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Abstract: The catalytic activity and high selectivity reported by bimetallic heteroscorpionate acetate
zinc complexes in ring-opening copolymerization (ROCOP) reactions involving CO2 as substrate
encouraged us to expand their use as catalysts for ROCOP of cyclohexene oxide (CHO) and cyclic
anhydrides. Among the catalysts tested for the ROCOP of CHO and phthalic anhydride at differ-
ent reaction conditions, the most active catalytic system was the combination of complex 3 with
bis(triphenylphosphine)iminium as cocatalyst in toluene at 80 ◦C. Once the optimal catalytic system
was determined, the scope in terms of other cyclic anhydrides was broadened. The catalytic system
was capable of copolymerizing selectively and efficiently CHO with phthalic, maleic, succinic and
naphthalic anhydrides to afford the corresponding polyester materials. The polyesters obtained
were characterized by spectroscopic, spectrometric, and calorimetric techniques. Finally, the reaction
mechanism of the catalytic system was proposed based on stoichiometric reactions.

Keywords: ring-opening copolymerization; epoxides; cyclic anhydrides; polymers; zinc complexes

1. Introduction

Commercial polyester materials are currently produced by polycondensation reac-
tions between diols and diacids at high reaction temperature and prolonged reaction
times to afford high-molecular weight polyesters [1,2]. In recent years, a broad range of
biodegradable polyesters have been obtained via ring-opening polymerization (ROP) of
cyclic esters (Scheme 1a) as a more sustainable alternative to traditional polyester mate-
rials [3–10]. In fact, polycaprolactone and polylactide have already been used for several
applications [11–14]. However, the microstructure and properties of the resulting polymers
are restricted by the limited number of commercially available cyclic esters. In this regard,
the ring-opening copolymerization (ROCOP) of epoxides and cyclic anhydrides (Scheme 1b)
has emerged in recent years as alternative to the ROP of cyclic esters to prepare a larger
number of polyester materials with a broader range of microstructures, properties and
applications [15].

The ROCOP reaction of epoxides and cyclic anhydrides requires the use of a catalyst
system, which is usually comprised by a combination of a metal complex and a nucleophile
source [15]. A wide range of metal complexes, including chromium [16–20], magnesium [21–23],
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cobalt [24–28], manganese [26,29,30], iron [31–34], aluminum [3,35–40] and zinc [41–47] has
been used as catalysts for this process. Most of these complexes required the use of a
cocatalyst such as tetrabutylammonium salts (TBAX), bis-(triphenylphospine)iminium
salts (PPNX) or 4-dimethylaminopyridine (DMAP) to increase the efficiency and selectivity
of the metal complex [15]. In this context, zinc acetate complexes have displayed excellent
catalytic activity and selectivity for the ROCOP reaction of epoxides and cyclic anhydrides.
Coates et al. developed a very efficient β-diiminate zinc acetate complex for the ROCOP of
different epoxides and bi- or tricyclic anhydrides to afford the corresponding polymers
with high molecular weights and narrow polydispersities [48]. Williams et al. obtained
several homo- and heterobimetallic zinc complexes with outstanding catalytic activity and
selectivity towards the synthesis of well-controlled polyester materials [21,44,45]. These
bimetallic catalysts can activate both monomers facilitating the nucleophilic attack of the
alkoxide or carboxylate group of one zinc atom to the activated monomer on the second
zinc center. Moreover, these complexes have also catalyzed the synthesis of a broad range
of multiblock polymeric materials by ROCOP of epoxides, anhydrides, carbon dioxide
or lactones [49,50]. Zinc amido-oxazolinate complexes [43,46] have also been tested as
catalysts for the ROCOP of epoxides and cyclic anhydrides, obtaining TOF values up to
4000 h−1 [43]. It was observed that there is a relationship between catalytic activity and
epoxide substrates used due to the effect of the electronic and steric properties of the
epoxides in the chain propagation step [46]. Schiff-base zinc complexes in combination
with a range of cocatalysts have been investigated as catalyst systems for the bulk and
solution ROCOP of cyclohexene oxide (CHO) and maleic anhydride (MA) to produce
polymeric materials [42]. The results showed alternating poly(cyclohexene maleate) when
the process was carried out in toluene using a combination of zinc complex and DMAP as
a cocatalyst.
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cyclic anhydrides.

Scorpionate aluminum and zinc complexes have been developed as efficient cata-
lysts for the ROCOP of carbon dioxide and epoxides to afford polycarbonates and the
terpolymerization reaction of epoxides, cyclic anhydrides and carbon dioxide [3,36,51–53].
The zinc-based complexes displayed good catalytic activity and selectivity for the synthesis
of medium molecular weight poly(cyclohexene carbonate) (PCHC) with narrow molecular
weight distributions in the absence of a nucleophile as a cocatalyst [52,53]. The use of
helical aluminum catalysts for the ROCOP of a range of epoxides and cyclic anhydrides
or CHO and CO2 afforded the synthesis of polyester and polyether-polycarbonate materi-
als respectively [36,51]. Furthermore, we have recently reported a new family of acetate
zinc complexes as catalysts for the ROCOP of CHO with CO2 to afford polycarbonates
or the terpolymerization of CHO, CO2 and phthalic anhydride (PA) to produce polyester-
polycarbonate materials [53]. Encouraged by the catalytic activity and selectivity displayed
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by these complexes in ROCOP reactions involving CO2, in this work, we have studied
the use of these friendly zinc complexes as catalysts for the ROCOP of CHO and cyclic
anhydrides with the aim of extend the substrate scope for these complexes in the synthesis
of polymeric materials. In addition, a mechanistic proposal has been presented for this
catalytic process.

2. Materials and Methods

All manipulations were performed under nitrogen, using standard Schlenk techniques.
Microanalyses were carried out with a Perkin–Elmer 2400 CHN analyzer (PerkinElmer, Inc.,
Waltham, MA, USA). 1H and 13C NMR spectra were recorded on a Bruker Ascend TM-500
spectrometer (Bruker, Billerica, MA, USA) and referenced to the residual deuterated solvent.
Gel permeation chromatography (GPC) measurements were performed on a Shimadzu
LC-20A instrument (Shimadzu Corporation, Kyoto, Japan) equipped with a TSK-GEL
G3000H column and a refractive index detector (RID-20A). The GPC column was eluted
with THF at 25 ◦C at 1 mL·min−1 and was calibrated using eight monodisperse polystyrene
standards in the range 580–48,300 Da. TGA analysis was performed on a TA instrument
TGA-Q50 (TA Instruments Inc., New Castle, DE, USA). The heating rate for the sample was
10 ◦C/min, and the nitrogen flow rate was 60 mL/min. DSC curves were obtained under
N2 atmosphere on a TA Instrument DSC-Q20 (TA Instruments Inc., New Castle, DE, USA).
Samples were weighed into aluminum crucibles with 5 mg of sample and subjected to two
heating cycles at a heating rate of 10 ◦C/min. The MALDI-ToF spectra were acquired using
a Bruker Autoflex II TOF/TOF spectrometer (Bruker, Billerica, MA, USA) using dithranol
(1,8,9-trihydroxyanthracene) as matrix material and NaOAc as additive. Commercially
available chemicals (Alfa Aesar, Ward Hill, MA, US, Sigma-Aldrich, Munich, Germany and
Fluka, Buchs, Switzerland) were used as received.

2.1. Materials and Reagents

Toluene was predried over sodium wire and distilled under nitrogen from sodium.
Deuterated solvents were stored over activated 4 Å molecular sieves and degassed by
several freeze-thaw cycles. The synthesis of ligand precursors and zinc complexes was
carried out as previously reported [53–55]. Cyclohexene oxide (Sigma-Aldrich, Munich,
Germany) was pre-dried over calcium hydride, distilled under vacuum and stored under
nitrogen in a glove box. Phthalic, maleic and succinic anhydride (Sigma-Aldrich) were
sublimed three times and naphthalic anhydride was recrystallized in chloroform and
stored under nitrogen in a glove box. All other reagents were purchased from common
commercial sources and used as received.

2.2. General Procedure for the ROCOP of CHO with Cyclic Anhydrides

In the glovebox, zinc complex (50.09 µmol), cocatalyst (0.01 mmol) and cyclic an-
hydride (5.09 mmol) were placed into a 10 mL Schlenk equipped with a small stir bar.
Toluene (2 mL) and cyclohexene oxide (5.09 mmol) were added to the reaction mixture.
Then, the Schlenk was taken out of the glovebox and placed in a preheated oil bath under
a nitrogen atmosphere at the desired temperature. The conversion of cyclic anhydride into
the corresponding polyester was monitored by NMR. Once the polyester was obtained, the
viscous mixture was dissolved in the minimum amount of dichloromethane, precipitated
with an excess of methanol to remove the unreacted reactants, catalyst, and co-catalyst and
finally, was filtered off and dried to afford a white solid.

3. Results

Dinuclear zinc complexes 1–3 (Figure 1) were synthesized in excellent yields as previ-
ously reported [53]. These complexes showed high stability in solution and in solid-state
in the presence of air for months. As previously commented, these complexes displayed
good catalytic activity for the synthesis of polycarbonates from the reaction of cyclohexene
oxide with carbon dioxide and for the preparation of terpolymers [53].
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In order to extend the scope of application of these compounds in catalysis, further
studies for ROCOP reactions were carried out. First, we explored the use of these complexes
for the preparation of poly(PA-alt-CHO) (6) via ROCOP of phthalic anhydride (4) and cyclo-
hexene oxide (5) (Scheme 2) and the results are shown in Table 1. Conversion and selectivity
towards 6 were determined by 1H NMR spectroscopy of the crude reaction mixture.
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Initially, the ROCOP reaction of 4 and 5 was investigated using 1 mol.% of complexes
1–3 at 80 ◦C for 16 h under solvent-free conditions (Table 1, entries 1–3). Under these
reaction conditions, complexes 1–3 displayed good catalytic activity but low selectivity
towards the synthesis of 6 probably due to the low solubility of the anhydride into the
epoxide. Thus, in order to improve the solubility of PA into CHO, the concentration of CHO
in the reaction mixture was increased. Unfortunately, 79–82% of polyether was obtained
under these conditions (Table 1, entries 4–6). Importantly, bimetallic zinc complexes 1–3
required the addition of PA into the reaction mixture to catalyze the ROP of CHO (Table 1,
entries 7–9).

The addition of toluene as a solvent resulted in an increase of the selectivity to-
wards the formation of 6, although the catalytic activity decreased (Table 1, entries 10–
12). Complex 3 displayed the highest catalytic activity and therefore complex 3 was se-
lected to optimize the catalytic system. Entries 12 and 13 of Table 1 show that a more
coordinative solvent such as THF caused a decrease in the catalytic activity of the sys-
tem. On the other hand, lower conversion was achieved when using nondistilled CHO
(Table 1, entry 14). As it was expected, the addition of an external nucleophile such as of
4-dimethylaminopyridine (DMAP) not only increased the selectivity but also the catalytic
activity of complex 3 (Table 1, entries 15 and 16) [3,38].

In order to continue with the optimization of the catalytic system for the synthe-
sis of 6, the addition of a range of nucleophiles was investigated using 1 mol.% of
complex 3 and 2 mol.% of the corresponding cocatalyst in toluene at 80 ◦C for 16 h.
The results are shown in Table 2. Tetrabutylammonium chloride (TBAC), bromide (TBAB)
and iodide (TBAI) were initially screened as cocatalyst obtaining conversions in the
range of 66 to 88% with excellent selectivities towards 6 (93–97%) (Table 2, entries 1–
3). Then, bis(triphenylphosphine)iminium chloride (PPNCl), azide (PPNN3) and 2,4-
dinitrophenolate (PPNDNP) were studied as cocatalysts (Table 2, entries 4–6) obtaining
excellent conversions and selectivities towards 6. In addition, when the reaction time was
decreased to 8 h (Table 2, entries 8 and 9), higher conversion was obtained when using PP-
NCl as a cocatalyst (Table 2, entry 8). Finally, a control experiment using 2 mol.% of PPNCl
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in the absence of complex 3 (Table 2, entry 10) confirmed that both catalyst components are
needed to achieve excellent conversion and selectivity.

Table 1. Synthesis of poly(PA-alt-CHO) 6 catalyzed by complexes 1–3 1 .

Entry [Cat]:[CHO]:[PA] Catalyst Solvent Conversion
(%) 2

Polyester,
6 (%) 2

Polyether,
7 (%) 2

1 1:100:100 1 - 70 22 78
2 1:100:100 2 - 75 20 80
3 1:100:100 3 - 76 28 72
4 1:200:100 1 - 75 20 80
5 1:200:100 2 - 77 18 82
6 1:200:100 3 - 78 21 79
7 1:100:0 1 - 0 - -
8 1:100:0 2 - 0 - -
9 1:100:0 3 - 0 - -

10 1:100:100 1 Toluene 42 42 58
11 1:100:100 2 Toluene 42 43 58
12 1:100:100 3 Toluene 50 43 57
13 1:100:100 3 THF 35 46 54

14 3 1:100:100 3 Toluene 35 45 55
15 4 1:100:100 3 Toluene 57 90 10
16 5 1:100:100 3 Toluene 90 95 5

1 Reactions were carried out at 80 ◦C for 16 h using 1 mol.% of complexes 1–3 as catalysts. 2 Conversion
relative to PA was determined by 1H NMR spectroscopy. 3 Nondistilled CHO was used. 4 1 mol.% of 4-
dimethylaminopyridine was used as cocatalyst. 5 2 mol.% of 4-dimethylaminopyridine was used as cocatalyst.

Table 2. Influence of the cocatalyst in the optimization of the catalytic system for the synthesis of
poly(PA-alt-CHO) (6) 1.

Entry [3]:[Cocat]:[CHO]:[PA] Cocatalyst Conversion
(%) 2

Polyester,
6 (%) 2

Polyether,
7 (%) 2

1 1:2:100:100 TBAC 84 97 3
2 1:2:100:100 TBAB 88 93 7
3 1:2:100:100 TBAI 66 97 3
4 1:2:100:100 PPNCl 96 97 3
5 1:2:100:100 PPNN3 66 95 5
6 1:2:100:100 PPNDNP 95 96 4
7 1:2:100:100 DMAP 90 95 5

8 3 1:2:100:100 PPNCl 60 94 6
9 3 1:2:100:100 PPNDNP 45 93 7
10 4 0:2:100:100 PPNCl 40 96 4

1 Reactions were carried out in toluene (2 mL) at 80 ◦C for 16 h using complex 3 and a cocatalyst. 2 Conversion
relative to PA was determined by 1H NMR spectroscopy. 3 Reaction was carried out for 8 h. 4 Complex 3 was not
added.

The effect of the catalyst loading on the catalytic activity, selectivity and molecular
weight of the resulting copolymers was investigated (Table 3). When the catalyst loading
was increased to 2 mol.% (Table 3, entry 1), quantitative conversion and 97% selectivity
towards 6 were achieved. On the other hand, lower conversions and good selectivities
were obtained when the catalyst loading was decreased (Table 3, entries 3–4). As can be
seen in Table 3, low molecular weights (Mn = 2.46–3.67 kg/mol) and narrow polydispersity
values (1.39–1.58) were obtained. Moreover, the reduction of the catalyst loading resulted
in a slight increase in the molecular weight of the polyesters obtained (Table 3, entries 1–4).
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Table 3. Effect of the catalyst loading on the activity of the catalytic system for the synthesis of
poly(PA-alt-CHO) (6) 1.

Entry [3]:[PPNCl]:[CHO]:[PA] Conversion (%) 2 Polyester, 6
(%) 2

Mn exp (kg·mol−1)
(PDI) 3

1 1:2:50:50 100 97 2.46 (1.58)
2 1:2:100:100 96 97 2.87 (1.49)
3 1:2:150:150 76 95 3.29 (1.45)
4 1:2:200:200 70 91 3.67 (1.39)

1 Reactions were carried out in toluene (2 mL) at 80 ◦C for 16 h using complex 3 and PPNCl. 2 Conversion relative
to PA determined by 1H NMR spectroscopy. 3 Determined by GPC.

Having determined the optimal reaction conditions, the use of several cyclic anhy-
drides was examined for the ROCOP process using CHO as epoxide substrate (Scheme 3)
and the results are listed in Table 4. When succinic or maleic anhydride were used as the
cyclic anhydride substrate, the ROCOP proceeded smoothly and excellent conversions and
selectivities were obtained, affording the corresponding low to medium molecular weight
polyester materials with narrow polydispersities (Table 4, entries 1–4). However, the use of
naphthalic anhydride as monomer for the ROCOP with CHO was challenging (Table 4,
entries 5–7). When the reaction was carried out in toluene at 80 ◦C, only 55% conversion of
NA into poly(NA-alt-CHO) (13) was obtained (Table 4, entry 5). Therefore, the ROCOP
of CHO and NA was studied using CHO as solvent. As can be seen in Table 4 (entries 6
and 7), higher conversions were achieved under these reaction conditions. Furthermore,
all polyesters displayed low to medium molecular weights which were influenced by the
solvent used in the process.
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Table 4. Synthesis of polyesters 11–13 catalyzed by complex 3 and PPNCl 1.

Entry [3]:[PPNCl]:[CHO]:[CA] CA Conversion
(%) 2

Polyester,
6 (%) 2

Mn exp
(kg·mol−1)(PDI) 3

1 1:2:100:100 SA 100 97 2.95 (1.43)
2 1:2:200:200 SA 99 99 4.03 (1.34)
3 1:2:100:100 MA 100 89 2.40 (1.51)
4 1:2:200:200 MA 100 90 3.52 (1.39)
5 1:2:100:100 NA 55 96 2.07 (1.48)

6 4 1:2:100:100 NA 100 96 2.92 (1.45)
7 4 1:2:200:200 NA 98 98 3.89 (1.37)

1 Reactions were carried out in toluene (2 mL) at 80 ◦C for 16 h using complex 3 and PPNCl. 2 Conversion relative
to the cyclic anhydride determined by 1H NMR spectroscopy. 3 Determined by GPC. 4 Reactions were carried out
using CHO (2 mL) as solvent.
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All polymers were characterized by NMR and IR spectroscopy (Figure 2 and
Figures S1–S12 in the SI), gel permeation chromatography (GPC) (Figure S13 in the SI)
and MALDI-ToF mass spectroscopy (Figure 3 and Figure S14 in the SI). The NMR spectra
of copolymers 6,11–13 are in good agreement with those previously reported [32,36] and
confirmed the formation of the corresponding alternating copolyester (Figure 2). On the
other hand, the IR spectra of copolymers clearly showed the presence of a strong band in
the range 1710–1729 cm−1 corresponding to the ν(C=O) stretching vibration of the ester
group, which is shifted to lower wavenumbers compared with that of the corresponding
cyclic anhydride starting materials (1736–1777 cm−1).
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MALDI-ToF analysis supported the formation of alternating poly(PA-alt-CHO) with-
out the presence of polyether chains (Figure 3). The MALDI-ToF spectrum showed three
major distributions of poly(PA-alt-CHO) end-capped with a carboxylic acid end-group and
a hydroxyl, a cyclohexanol or a carboxylic acid end-groups with sodium or potassium as
counterion. Even though the chloride initiates the copolymerization, no chloride end-group
was shown due to the resulting acyl chloride was unstable and quickly hydrolyzed to the
corresponding carboxylic acid during the work-up procedure.

Inductively coupled plasma–mass spectrometry (ICP–MS) was used to determine the
metal content of the polyester synthesized in Table 3, entry 2. The Zn content of the polymer
was determined to be 1.700 mg·g−1 by ICP–MS, confirming that most of the catalyst was
removed in the purification process. However, this result showed that it is impossible to
entirely remove the metal traces from the polymer when using a homogeneous catalyst.

The thermal properties of the resulting polyesters were investigated by differential
scanning calorimetry (DSC) (Figures S16, S18, S20 and S22 in the SI). As can be seen in
Figure 4, the glass transition temperature (Tg) of the copolymers is highly dependent on the
substrate used. Thus, poly(SA-alt-CHO) and poly(MA-alt-CHO) displayed lower Tg values
than the polyesters in which an aromatic anhydride was used. Moreover, poly(NA-alt-
CHO) showed the highest Tg value because of the stiffness of the polyester. TGA analysis
of polyesters 6, 11–13 showed that all polyesters decompose around 300 ◦C (Figures S15,
S17, S19 and S21 in the SI).
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Then, several stoichiometric reactions were carried out in order to gain insight into
the reaction mechanism for the ROCOP of CHO and PA catalyzed by the catalytic system
comprised by complex 3 and PPNCl (Figure 5). Addition of two equivalents of PPNCl to a
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solution of complex 3 in CDCl3 resulted in minor changes in the NMR spectrum of complex
3 (Figure 5b). When 4 was added to the catalytic system, no changes in the NMR spectrum
were observed after 24 h of reaction at 80 ◦C (Figure 5c). On the contrary, new signals
showed up at around 8.5 ppm when PA was added to the catalytic system, suggesting
that the first step of the copolymerization corresponds with the ring-opening of the cyclic
anhydride (Figure 5d).
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The reaction of one equivalent of 4 and 5 with one equivalent of complex 3 and 2
equivalents of PPNCl at 80 ◦C was also monitored by 1H NMR (Figure 6). It is worth
noting that even at room temperature phthalic anhydride was activated by the catalytic
system, and the chloride anion provided by PPNCl was able to ring-open the activated
anhydride as it is supported by the appearance of new resonance signals at 8.3 ppm. When
the reaction temperature was increased up to 80 ◦C, the signal at 8.30 ppm increased its
intensity, ascertaining the fact that the first step of the copolymerization is the ring-opening
of the cyclic anhydride. On the other hand, no changes in the signal of CHO were observed
within 16 h. After that, most of the cyclic anhydride was ring-opened and a new signal at
4.98 ppm showed up which corresponds to the ester moiety (Figure 6).
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version and selectivity values up to 100% and 97%, respectively. This catalyst system also 
catalyzed ROCOP of CHO with succinic, maleic and naphthalic anhydrides to give rise to 

Figure 6. Reaction one equivalent of cyclohexene oxide 4 and phthalic anhydride 5 with one equiva-
lent of complex 3 and two equivalents of PPNCl in CDCl3, (a) at room temperature; (b) at 80 ◦C after
0 h; (c) at 80 ◦C after 16 h.

A plausible mechanism for the ROCOP of CHO and PA catalyzed by the catalytic
system comprised by complex 3 and PPNCl is proposed in Scheme 4. Firstly, the epoxide
and cyclic anhydride may coordinate to the two zinc centers to form intermediate 3a.
Then, the chloride anion could attack at the activated cyclic anhydride to generate the
metal carboxylate specie 3b which can therefore ring-open the activated molecule of CHO
by the second zinc center to give rise to the alkoxide specie 3c, which could in turn
experiment consecutive ring-opening reactions of cyclic anhydrides and epoxides to afford
the corresponding polyester. Even though this proposal could be the main mechanism, an
initiation step by an acetate group to result in polymers with an acetate end-group cannot
be ruled out.
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4. Conclusions

Bimetallic acetate zinc catalysts 1–3 were investigated as catalysts for the ROCOP of
cyclohexene oxide and phthalic anhydride to obtain the corresponding poly(PA-alt-CHO).
To optimize the copolymerization process, the effect of the solvent, temperature, type of
cocatalyst, catalyst/cocatalyst ratio, and catalyst loading were studied. The combination
of 1 mol.% of complex 3 and 2 mol.% of PPNCl at 80 ◦C for 16 h using toluene as solvent
resulted to be an efficient catalyst system for ROCOP of CHO and PA with conversion and
selectivity values up to 100% and 97%, respectively. This catalyst system also catalyzed
ROCOP of CHO with succinic, maleic and naphthalic anhydrides to give rise to several
polyester materials with low to medium molecular weight and narrow polydispersities.
Stoichiometric reactions suggested that the first step of the copolymerization process is the
ring-opening of the cyclic anhydride by the chloride counterion. Further catalyst develop-
ment is ongoing in our research group to increase the catalytic activity and productivity of
bimetallic zinc complexes as catalysts for ring-opening copolymerization processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13101651/s1, Figure S1. 1H NMR spectrum of poly(PA-alt-CHO) (6), Figure S2. 13C{1H}
NMR spectrum of poly(PA-alt-CHO) (6), Figure S3. IR spectra of: poly(PA-alt-CHO) (6), PA (4),
Figure S4. 1H NMR spectrum of poly(SA-alt-CHO) (11), Figure S5. 13C{1H} NMR spectrum of
poly(SA-alt-CHO) (11), Figure S6. IR spectra of: (a) poly(SA-alt-CHO) (11), (b) SA (8), Figure S7. 1H
NMR spectrum of poly(MA-alt-CHO) (12), Figure S8. 13C{1H} NMR spectrum of poly(MA-alt-CHO)
(12), Figure S8. 13C{1H} NMR spectrum of poly(MA-alt-CHO) (12), Figure S9. IR spectra of: (a)
poly(MA-alt-CHO) (12), (b) MA (9), Figure S10. 1H NMR spectrum of poly(NA-alt-CHO) (13), Figure
S11. 13C{1H} NMR spectrum of poly(NA-alt-CHO) (13), Figure S12. IR spectra of: (a) poly(NA-alt-
CHO) (13), (b) NA (10), Figure S13. GPC profile of poly(PA-alt-CHO) (6), Figure S14. MALDI-ToF
spectrum of poly(PA-alt-CHO) (6), Figure S15. TGA analysis of poly(PA-alt-CHO) (6), Figure S16.
DSC analysis of poly(PA-alt-CHO) (6), Figure S17. TGA analysis of poly(SA-alt-CHO) (11), Figure
S18. DSC analysis of poly(SA-alt-CHO) (11), Figure S19. TGA analysis of poly(MA-alt-CHO) (12),
Figure S20. DSC analysis of poly(MA-alt-CHO) (12), Figure S21. TGA analysis of poly(NA-alt-CHO)
(13), Figure S22. DSC analysis of poly(NA-alt-CHO) (13).
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