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Epileptic seizure prediction is one of the most used therapeutic adjuvant strategies for

drug-resistant epilepsy. Conventional approaches commonly collect training and testing

samples from the same patient due to inter-individual variability. However, the challenging

problem of domain shift between various subjects remains unsolved, resulting in a low

conversion rate to the clinic. In this work, a domain adaptation (DA)-based model is

proposed to circumvent this issue. The short-time Fourier transform (STFT) is employed

to extract the time-frequency features from raw EEG data, and an autoencoder is

developed to map these features into high-dimensional space. By minimizing the

inter-domain distance in the embedding space, this model learns the domain-invariant

information, such that the generalization ability is improved by distribution alignment.

Besides, to increase the feasibility of its application, this work mimics the data distribution

under the clinical sampling situation and tests the model under this condition, which is the

first study that adopts the assessment strategy. Experimental results on both intracranial

and scalp EEG databases demonstrate that this method can minimize the domain gap

effectively compared with previous approaches.

Keywords: seizure prediction, feature extraction, neuropsychiatric disorders, domain adaptation, STFT, EEG

1. INTRODUCTION

1.1. Epilepsy Background
Epilepsy is a brain disorder characterized by the transient occurrence of unexpected seizures,
which stems from excessive, or hypersynchronous neuronal activities (Fisher et al., 2005). It
affects approximately 1.0% of the world’s population (Banerjee et al., 2009), and around half of
them experience severe seizures. Besides, although the anti-epileptic drug (AED) administration is
applied to patients, about 30% of them suffer from drug-resistant epilepsy (Kwan et al., 2011; Lin
et al., 2014). These individuals might have seizures at any moment, such that their daily lives are
influenced by unexpected behavioral changes, loss of muscular control and sudden faint. As a result,
a reliable seizure prediction device is becoming an emerging and significant demand to prevent the
injury of epileptic coma, or even death. A successful seizure forecast commonly adopts data-driven
techniques to monitor the electroencephalography (EEG) signals of the epileptic brain, since such
data records rhythmic information induced by coordinated neuronal. The first-in-man study that
proves the predictability of seizure has been reported in 2013 (Cook et al., 2013). Since then, many
EEG-based studies regarding seizure prediction have been proposed.
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FIGURE 1 | Definition of three brain states in continuous epileptic EEG recordings.

1.2. Related Work
At present, there are two main streams for epileptic seizure
prediction. The first stream is a binary classification framework
trained to discriminate preictal samples from interictal samples.
The ictal and postictal samples are deserted during the training
procedure for the uselessness of their contribution to forecast.
This stream is widely adopted among researchers in the area of
seizure prediction. The second stream assumes that a specific
index that fluctuates with changes of seizure stage exists in
EEG recordings. These methods attempt to describe this index
explicitly and monitor it with a threshold. For instance, spike rate
(Li et al., 2013; Karoly et al., 2016; Guo et al., 2017), zero-crossing
intervals (Zandi et al., 2013), and phase/amplitude locking value
(Myers et al., 2016) have been reported as the indicators. Since
a universal preictal biomarker has not been defined explicitly,
we also follow the binary scheme of the first stream, which is
depicted in Figure 1.

Studies adopting the binary classifier usually combine the
features extraction algorithms with machine learning techniques.
To be specific, the features extraction algorithms are commonly
used in data preprocessing due to the complexity and diversity
of EEG signals, and then the machine learning techniques
can analyze these features and give their categories. Features
extraction approaches like wavelet transform (Vahabi et al., 2015;
Moctezuma and Molinas, 2020), Q-factor wavelet transform
(Al Ghayab et al., 2019), Fourier neural network (Peng et al.,
2021), and fractional Fourier transform (Fei et al., 2017),
are employed to learn the high-dimensional representations
of samples. Machine learning techniques like support vector
machines (Mirowski et al., 2009; Direito et al., 2017; Sun
et al., 2019), random forests (Brinkmann et al., 2016), k-nearest
neighbor (Zhang et al., 2018), and ensemble learning (Peng
et al., 2020) are utilized to learn the spatial and temporal
representations of seizures. Besides, recently most authors apply
deep learning frameworks for seizure prediction. Convolutional
neural network (CNN) (Zhang et al., 2019; Lin et al., 2020; Liu
et al., 2020), 3D CNN (Ozcan and Erturk, 2019), Long Short-
TermMemory (LSTM)Network (Tsiouris et al., 2018; Daoud and

FIGURE 2 | Seizure prediction is a patient-specific problem. The discriminative

models (dashed line) of various individuals (circle and triangle)

differ significantly.

Bayoumi, 2019; Li et al., 2020), and cascades of DNN (Özcan and
Ertürk, 2017), are introduced to process continuously acquired
EEG signals.

1.3. Significance
Although conventional studies report high precision (< 85% on
average) for the epileptic seizure prediction task, their translation
to the practical application is still a challenging issue. The
major reason for this situation is that most of these studies
only provide patient-specific results. For these patient-specific
models, both training and testing sets are recorded from one
subject, which leads to limited domain adaptability of previous
approaches between different patients (each patient is considered
as a domain). As shown in Figure 2, for the patients with epilepsy,
the internal patterns vary significantly among various subjects
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(Jirsa et al., 2017; Elger and Hoppe, 2018; Kuhlmann et al.,
2018), which learn totally different discriminative hyperplanes.
Therefore, these patient-specific models with good performance
might obtain undesired results in real life, although they are
significant to personalized medicine. It is obvious that how to
develop a predictor that is universal to various patients is the
key problem. However, this issue remains unsolved and thus the
previous models are not yet in widespread use.

This work attempts to develop a seizure prediction model
without the precondition of patient specificity. However, since
the underlying patterns and dynamics of epilepsy are not well-
understood in neuroscience, the complete desertion of the
“target” samples (data of the patient to be tested) is impossible.
The training set in existing studies is composed of the “target”
data entirely. We attempt to reduce the reliance on the “target”
data as much as possible until it reaches a clinically acceptable
amount of EEG recordings. To be specific, due to the risk of
infection in invasive surgery and the right of privacy, the training
set in real life mainly consist of signals of previous patients.
And only a small amount of “target” samples can be used for
training. We try to simulate this sampling situation to train and
test our model.

To achieve a higher generalizationa ability, this study
introduces the strategy of domain adaptation (DA) methods
for seizure prediction. It is a machine learning technique that
can reduce the domain gap. In some successful DA models like
maximum mean discrepancy-adversarial autoencoders (MMD-
AAE) (Li et al., 2018) and cone manifold domain adaptation
(CMDA) (Yair et al., 2019), to minimize the inter-domain
distance in a high-dimensional space is the major optimization
objective. Inspired by these researches, we hope to develop
a generic seizure prediction model based on minimizing the
inter-domain distance. To encode the raw EEG data into a
high-dimensional space, we design a novel autoencoder using
the short-time Fourier transform (STFT) (Cordes et al., 2021)
and the MMD-AAE. The main contributions of this study are
summarized as follow

• A general seizure prediction model for different patients
is proposed based on the MMD-AAE model and STFT
technique. It is tested under simulated clinical sampling
conditions, making it feasible in practice.

• A domain adaptation framework is developed based on
inter-domain distance. This algorithm can improve the
generalization ability since it minimizes the domain gap
between different patients.

• It is the first study to provide a comparison results of different
domain adaptation algorithms on seizure forecast, which is
important to follow-up researches.

Based on the MMD-AAE model and STFT technique, the
proposed method obtains an above-par generalization ability.
Experiments on two open datasets, the Freiburg Hospital EEG
database and the CHB-MIT EEG database (Goldberger et al.,
2000; Zhou et al., 2018), are conducted for model assessment.
Compared with other methods, experimental results indicate that
the proposed model achieves high robustness while preserving a
decent precision.

2. DATA ACQUISITION AND
PREPROCESSING

2.1. Patients
Two open EEG databases, the Freiburg Hospital intracranial
EEG database (Zhou et al., 2018) and the CHB-MIT scalp EEG
database (Goldberger et al., 2000), are selected to assess themodel
performance of our method.

The Freiburg Hospital database includes time series of 87
seizures of 21 subjects with medically intractable focal epilepsy,
aged from 10 to 50 years old (8 males and 13 females). EEG
signals are recorded invasively by 6 electrodes (3 near the
epileptic focus and 3 away from the epileptogenic zone). The
sampling rate is 256 Hz for all patients(data of Patient No.12 are
sampled at 512 Hz but are down-sampled to 256 Hz).

The CHB-MIT database consists of scalp EEG sequences of
22 epileptic subjects, including 5 males aged from 3 to 22 years
and 17 females aged from 1.5 to 19 years. The EEG signals are
recorded at a 256 Hz sampling rate using 16-bit analog-to-digital
converters. Most samples are collected from 23 channel surface
electrodes following the 10-20 standard system for electrode
placement (Rojas et al., 2018). Each individual has a subfolder
that has 9 to 42 recordings.

2.2. Data Selection and Labeling
We use the power line noise removal to denoise the raw EEG
recordings. In the intracranial EEG test set, the frequency bands
of 47–53 and 97–103Hz are deserted and in the scalp EEG test set,
the frequency bands of 57–63 and 117–123 are discarded. This
is because that the noise of the Freiburg database usually occurs
at 50 Hz and noise of the CHB-MIT database occurs at 60 Hz.
In addition, we perform a patient selection. Only patients who
had at least 2 seizures but fewer than 15 per day are chosen, since
less than 2 seizures would not be sufficient to support training,
and more than 15 would render the prediction meaningless. The
subjects chosen in this work are presented in Tables 1, 2.

The seizure occurrence period (SPO) is set to 0. Only the
seizure prediction horizon (SPH) is considered in this study.
Thirty minutes before seizure occurrence is set as the SPH.
This parameter is given by empirical evidence of comparison
experiments applyingmultiple preictal lengths. If a seizure occurs
within 30 min, the forecast model then returns a positive. The
raw EEG recordings are split into continuous, non-overlapping
segments over a 5-s time window. The sample number for each
case is sufficient (> 38,400) to support training. In addition,
to obtain equal amounts of preictal and interictal samples, a
random subsample on the interictal data is implemented, which
circumvents the imbalance of different kinds of training samples.

3. METHODS

To reduce the impact of inter-individual variability, we propose a
generic seizure prediction model. The core idea of our method
is to minimize the domain distance between different subjects
in the high-dimensional space. Such that domain-invariant
features can be extracted during domain distribution alignment.
The maximum mean discrepancy (MMD) measure (Zhang
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TABLE 1 | Details of the Freiburg Hospital test set.

Patient Gender Age Seizure type No. of seizures

Pt 1 F 15 SP 4

Pt 2 M 38 SP, CP, GTC 3

Pt 3 M 14 SP, CP 5

Pt 4 F 26 SP, CP, GTC 5

Pt 5 F 16 SP, CP, GTC 5

Pt 6 F 31 CP, GTC 3

Pt 8 F 32 SP, CP 2

Pt 9 M 44 CP, GTC 4

Pt 10 M 47 SP, CP, GTC 5

Pt 11 F 10 SP, CP, GTC 4

Pt 12 F 42 SP, CP, GTC 3

Pt 13 F 22 SP, CP, GTC 2

Pt 14 F 41 CP, GTC 4

Pt 15 M 31 SP, CP, GTC 4

Pt 16 F 50 SP, CP, GTC 5

Pt 17 M 28 SP, CP, GTC 5

Pt 18 F 25 SP, CP 5

Pt 19 F 28 SP, CP, GTC 4

Pt 20 M 33 SP, CP, GTC 5

Pt 21 M 13 SP, CP 5

F, Female; M, Male; SP, simple partial; CP, complex partial; GTC, generalized tonic-clonic.

TABLE 2 | Details of the CHB-MIT test set.

Patient Gender Age Seizure type No. of seizures

Pt 1 F 11 SP, CP 7

Pt 2 M 11 SP, CP, GTC 3

Pt 3 F 14 SP, CP 6

Pt 5 F 7 CP, GTC 5

Pt 6 F 2 CP, GTC 4

Pt 7 F 15 SP, CP, GTC 3

Pt 8 M 4 SP, CP, GTC 5

Pt 9 F 10 CP, GTC 4

Pt 10 M 3 SP, CP, GTC 6

Pt 13 F 3 SP, CP, GTC 5

Pt 14 F 9 CP, GTC 5

Pt 17 F 12 SP, CP, GTC 3

Pt 18 F 18 SP, CP 6

Pt 19 F 19 SP, CP, GTC 3

Pt 20 F 6 SP, CP, GTC 5

Pt 21 F 13 SP, CP 4

F, Female; M, Male; SP, simple partial; CP, complex partial; GTC, generalized tonic-clonic.

et al., 2020) is selected as the distance measure and the high-
dimensional space is established by the adversarial autoencoders
(AAE) (Makhzani et al., 2015).

3.1. Clinical Situation Simulation
The training set of conventional studies is not consistent with
the sampling situation in real life. During clinical treatment, it is

almost impossible to record a large number of EEG samples from
a specific patient over a long period of time. Thus the traditional
patient-specific learning strategy can not be performed because
the data size is unable to support training. To tackle this issue,
we propose a novel predictor that can use other patients’ data
for training.

To mimic the sampling situation in the clinic, we adopt a
particular training and testing strategy, which is illustrated in
Figure 3. To be specific, the training and validation set includes
previous patient’ data and one seizure from the “target” subject,
while the remaining seizures of the “target” subject served as the
test set. This strategy refers to the idea of the Leave-one-out cross-
validation (LOOCV) approach (Peng et al., 2018). Moreover, the
training and validation set are partitioned into 5-folds, and 80%
of the data are assigned to the training set while the remaining
20% are assigned to the validation set to prevent overfitting.

3.2. Modal Transformation With STFT
Due to the low signal-to-noise ratio (SNR) of EEG recordings, we
attempt to transform the input information from time domain
into time-frequency domain. Two preprocessing techniques,
wavelet and Fourier transforms (Muralidharan et al., 2011;
Zhao et al., 2019), are commonly employed to convert EEG
segments into image shapes. Here we adopt the short-time
Fourier transform (STFT) to produce feature maps from raw
EEG sequences. The conversion transforms the EEG time series
into matrices, which can meet the input requirement of the two-
dimensional MMD-AAE. This procedure can also extract the
significant features for seizure prediction.

In the STFT module, the time-varying EEG fragment is
converted to a two-dimensional matrix composed of frequency
and time axes. Such that an insight in the time-evolution for
each time window can be observed by the two-dimensional map.
Suppose that there exist K domains (patient) in total. The input
data from the K domains are denoted by X̄ = [x̄(1), · · · , x̄(K)]T ∈

R
K×d, where x̄ ∈ R

d×1. For an arbitrary domain, the segment
with the time index t is given as x̄(t). By performing the STFT
procedure, we get the time-frequency feature map of x̄(t), which
is presented as:

x(ω, u) =
∑

t

x̄(t)g(t − u)ejωt , (1)

where ω is the selected frequency band, g(t − u) is the
window function. For K domains, the STFT is implemented
to each subject, and then the inputs are converts to X =

[x(1), · · · , x(K)]T ∈ R
K×d. The samples of each case are

represented by spectrograms. These time-frequency feature maps
are then sent to the AAE for invariant feature extraction.

3.3. Construction of High-Dimensional
Space
This module attempts to establish a high-dimensional space
with an encoder and a decoder. The model is illustrated in
Figure 4. By using an encoder, we can map the time-frequency
images of raw EEG samples into an embedding subspace. And
by using a decoder, these hidden layers are then mapped back
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FIGURE 3 | Illustration of clinical situation simulation.

FIGURE 4 | Block diagram of our model: the STFT module converts raw EEG recordings into time-frequency images to meet the input requirement of the AAE

module. The AAE module maps each domain’s data into a high-dimensional space. MMD loss is employed as the measure to align distributions of different domains.

The Laplace prior is exploited to optimize the hidden code z using adversarial learning.

to a “fake” input matrix. The hidden space is high-dimensional
and therefore contains more information. The MMD measure
is then utilized to align the distributions of high-dimensional
feature vectors between different domains. Thus the optimized
hidden code contains sharable information of various patients.
We then extract these latent characteristics that are universal
among patients for classification.

There are two procedures during the construction
of embedding space: the reconstruction process and the
distribution alignment process. In the reconstruction process,
the autoencoder attempts to recover the time-frequency image

from the high-dimensional vectors. The architecture of the
autoencoder refers to the structure in MMD-AAE (Li et al.,
2018). We set an optimization objective Lrec to guide the
generated feature map x̃ to match the input map x. The loss
function of the reconstruction procedure Lrec is defined as:

Lrec =
∥

∥x̃− x
∥

∥

2
2 . (2)

Now, we specify the form of the inter-domain distance
metric. The maximum mean discrepancy (MMD) measure
(Jia et al., 2017) is exploited to align the distributions
of different domains. Like the reconstruction process, we
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also give a MMD-based regularization term to optimize the
hyperparameters in the neural network (Li et al., 2018). Suppose
that Z = [z(1), · · · , z(K)]T ∈ R

K×l represents the learned high-
dimensional features of K domains, where z ∈ R

l×1. For two
arbitrary hidden vector z(i) and z(j), we assume that they belong to
two unseen probability distribution P

(i) and P
(j), respectively. By

adopting the kernel embedding technique (Smola et al., 2007), the
instance is mapped to a reproducing kernel Hilbert space (RKHS)
H. The corresponding mean value in RKHS is given as:

µ(P) = Ez∼P[h(z, ·)], (3)

where is µ(·) the mean map operation. h(z, ·) is the kernel
function induced by the feature map inH. In this work, we adopt
the RBF kernel following the MMD-AAE model (Li et al., 2018).
The inter-domain distance between the latent codes z(i) and z(j)

can be described as:

dis(z(i), z(j)) =
∥

∥µ
P(i) − µ

P(j)

∥

∥

H
. (4)

Then, it is obvious that the regularization item of the entire latent
space can be defined as:

Rdis(z
(1), · · · , z(K)) =

1

K2

∑

1≤i,j≤K

dis(z(i), z(j)). (5)

With the distance error above, the extracted high-dimensional
features can generalize well across all the domains, since
the neural network learns their common code by aligning
their distributions.

3.4. Optimization Using Adversarial
Learning
To further optimize the learned features in section 3.3, we
introduce an adversarial learning-based module according to
AAE (Makhzani et al., 2015). Adversarial learning is an emerging
machine learning approach in recent years, which has been
successfully applied in the area of epileptic EEG signal processing.
It usually contains a generator network G with parameters
2G and a discriminator network D with parameters 2D. The
generator network G will produce some fake version of the
inputs. These fake data are sent to the discriminator network D
together with the real input data. Then the discriminator network
D will tell whether the input sample is artificially generated.
During the training procedure, the neural network finds a Nash
equilibrium between the generator and the discriminator, and the
fake data are gradually approaching the real one. This “zero-sum
game” can be described as:

min
G

max
D

Exr∼pr

[

logD2D (xr)
]

− Exf∼pf

[

logD2D

(

xf
)]

, (6)

where xr and pr are the real data and the corresponding
distribution, xf and pf are the fake version. After the optimization
with the loss Jgan, the adversarial subnetwork can align pf to the
constant prior pr .

We hope to utilize the aforementioned principle in the
embedding space. Therefore, we assume that the “true” universal

features among different patients comes from an arbitrary prior
distribution p (z). The adversarial module draws samples from
the prior distribution p (z) and considers these samples as the
real data zr . Accordingly, the learned latent information z is
considered as the fake data zf , where the autoencoder represents
the generator G. A discriminator D is also implemented in the
adversarial module, which distinguishes the produced vector z
from the samples of the prior. In this study, the prior distribution
is selected as the Laplace distribution z ∼ Laplace (η), where η

denotes the hyperparameter.
The training strategy of the adversarial module is a variational

inference process. To be specific, first, the latent coding
space has been established by the encoder explicitly. Then
the distributions among different domains are aligned with
the MMD regularization item to extract the domain-invariant
feature vectors. These features are guided to approach a prior
distribution p (z). To match the hidden code with an arbitrary
distribution can effectively alleviate the overfitting to a certain
patient. After the optimization process, the aggregated posterior
distribution q (z) of the hidden layer is as follows:

q (z) =

∫

x

q (z | x) pd (x) dx, (7)

where q (z | x) is the encoding function of the autoencoder, pd (x)

is the marginal distribution of data. During the training phase,
the probabilistic autoencoder is regularized with an adversarial
loss function Jadv, which is described as:

Jadv = Ez∼p(z)

[

logD (z)
]

+ Ex∼pd

[

log (1− D (G (x)))
]

.
(8)

After training, a generative model is defined by imposing the
prior p (z) on the data distribution. A one-hot encoding vector
y is used for supervised learning (Kumar et al., 2018; Saito et al.,
2020). Then we use the learned domain-invariant features for
seizure prediction. An SVM classifier is introduced to analyze
the extracted features. The loss function of the classification
procedure is denoted by Lcla. The objective function of the entire
model can be defined as:

min
G,C

max
D

Lcla + λ0Lrec + λ1Jadv + λ2Rdis, (9)

where λ0, λ1 and λ2 represent the trade-off positive parameters,
and C is the classifier. Our model is optimized jointly with
these modules. In general, the MMD-based regularization term is
designed to align the distributions among different patients. The
AAE architecture is used to construct the latent feature space.
The adversarial module is developed to match the hidden code
with a prior distribution. Thus this model can circumvent the
overfitting to a certain patient.

4. RESULTS AND DISCUSSION

In this section, comparison experiments are conducted to verify
the generalization ability and evaluate the forecast precision.
Our model is tested on both intracranial and scalp EEG signals.
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TABLE 3 | Results compared with conventional methods on the Freiburg Hospital database.

Source Target
FT-CNN PLV SBP Wav-CNN Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.64 0.21 0.66 0.20 0.69 0.19 0.70 0.17 0.79 0.16

S.C. Pt 2 0.63 0.3 0.65 0.28 0.66 0.26 0.67 0.24 0.82 0.12

S.C. Pt 3 0.58 0.24 0.59 0.23 0.62 0.22 0.64 0.22 0.74 0.20

S.C. Pt 4 0.64 0.25 0.65 0.24 0.66 0.22 0.69 0.20 0.83 0.16

S.C. Pt 5 0.56 0.4 0.58 0.39 0.59 0.38 0.60 0.38 0.57 0.30

S.C. Pt 6 0.64 0.27 0.64 0.26 0.67 0.26 0.69 0.26 0.73 0.18

S.C.∗ Pt 8 0.54 0.33 0.55 0.33 0.57 0.32 0.57 0.31 0.68 0.29

S.C. Pt 9 0.70 0.18 0.72 0.17 0.75 0.15 0.77 0.13 0.77 0.19

S.C. Pt 10 0.52 0.34 0.53 0.33 0.55 0.32 0.58 0.30 0.81 0.16

S.C. Pt 11 0.50 0.32 0.5 0.30 0.52 0.29 0.52 0.28 0.68 0.29

S.C. Pt 12 0.72 0.15 0.74 0.13 0.75 0.12 0.77 0.13 0.82 0.09

S.C.∗ Pt 13 0.55 0.27 0.56 0.25 0.59 0.24 0.60 0.23 0.66 0.29

S.C. Pt 14 0.56 0.46 0.57 0.46 0.58 0.44 0.60 0.43 0.75 0.22

S.C. Pt 15 0.66 0.17 0.66 0.16 0.69 0.15 0.69 0.13 0.83 0.12

S.C. Pt 16 0.59 0.33 0.6 0.32 0.63 0.31 0.65 0.30 0.85 0.12

S.C. Pt 17 0.59 0.34 0.62 0.33 0.63 0.31 0.65 0.30 0.77 0.21

S.C. Pt 18 0.76 0.14 0.78 0.13 0.80 0.11 0.83 0.12 0.84 0.09

S.C. Pt 19 0.48 0.29 0.48 0.28 0.48 0.27 0.5 0.26 0.73 0.23

S.C. Pt 20 0.45 0.33 0.47 0.33 0.48 0.33 0.51 0.32 0.82 0.15

S.C. Pt 21 0.60 0.28 0.62 0.27 0.62 0.25 0.65 0.24 0.66 0.31

Avg. 0.59 0.28 0.61 0.27 0.63 0.26 0.64 0.25 0.76 0.19

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result. S.C.
∗ uses NO samples of the predictor user.

TABLE 4 | Results compared with conventional methods on the CHB-MIT database.

Source Target
FT-CNN PLV SBP Wav-CNN Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.52 0.33 0.54 0.31 0.55 0.31 0.56 0.31 0.77 0.25

S.C. Pt 2 0.46 0.37 0.47 0.37 0.48 0.34 0.49 0.32 0.56 0.32

S.C. Pt 3 0.59 0.30 0.60 0.30 0.63 0.29 0.63 0.28 0.70 0.24

S.C. Pt 5 0.48 0.39 0.48 0.37 0.49 0.35 0.51 0.34 0.74 0.23

S.C. Pt 6 0.64 0.3 0.66 0.29 0.68 0.28 0.70 0.28 0.79 0.27

S.C. Pt 7 0.53 0.21 0.56 0.21 0.56 0.29 0.57 0.26 0.71 0.15

S.C. Pt 8 0.58 0.26 0.60 0.25 0.61 0.24 0.63 0.23 0.82 0.22

S.C. Pt 9 0.51 0.34 0.54 0.33 0.55 0.33 0.56 0.32 0.78 0.20

S.C. Pt 10 0.5 0.31 0.51 0.29 0.53 0.28 0.54 0.26 0.72 0.24

S.C. Pt 13 0.46 0.21 0.47 0.20 0.50 0.28 0.50 0.27 0.54 0.37

S.C. Pt 14 0.46 0.38 0.48 0.38 0.49 0.36 0.50 0.34 0.80 0.14

S.C. Pt 17 0.42 0.37 0.43 0.35 0.44 0.35 0.44 0.35 0.75 0.3

S.C. Pt 18 0.49 0.29 0.52 0.29 0.53 0.27 0.54 0.25 0.70 0.22

S.C. Pt 19 0.56 0.28 0.58 0.27 0.60 0.25 0.63 0.23 0.73 0.19

S.C. Pt 20 0.57 0.24 0.59 0.22 0.60 0.2 0.62 0.28 0.82 0.16

S.C. Pt 21 0.63 0.25 0.66 0.24 0.67 0.22 0.70 0.20 0.68 0.28

Avg. 0.51 0.30 0.54 0.29 0.56 0.29 0.57 0.28 0.73 0.24

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result.
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FIGURE 5 | AUC of different seizure prediction models on the Freiburg Hospital test set (left) and the CHB-MIT test set (right).

Three commonly-used indicators about model performance are
exploited in experiments: sensitivity, false alarm rate per hour
(FPR), and area under the receiver operating characteristic
curve (AUC). Noted that each EEG fragment represents an
event so that the event-based indicators are used for evaluation
(Temko et al., 2011).

4.1. Comparison With Conventional
Methods
To demonstrate the advantages over conventional methods, we
select four seizure prediction researches for comparison: FT-
CNN (Truong et al., 2018), phase locking value (PLV) (Cho et al.,
2016), spectral band power (SBP) (Ozcan and Erturk, 2019),
and Wav-CNN (Khan et al., 2017). All these approaches have
obtained good model performance when the training and testing
processes are performed on the same subject. But data from
previous cases are not used in their training phases. Here we train
these models with EEG samples from multiple patients and test
them with the “unseen” patient’s data. The sensitivity and FPR
are provided in Tables 3, 4. The AUC value for each patient is
illustrated in Figure 5.

The widely-used Freiburg Hospital database is employed in
this work to evaluate our model on the intracranial EEG. Table 3
illustrates that our model outperforms all the other conventional
methods in a clear margin. It is reasonable since the prior
studies adopt the patient-specific strategy and consider little
about the domain adaptability. Conversely, our method exhibits
obvious advantages in terms of generalization ability, which
achieves a sensitivity of 76% and an FPR of 0.19/h on average.
Although these results do not achieve the high accuracy of
tests under the patient-specific conditions, such precision can
still meet the daily needs of patients with epilepsy because they
are similar to the warning frequency in the first-in-man trial
(Cook et al., 2013).

Still, the simulated clinical sampling situation is “harsh” for
the forecast task. It can be observed that the performances of
all these models are not desired. Moreover, on several outliers
like Pt 5, 11, and 21, the performance degradation is particularly
noticeable. It might be caused by a more complex internal
mode in the high-dimensional space. Note that even on these

outliers, the sensitivity of our model is slightly higher than
other methods, which demonstrates that our approach achieves
better robustness.

As for the scalp EEG recordings, we test these methods using
the public CHB-MIT database, produced by the Massachusetts
Institute of Technology. As shown in Table 4, our algorithm
achieves a sensitivity of 73% and an FPR of 0.24/h on average. The
results of our model show a significant improvement compared
with the conventional methods, which is consistent with the
results on intracranial EEG.However, all themodel performances
drop to a varying degree compared with the precisions on the
Freiburg test set. It might be caused by the low spatial resolution
of the scalp EEG signals for they are more susceptible to being
contaminated by noises (Ramantani et al., 2016; Usman et al.,
2019). In other words, intracranial EEG recordings have the
higher SNR and the artifacts are typically seen in scalp EEG.

There are also some outliers in the tests on the scalp EEG
signal. On Pt 2, 13, and 21, all these models obtain a subpar
performance. Larger domain gaps might exist in the sample space
of these outliers, which makes the hyperplane difficult to capture.
Even on these outliers, the precision of our model is slightly
higher than the lower bound of a random binary classifier.
It gives us confidence in applying DA techniques to epileptic
seizure prediction.

4.2. Comparison With DA Methods
We further compare our model with domain adaptation (DA)
methods in the existing literature. However, few applications
regarding DA approaches have been reported in the area of
epileptic seizure prediction. Thus we have to employ DA
methods from other fields. The maximum independence
domain adaptation (MIDA) (Yan et al., 2017), model-agnostic
learning of semantic features (MASF), conditional deep
convolutional generative adversarial networks (C-DCGANs)
(Zhang et al., 2021) and subject-invariant domain adaption
(SIDA) (Rayatdoost et al., 2021) are introduced to verify the
advantage of our model. The sensitivity and FPR are provided
in Tables 5, 6. The AUC value for each patient is illustrated in
Figure 6.
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TABLE 5 | Results compared with DA methods on the Freiburg Hospital database.

Source Target
MIDA MASF C-DCGANs SIDA Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.57 0.22 0.62 0.21 0.78 0.19 0.83 0.18 0.79 0.16

S.C. Pt 2 0.56 0.28 0.60 0.26 0.73 0.26 0.82 0.25 0.82 0.12

S.C. Pt 3 0.52 0.23 0.62 0.22 0.77 0.22 0.78 0.20 0.74 0.2

S.C. Pt 4 0.49 0.23 0.60 0.23 0.61 0.21 0.62 0.20 0.83 0.16

S.C. Pt 5 0.57 0.37 0.53 0.35 0.78 0.35 0.79 0.33 0.57 0.30

S.C. Pt 6 0.53 0.23 0.60 0.23 0.63 0.23 0.70 0.23 0.73 0.18

S.C.∗ Pt 8 0.45 0.33 0.51 0.33 0.53 0.33 0.55 0.30 0.68 0.29

S.C. Pt 9 0.49 0.37 0.51 0.36 0.68 0.26 0.70 0.24 0.77 0.19

S.C. Pt 10 0.52 0.33 0.54 0.32 0.62 0.32 0.64 0.31 0.81 0.16

S.C. Pt 11 0.59 0.33 0.57 0.32 0.67 0.30 0.79 0.31 0.68 0.29

S.C. Pt 12 0.59 0.36 0.63 0.34 0.73 0.24 0.75 0.22 0.82 0.09

S.C.∗ Pt 13 0.45 0.29 0.56 0.29 0.69 0.27 0.69 0.26 0.66 0.29

S.C. Pt 14 0.45 0.46 0.52 0.45 0.65 0.44 0.60 0.44 0.75 0.22

S.C. Pt 15 0.56 0.16 0.67 0.16 0.52 0.36 0.74 0.16 0.83 0.12

S.C. Pt 16 0.44 0.35 0.48 0.33 0.76 0.33 0.64 0.31 0.85 0.12

S.C. Pt 17 0.44 0.36 0.47 0.35 0.53 0.32 0.52 0.32 0.77 0.21

S.C. Pt 18 0.58 0.36 0.61 0.35 0.77 0.22 0.77 0.21 0.84 0.09

S.C. Pt 19 0.45 0.29 0.47 0.28 0.53 0.27 0.58 0.26 0.73 0.23

S.C. Pt 20 0.47 0.34 0.53 0.34 0.62 0.31 0.66 0.31 0.82 0.15

S.C. Pt 21 0.52 0.30 0.54 0.29 0.52 0.27 0.66 0.26 0.66 0.31

Avg. 0.51 0.31 0.56 0.30 0.66 0.29 0.69 0.27 0.76 0.19

S.C., simulated clinical samples; Sn, sensitivity; FPR, false prediction rate; Avg., average result. S.C.
∗ uses NO samples of the predictor user.

TABLE 6 | Results compared with DA methods on the CHB-MIT database.

Source Target
MIDA MASF C-DCGANs SIDA Our model

Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h) Sn FPR (/h)

S.C. Pt 1 0.55 0.34 0.61 0.33 0.74 0.30 0.74 0.28 0.77 0.25

S.C. Pt 2 0.43 0.38 0.49 0.38 0.66 0.37 0.64 0.35 0.56 0.32

S.C. Pt 3 0.51 0.28 0.50 0.27 0.65 0.25 0.67 0.24 0.70 0.24

S.C. Pt 5 0.48 0.42 0.51 0.40 0.69 0.37 0.69 0.36 0.74 0.23

S.C. Pt 6 0.46 0.29 0.52 0.27 0.72 0.27 0.72 0.25 0.79 0.27

S.C. Pt 7 0.54 0.25 0.56 0.24 0.73 0.21 0.73 0.19 0.71 0.15

S.C. Pt 8 0.48 0.27 0.60 0.26 0.67 0.25 0.66 0.24 0.82 0.22

S.C. Pt 9 0.46 0.31 0.51 0.29 0.58 0.27 0.57 0.25 0.78 0.20

S.C. Pt 10 0.45 0.28 0.46 0.27 0.52 0.25 0.52 0.24 0.72 0.24

S.C. Pt 13 0.48 0.21 0.51 0.39 0.61 0.38 0.62 0.26 0.54 0.37

S.C. Pt 14 0.47 0.39 0.48 0.39 0.64 0.36 0.65 0.35 0.80 0.14

S.C. Pt 17 0.49 0.38 0.50 0.37 0.61 0.37 0.59 0.35 0.75 0.30

S.C. Pt 18 0.50 0.30 0.49 0.30 0.57 0.28 0.61 0.28 0.70 0.22

S.C. Pt 19 0.51 0.39 0.51 0.36 0.62 0.34 0.62 0.24 0.73 0.19

S.C. Pt 20 0.53 0.25 0.55 0.23 0.70 0.23 0.66 0.21 0.82 0.16

S.C. Pt 21 0.50 0.27 0.52 0.26 0.63 0.24 0.68 0.22 0.68 0.28

Avg. 0.49 0.31 0.52 0.31 0.65 0.30 0.65 0.27 0.73 0.24

S.C., simulated clinical samples.

Frontiers in Neuroscience | www.frontiersin.org 9 January 2022 | Volume 15 | Article 825434

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Peng et al. Seizure Prediction

FIGURE 6 | AUC of different DA models on the Freiburg Hospital test set (left) and the CHB-MIT test set (right).

For the intracranial EEG samples, we still exploit the Freiburg
Hospital database as the test set. Evidently, compared with
other DA methods, our model achieves the best performance
with a sensitivity of 76% and an FPR of 0.19/h on average.
Then the SIDA method exhibits a slight advantage over other
methods. Comparing this model to SIDA, we see a benefit of
approximately 7% is obtained. Comparing our method to C-
DCGANs, we remark that a further 3% benefit is obtained. As for
the MASF, a benefit of 20% is observed, for a total of 25% margin
over MIDA.

In terms of the scalp EEG data, the open CHB-MIT dataset
is applied in the experiment. The order of precision of these DA
algorithms is consistent with the performance of the intracranial
EEG data. Our model has obvious advantages over other
approaches with a sensitivity of 73% and an FPR of 0.24/h on
average. The high model performance of our model on both
intracranial and scalp EEG testifies to the application potential on
seizure forecast.

Evidently, SIDA achieves the best performance except for
the proposed method. The reason for this superiority might
credit the combination of CNN and generative adversarial
network (GAN). SIDA is the deep neural network from the
field of emotion recognition. Raw EEG data are converted to
spectrum in EEG. Byminimizing loss of emotion recognition and
subject confusion, SIDA extracts the invariant features among
different domains. We conjecture that the architecture of GAN
in SIDA might have advantages in this task, which needs to be
further proved.

The C-DCGANs makes a relatively larger contribution
compared with other modules. An adversarial learning-
based structure is also employed by C-DCGANs. It also
uses the data augmentation technique, which generates EEG
recordings artificially. By increasing the data diversity, C-
DCGANs hopes to improve the domain shift robustness.
Nevertheless, the man-made data may involve more
artifacts (Fahimi et al., 2020) that contaminate EEG
samples. Besides, C-DCGANs is a variation of deep
learning-based frameworks. As such, it has uncertainties
associated with DNN, in particular a lack of formal
convergence guarantees.

Not surprisingly, the results of MASF and MIDA are not
satisfactory. The core idea of MASF is to establish a model-
agnostic learning paradigm using semantic features and gradient-
based meta-learning. However, the discriminant hyperplane in
the high-dimensional spacemight be too complex to be described
with semantic features. MIDA reduces differences between
distributions of domains by learning a subspace with background
information. It is obvious that the background-specific features
are not valid characteristics.

Based on the aforementioned observations, we conjecture
that adversarial learning-based techniques are relatively superior
for alleviating individual variability, since all the adversarial
learning-based models achieve a decent model performance
and generalization ability for seizure prediction. Experiments
on both intracranial and scalp EEG datasets suggest that
adversarial structure has potential in developing a generic seizure
forecast model.

4.3. Impact on Different Components
In this section, we conduct experiments to understand the
impact of different modules of the proposed model on the
final forecast results. To calculate the contribution of each
component quantitatively, we adjust the corresponding trade-
off positive parameters and observe the variation tendency.
The experiment results are listed in Tables 7, 8. Here we
discuss three components in this model: the reconstruction
module with a loss Lrec, the adversarial module with a
loss Jadv, and the inter-domain distance regularization
termRdis.

As shown in Tables 7, 8, we observe that removing the inter-
domain distance regularization item, the adversarial subnetwork,
or the classification component causes performance drop on both
intracranial and scalp EEG databases. Such results indicate that
these modules can effectively improve the model performance:
(1) AAE is suitable for epileptic EEG signal processing, and the
embedding space made by AAE is meaningful. (2) MMD is an
appropriate distance measure to minimize the domain gaps in
the seizure forecast task. (3) The reconstruction procedure can
force the model to learn the significant features from the latent
high-dimensional space.
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TABLE 7 | Comparison results on the Freiburg Hospital database using various components.

Method Sn FPR (/h) Acc AUC

No Rdis 0.60 ± 0.03 0.35 ± 0.03 0.63 ± 0.04 0.63 ± 0.03

No Jadv 0.67 ± 0.03 0.31 ± 0.03 0.68 ± 0.03 0.69 ± 0.03

No Lrec 0.71 ± 0.03 0.27 ± 0.03 0.72 ± 0.03 0.72 ± 0.03

Our model 0.76 ± 0.03 0.19 ± 0.03 0.78 ± 0.03 0.78 ± 0.03

Sn, sensitivity; FPR, false positive rate; Acc, accuracy.

TABLE 8 | Comparison results on the CHB-MIT database using various components.

Method Sn FPR (/h) Acc AUC

No Rdis 0.57 ± 0.03 0.36 ± 0.03 0.59 ± 0.03 0.59 ± 0.03

No Jadv 0.64 ± 0.04 0.33 ± 0.03 0.66 ± 0.04 0.66 ± 0.03

No Lrec 0.68 ± 0.03 0.29 ± 0.03 0.69 ± 0.03 0.70 ± 0.03

Our model 0.73 ± 0.03 0.24 ± 0.03 0.75 ± 0.03 0.75 ± 0.03

Sn, sensitivity; FPR, false positive rate; Acc, accuracy.

FIGURE 7 | AUC of different inter-domain distance measures on the Freiburg Hospital test set and the CHB-MIT test set.
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By adjusting these trade-off items, a set of hyperparameters
that are suitable for seizure prediction can be obtained. For the
intracranial EEG data, the most appropriate trade-off parameters
are set as λ0 = 1.05, λ1 = 1.2e2, λ2 = 0.7. For the scalp EEG data,
the most appropriate parameter are set as λ0 = 1, λ1 = 1.1e2,
λ2 = 0.6.

We also discuss the superiority of the MMD measure over
other distance metrics. The standardized Euclidean distance
and the KL-divergence are used for comparison. Experimental
results are provided in Figure 7. The results suggest that
the precision can increase by 3% for intracranial EEG and
4% for scalp EEG by applying the MMD measure, which
demonstrates the advantage of MMD measure on the seizure
prediction task.

5. CONCLUSION

This work proposes a generic seizure predictor to alleviate
the impact of individual variability. By combining STFT with
MMD-AAE, our model reduces the effects of epileptic domain
variance and improves the generalization ability. Besides, a
simulated clinical sampling scenario is used during training
and testing periods, which is the first attempt to adopt this
assessing strategy. Compared with the patient-specific strategy
from previous researches, such a test approach is relatively
challenging. Nonetheless, our method achieves high domain shift
robustness and precision, which demonstrates its feasibility of
real-world applications.

By analyzing the comparison results of DA methods, a
conjecture about the effectiveness of adversarial learning in
epileptic seizure prediction is obtained. The underlying causes
of this phenomenon remain unclear because there is no
definitive explanation of the dynamics of epilepsy in the existing
literature. The search for more powerful DA algorithms and
the underlying reasons will be considered as part of our
future research.
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