

I 67 1.87 0.69-5.04 0.21 31 2.7 0.32-23.29 0.34
II 140 1.3 0.62-2.71 0.49 105 1.7 0.81-3.7 0.15
III 305 1.88 1.41-2.52 2E-05 142 1.9 1.21-2.95 0.004
IV 148 1.29 0.88-1.91 0.19 104 1.3 0.81-2.04 0.29

Notes: P value was analyzed using the survival analysis test. The fold indicates that the difference was statically significant. The P value was set up at 0.05.
Abbreviations: GC: gastric cancer; OS: overall survival; PPS: postprogression survival; HR: hazard ratio.

Table 4: The correlation between DNA methylation and mRNA expression in the MT gene members of GC patients (MethHC).

Variable Methylation
MT1A MT1B MT1E MT1F MT1G MT1H MT1M MT1X MT2A MT3 MT4

mRNA
expression

r=0.007 r=-0.123 r=-0.279 r=-0.116 r=-0.158 r=-0.230 r=-0.187 r=0.010 r=-0.160 r=-0.248 r=-0.02
p=4.44 p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p<0.001∗ p=0.59

Notes: “∗” indicates statistical significance with P<0.001. Abbreviation: GC: gastric cancer.
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Figure 4: The distinct methylation of MT isoforms in promoter region between cancer and normal tissues in GC patients (MethHC). Notes:
box plots in red color represent cancer samples and those in green color represent normal samples. GC: gastric cancer; “∗” indicates being
statistically significant with P<0.05. “∗∗” indicates being statistically significant with P<0.005.

phenomenon mentioned above that the change in MT1/2
protein expressionwas different from singleMT isoforms and
different MT isoform plays distinct function in cell activities
[38, 39]. Although the antibodies specific to MT1A, MT1G,
and MT3 were available in market [9, 40], distinguishing of
MTs by using antibodies is even more tricky.

DNA methylation is an important epigenetic modifi-
cation in cancer formation by silencing tumor suppressor
genes. A wide range of studies investigated MTs promoter
methylation in some cancer types, but limiting studies about
MTs methylation in gastric cancer were published up to now
[21, 41–43]. In line with MT3 hypermethylation in gastric



12 BioMed Research International

(a)

(b) (c)

Figure 5: Alteration frequency ofMT isoforms andneighbor genes network inGCpatients (cBioPortal).Notes: (a)OncoPrint visual summary
of alteration in MT family members. (b) Network involved in the expression of MTs gene constructed in cBioPortal. Green lines represent
gene controlling the expression of those genes to which the arrows are pointing, while blue lines represent genes controlling the state change
of those genes to which the arrows are pointing, brown lines represent genes in complex with other genes. (c) Network for MTs with the
structure or neighboring genes constructed in GeneMANIA. Yellow lines represent shared protein domains between these genes; violet lines
represent coexpression between these genes.
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cancer showed by Deng et al., our study also showed that
MT3 was highly hypermethylated compared with normal
gastric tissue [33]. In the present study, we demonstrated
that half of MT isoforms in GC were highly methylated in
the promotor region except MT1E and that there was an
inverse correlation between DNA methylation and mRNA
expression of most isoforms of MT other than MT1A and
MT4 isoforms. Therefore, it is not difficult to conclude
that methylation in MTs gene promoter region partially
contributed to their reduced expression in GC. In addition,
our study revealed thatMT genes are very rarely mutated and
no statistically significant difference was observed for OS and
disease-free survival (DFS) between cases with and without
alteration of MTs in gastric cancer. The Epstein-Barr Virus
(EBV), the second pathogen associated with GC, was found
in approximately 20% of the samples in the present study,
which was similar to previous studies [44–46]. Meanwhile,
the outcomes in our study that GC located most frequently
at the antrum are in line with previous studies [47–49].
Moreover, we established networks related to MT family
to explore other genes involved in regulatory relationship
between them.

In summary, all these findings indicated that MTs were
nearly downregulated in GC tissue and their prognostic
values in GCwere dependent on single isoform ofMT, which
need to be determined further in de facto cohort studies. As
such, our study offered comprehensive evidences to evaluate
the possible regulating function of MTs in GC which may
help for further discovering MTs as potential diagnostic or
prognostic biomarkers and therapeutic target for GC in the
future.

5. Study Limitations

However, the present study was not without limitations. First,
all the data analyzed in our study was obtained from different
online databases, whichmight cause background heterogene-
ity. Additionally, the study did not conduct experiments to
validate the results obtained from silicobioinformatic analysis
based on online databases. Therefore, more elaborate studies
with focus on variousMT isoforms expression andprognostic
value in GC need to be performed in the future.
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