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Abstract
Premise: The genomes of polyploid plants archive the evolutionary events leading to their
present forms. However, plant polyploid genomes present numerous hurdles to the genome
comparison algorithms for classification of polyploid types and exploring genome
dynamics.
Methods: Here, the problem of intra‐ and inter‐genome comparison for examining
polyploid genomes is reframed as a metagenomic problem, enabling the use of the
rapid and scalable MinHashing approach. To determine how types of polyploidy are
described by this metagenomic approach, plant genomes were examined from across
the polyploid spectrum for both k‐mer composition and frequency with a range of
k‐mer sizes. In this approach, no subgenome‐specific k‐mers are identified; rather,
whole‐chromosome k‐mer subspaces were utilized.
Results: Given chromosome‐scale genome assemblies with sufficient subgenome‐
specific repetitive element content, literature‐verified subgenomic and genomic
evolutionary relationships were revealed, including distinguishing auto‐ from
allopolyploidy and putative progenitor genome assignment. The sequences responsi-
ble were the rapidly evolving landscape of transposable elements. An investigation
into the MinHashing parameters revealed that the downsampled k‐mer space
(genomic signatures) produced excellent approximations of sequence similarity.
Furthermore, the clustering approach used for comparison of the genomic signatures
is scrutinized to ensure applicability of the metagenomics‐based method.
Discussion: The easily implementable and highly computationally efficient
MinHashing‐based sequence comparison strategy enables comparative subgenomics
and genomics for large and complex polyploid plant genomes. Such comparisons
provide evidence for polyploidy‐type subgenomic assignments. In cases where
subgenome‐specific repeat signal may not be adequate given a chromosomes' global
k‐mer profile, alternative methods that are more specific but more computationally
complex outperform this approach.
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Polyploid plants harbor some of the largest and most complex
genomes and, consequently, follow varied patterns of chromo-
somal inheritance that are critical to unravel for understanding
transmittance of traits. Polyploids are often classified as
belonging to one of three classes: autopolyploid, allopolyploid,

and segmental allopolyploid. Whereas autopolyploidy generally
refers to an intra‐species genome doubling, allopolyploidy
generally results from hybridization of distinct taxa (Spoelhof
et al., 2017; Nadon and Jackson, 2020). This subgenomic
distinctness is of great importance genetically, given that meiotic
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recombination is driven by chromosomal sequence and
structural similarity (Scott et al., 2023). As such, autopolyploids
can exchange genetic material both intra‐ and inter‐
subgenomically, whereas inter‐subgenomic exchange is rare,
although not impossible, for allopolyploids (Spoelhof et al., 2017;
Nadon and Jackson, 2020; Scott et al., 2023). Despite the discrete
classification into types, polyploidy is a continuum with a
myriad of variations identified (Barker et al., 2016; Mason and
Wendel, 2020; Blischak et al., 2023). Notably, segmental
allopolyploids exhibit auto‐ and allopolyploidy‐like behavior
and inheritance (Stebbins, 1947; Mason and Wendel, 2020; Deb
et al., 2023).

Determining the type and degree of polyploidization
(auto‐, allo‐, segmental polyploidy) is challenging. However,
typing polyploidization is of broad interest, given that
polyploids are found across eukaryotes, including fungi and
vertebrates (Van de Peer et al., 2017), in addition to plants.
The traditional approach includes examining karyotypes to
distinguish bivalents and polyvalents of metaphased cells.
However, this approach to typing can be inaccurate as
autopolyploids, such as Vaccinium corymbosum L. (high-
bush blueberry) (Qu et al., 1998) and Solanum tuberosum L.
(potato) (Choudhary et al., 2020), can have chromosomes
that form bivalents rather than polyvalents, and multivalent
associations can be dynamic throughout meiosis (Jones
et al., 1996). Karotyping is now complemented by inferring
inheritance patterns of alleles to determine ploidy type
(Lloyd and Bomblies, 2016), with genome‐wide genotyping
providing the best resolution but presenting numerous
technical challenges (Gerard et al., 2018).

The engineering of genome sequence–based strategies
for polyploid typing offers an alternative and complemen-
tary approach to the problem. A small number of dedicated
programs, such as PolyCRACKER, SubPhaser, PolyReco,
and GenomeScope2.0 with Smudgeplot, and a number of
genome‐specific subgenomic phasing approaches exist for
determining a combination of polyploid typing, subgenomic
structure, and genomic characteristics (Gordon et al., 2019;
Ranallo‐Benavidez et al., 2020; Scalabrin et al., 2020; Lovell
et al., 2021; Jia et al., 2022; Wang et al., 2022; Goeckeritz
et al., 2023; Jin et al., 2023; Session and Rokhsar, 2023).
Often these approaches use complex, multistep processes
involving numerous programs that pose computational time
and space challenges due to the size and complexity of
polyploid genomes. However, a common theme among
these approaches is the use of subgenome‐specific signa-
tures based on k‐mer content or frequency, where a k‐mer is
a string of nucleotides of length k.

In this work, we take inspiration from these existing
approaches by utilizing k‐mer signatures for polyploid typing,
and we seek to minimize the computational resources required
for analysis and the complexity of implementation. Analogous
to PolyCRACKER (Gordon et al., 2019), we reformulate the
subgenome identification problem (separating chromosomes
into multiple subgenomes) as a metagenomic problem
(separating multiple genomes) to take advantage of the pre‐
existing metagenomic tool sourmash (Pierce et al., 2019). The

program utilizes a MinHash sketching technique to down-
sample a given sequence's k‐mer signature and then perform
comparative analysis to other sequences. This approach does
not require any pre‐selection and extraction of genetic features
(e.g., protein‐coding genes), and so sequences like assembled
chromosomes can simply be provided to sourmash for
automatic k‐mer extraction, MinHashing, and comparison.
Furthermore, as an alignment‐free sequence‐comparison tech-
nique, it does not suffer from any of the assumptions
traditionally held by alignment strategies regarding genome
structure (i.e., collinearity), nor their computationally demand-
ing implementations (Zielezinski et al., 2017; Dewey, 2019).
Given that polyploid genomes can be very large (e.g., the
17‐Gbp hexaploid wheat) and feature multiple collinearity‐
violating events, sourmash is space‐ and time‐efficient, making
it an excellent choice for polyploid sequence comparison in
plants and beyond. We explore the capabilities of sourmash for
polyploidy typing and allopolyploid progenitor inference and
find strong correspondence with previously published findings.
We perform a comprehensive assessment of k‐mer composition
and frequency parameters, and finally, we show that the
presence of a high repeat content is not a hindrance for this
method, but a rather desirable feature.

METHODS

Data acquisition

Chromosome‐scale assemblies of allopolyploid, auto-
polyploid, and segmental allopolyploid genomes were
obtained for 16 polyploid plants. All genomes (Table S1,
see Supporting Information) were downloaded from the
National Center for Biotechnology Information (NCBI)
(O'Leary et al., 2016) with the exception of Solanum
tuberosum, which was downloaded from spudDB (Hirsch
et al., 2014) due to availability. If multiple assemblies were
available, the NCBI reference assembly was chosen. If
multiple species were available but were considered the same
crop with the same polyploid structure (e.g., tetraploid
cotton), a single domesticated genome was chosen. Chromo-
somes were separated from the bulk assembly file using an
in‐house Python script available from https://github.com/
Glfrey/Hijacking_Sourmash. Chromosomes were labeled
following their naming conventions as given in their
publication except in cases where subgenomic clarity was
added or names were shortened for data visualizations. The
exception is for Camelina sativa (L.) Crantz, for which
subgenomic assignments were replaced with newer assign-
ments (Mandáková et al., 2019).

Construction of k‐mer signatures

Sourmash version 4.0.0 (Pierce et al., 2019) was used to generate
MinHash k‐mer signatures for each chromosome for k‐mers
within k‐mer range 2–20 and then 21–61 in increments of 10
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for the default scale factor of 1000. k‐mer ranges were chosen
based on literature that supports the use of small k‐mers for
metagenomics‐based binning methods (Dubinkina et al., 2016;
Quince et al., 2017; Sedlar et al., 2017) and discussions of
sourmash optimal parameters (Brown et al., 2023).

Sourmash was then used to perform k‐mer signature
comparison, calculating similarity of chromosomal signatures
via the Jaccard distance for frequency and cosine similarity for
composition. Sourmash plots were then used to visualize
similarities via a dendrogram, which we assessed for polyploid
type identification and insight into genome evolution.

Strict subgenomic clustering determination

As the interpretation of the number of clusters in a dendrogram
can be subjective, the categorization of chromosomes to strictly
subgenomically cluster was determined by the number of cuts
to the dendrogram equal to the number of expected
subgenomes minus one (i.e., one cut is sufficient for a
tetraploid, two for a hexaploid, which results in the dendrogram
being split two and three ways, respectively). This then results in
the separated clusters containing only, and all, chromosomes
belonging to each subgenome. If a single or double cut to the
hierarchical clustering result (representing tetraploid or hexa-
ploid genomes, respectively) could result in distinct clusters
containing the chromosomes of each subgenome, the clustering
result was deemed to be subgenomically correct. Otherwise,
chromosomes were considered non‐subgenomically clustered.

Progenitor clustering

For genomes with progenitors that had chromosome‐scale
assemblies available, progenitor clustering tests were performed
in the same way as the subgenomic clustering investigations.
This included Triticum aestivum L., its known A and D
subgenome progenitors T. urartu Thumanjan ex Gandilyan and
Aegilops tauschii Coss., and its potential B subgenome
progenitorA. speltoidesTausch (Guan et al., 2020; Li et al., 2022).
All Brassica genomes were involved in the subgenomic analysis
alongside their progenitors, B. napus L., B. juncea (L.) Czern., B.
carinata A. Braun, B. oleracea L., and B. rapa L. (Yim
et al., 2022). The peanut genome analysis included Arachis
hypogaea L. and its progenitors A. duranensis Krapov. & W. C.
Greg. and A. ipaensis Krapov. & W. C. Greg. (Chen et al., 2016;
Lu et al., 2018). If the subgenome and their progenitor
chromosomes were clustered together such that a single cut
could be made to separate each of the progenitors and their
donated subgenome from the rest of the clusters, they were
considered clustered according to their hybridization history.

Detailed clustering analysis

To investigate the causal sequences behind the clustering
results and to assess the suitability of the clustering method

implemented by sourmash, a second, more detailed analysis
was performed for those sequences with repeat‐masked
genomic sequences available. The repeat‐masked and non‐
repeat‐masked chromosomes were downloaded from En-
sembl Plants v52 (Yates et al., 2022) and repeat‐masking
completeness assessed via a custom Python script that
enumerated the number of N (any nucleotide base) in
the assembly file that were compared against published
repeat values for each genome (https://github.com/GLfrey/
Hijacking_Sourmash).

Sourmash version 4.0.0 (Pierce et al., 2019) was used to
generate MinHash k‐mer signatures for all sequences for
odd k‐mers within k‐mer range 3–61 and with scale factors
of 1000, 500, 250, and 125. Sourmash was then used to
output the similarity scores between the chromosomes for
both k‐mer frequency and composition.

The resulting pairwise similarity scores were then down-
loaded and analyzed using R Studio 3.6.1 (RStudio
Team, 2020). Hierarchical clustering was performed for all
sampled k‐mer sizes and scale factors using hclust for single,
complete, average, and Ward's D linkage schemes. The
resulting dendrogram that best fit the underlying similarity
matrix was determined using a cophenetic correlation strategy,
which assesses how faithfully a dendrogram represents the
underlying similarity matrix (Saraçli et al., 2013). Generally, a
cophenetic correlation of >0.9 is excellent, while <0.7 is
considered very poor (Huff, 2001; Rohlf, 2009).

Final clustering with the appropriate scheme and heatmap
construction was performed using ComplexHeatmap (Gu
et al., 2016). Cuts equal to those expected from the number of
subgenomes were then performed using ComplexHeatmap
and a visual check of chromosome membership to expected
subgenomic clusters was performed. If the chromosomes were
correctly clustered according to their subgenomic origin, the
dendrogram cut height was recorded for each cut used to
separate the subgenomes (e.g., for a tetraploid this would be a
single cut to separate the two subgenomes, whereas for a
hexaploid this would be two cuts). Dendrogram cut height is
indicative of sequence similarity, with larger heights corre-
sponding to greater sequence dissimilarity. Plots describing
the relationship between k‐mers and dendrogram cut height
with cophenetic correlation were constructed using ggplot2
(Wickham, 2009). Given that T. aestivum is an allohexaploid
for which the hybridization timescales and evolutionary
relationships are known, the subgenomic clustering correct-
ness was also assessed by whether subgenomes A and B
cluster together with the D subgenome as an outgroup
(Levy and Feldman, 2022).

In silico transposable element knock‐in

Wheat transposable element (TE) coordinates for assembly
IWGSCv2.1 were downloaded from the URGI Plant Bio-
informatics Facility (https://urgi.versailles.inra.fr/Platform
[downloaded June 2023]). Custom Python scripts (https://
github.com/Glfrey/Hijacking_Sourmash) were used to extract
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and format the repeat information and then extract the
corresponding TE sequences from the wheat genome assembly
IWGSCv2.1. TEs were grouped according to their type—either
long terminal repeat‐type (LTR) or non LTR‐type. The
LTR group was further divided into the RLC and RLG
subgroups and the RLX unclassified set according to their Clari‐
TE classification (https://github.com/jdaron/CLARI-TE/blob/
master/clariTeRep_classification.txt). Sequences were appended
(“knocked‐in”) to the Camelina sativa genome assembly as
listed in Table S2 via a custom Python script that corresponds to
the subgenomic grouping and ordering of the polyploid
genome described in Kagale et al. (2014). Subgenomic clustering
was determined as described above.

RESULTS

k‐mer genome analysis differentiates types of
polyploidization

Across plants with validated types of polyploidization, we
examined whether the sourmash MinHash sketching
approach recapitulated polyploid type by using k‐mer
frequency and composition signatures across a range of
k‐mer values (Table S3). We developed a summary scale to
describe the results of clustering subgenomic chromosomes
based on sourmash signatures and its agreement with
known polyploidy type (Figure 1). Given that k‐mer
frequency (rather than k‐mer composition) more often
reflected subgenomic clustering of chromosomes, all species
that exhibited correct subgenomic clustering across the
majority (≥50%) of tested k‐mer sizes for k‐mer frequency
and at least some k‐mer composition are included in the

“Subgenomically clusters” class. Those that fail to strictly
subgenomically cluster for one particular parameter are
classified as “Subgenomically clusters, but…”. Species that
showed no strict subgenomic clustering as defined in the
Methods (e.g., one consistent outlier chromosome), but that
show a degree of subgenomic clustering structure are
classified as “No subgenomic clusters, but…”, whereas those
that show no subgenomic clustering are classified as “No
subgenomic clusters”.

Overall, allopolyploid genomes (Figure 1) showed a high
level of subgenomic chromosomal clustering. Eight out of
12 allopolyploid species exhibited clustering for some or all
tested parameters (Figure 1, Table S3). Five out of these
eight species exhibited highly robust clustering results
across all parameters. Three of the five subgenomically
clustering allopolyploid genomes (B. napus, Gossypium
tomentosum Nutt. ex Seem., Gossypium hirsutum L.) failed
to exhibit any subgenomic clustering for k‐mer composition
analysis, placing them in the “Subgenomically clusters,
but…” category. Three of the allopolyploids were placed
into the “No subgenomic clusters” category, indicating that
the genome signatures alone are not sufficient for ploidy
typing.

The sourmash approach also contains additional
information about the similarity of chromosome signatures.
Multiple genera (namely, Gossypium and Brassica) exhibited
asymmetric similarity within the subgenomes, with one
subgenome showing greater intra‐subgenomic similarity
among its member chromosomes than the other subgenome
(Figure 2).

Small k‐mer size (k < 7 for k‐mer frequency, k < 11 for
k‐mer composition) was associated with failure to subgeno-
mically cluster for all genomes. For k‐mer frequency, this was

F IGURE 1 The overall tendency of each species, sampled from the three polyploid classes, to subgenomically cluster across a range of sourmash
parameters. Species exhibiting subgenomic chromosomal clustering across the majority of parameters belong to the “Subgenomically clusters” class. Those
that fail to subgenomically cluster for a particular parameter are classified as “Subgenomically clusters, but…”. Species that exhibit a degree of subgenomic
clustering structure but are not entirely correct are classified as “No subgenomic clusters, but…”, whereas those that show no subgenomic clustering are
classified as “No subgenomic clusters”. The ploidy level of each species is shown in parentheses.
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due to a lack of any similarity between chromosomes. For
k‐mer composition, there was also a lack of any similarity
between chromosomes until k = 7, whereafter the similarity
between the chromosomes was too high to distinguish
subgenomes until k ≥ 11. Some genomes also showed a
failure to cluster at various small k‐mer sizes (7 < k < 21) due to
the presence of outgroup chromosomes interrupting sub-
genomic clustering structure. For example, an exception for T.
aestivum that failed to recapitulate subgenomic clustering
occurred for k = 7 due to chromosome 4B being placed as an
outgroup chromosome (Figure S1A). Interestingly, neither

T. dicoccoides (Körn.) Körn. ex Schweinf. nor T. turgidum L.
showed chromosome 4B acting as an intra‐cluster outgroup
for k = 7 (Figure S1B, S1C). Brassica juncea and B. napus both
showed aberrant results for some small k‐mer sizes, especially
k < 13 (Table S3). The information content of short k‐mers
appears inadequate in most cases for subgenomic chromo-
somal clustering.

Two of the allopolyploid genomes were categorized as
“No subgenomic clusters, but…” (Figure 1). Avena sativa L.
exhibited a strong subgenomic clustering structure for
k‐mer frequency but with consistent intermixing of

F IGURE 2 Intra‐subgenomic chromosomal sequence asymmetries observed for the 21‐mer frequency signature. (A) Brassica carinata, (B) B. juncea,
(C) B. napus, (D) Gossypium hirsutum, and (E) G. tomentosum all showed differences in the degree of similarity across chromosomes belonging to each
subgenome. Each branch of the dendrograms represents a chromosome from the corresponding genome. The letter labels on the branch tips indicate the
subgenome origin, and the number represents the chromosome number. The heatmap shows the sequence similarity based on k‐mer signatures among
chromosomes using a color scale, with dark blue at the value of 1 indicating complete similarity.
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chromosomes from the A and D subgenomes (Figure 3A).
For k‐mer composition, a subgenomic‐like clustering
structure was maintained, with the A and D chromosomes
forming homeologous pairs (Figure S2A). The Camelina
sativa subgenome 3 showed strong inter‐chromosomal
separation from the other two subgenomes’ chromosomes
from k > 9 onwards for k‐mer frequency (Figure 3B). For
k‐mer composition, a homeologous‐like clustering pattern
was maintained for k > 12 (Figure S2B).

Several genomes, including the two allopolyploids
Eragrostis tef (Zuccagni) Trotter and Panicum virgatum
L. (Figures 3C, D, S2C, D; Table S3) and both tested
autopolyploids (Solanum tuberosum and Saccharum spon-
taneum L.; Figure 3E, F; Table S3), exhibited no subgenomic
clustering structure regardless of parameters. As P. virgatum
had previously shown subgenomic separation when
subgenomic‐specific k‐mers of k = 15 were identified (Lovell
et al., 2021), sourmash was used to generate signatures and
clustering results for k = 15 composition and frequency
across scale factors. Chromosomes did not subgenomically
cluster for the 15‐mers regardless of k‐mer information type
and scale factor (Figure S3).

Unlike the allopolyploids, neither of the segmental
allopolyploids strictly subgenomically clustered but for
different reasons. Arachis hypogaea exhibited perfect sub-
genomic clustering for k = 11 and then k = 14 onwards
(Figure S4A, Table S3), with chromosome 8 interrupting
subgenomic clustering by acting as an outgroup otherwise
(Figure S4B). For k < 12, Coffea arabica L. chromosomes
showed no coherent pattern of clustering (Table S3). For
k = 13 onwards, accurate subgenomic clustering structure
was consistently interrupted by outgroup chromosomes
(Figure 3G, Table S3). Both segmental allopolyploids exhibit
a largely homeologous clustering structure for k‐mer
composition (Figure S4C, D).

k‐mer analysis clusters polyploid subgenomes
with corresponding progenitor genomes

We found that subgenomes accurately cluster with their
respective progenitor species genomes, largely following the
pattern shown above in which chromosomes subgenomi-
cally cluster for k‐mer frequency and reflect asymmetric
rates of genome evolution of subgenomes. For k‐mer
composition, however, chromosomes often clustered into
clades containing homeologs.

Triticum species

Modern T. aestivum (bread wheat) is allopolyploid (6x with
A, B, D subgenomes). The chromosomes of T. aestivum
subgenomically clustered (Table S3), including at k= 21 for
k‐mer frequency (Figure 4A) and composition (Figure 4B). The
origin of bread wheat includes two subsequent hybridization
events between progenitor species. Recent research suggests that

these events took place 10,000 and 500,000 years ago
(Figure 4C), with the first hybridization event between T.
urartu and an A. speltoides relative and the second between
the tetraploid T. dicoccoides and A. tauschii (Levy and
Feldman, 2022). Triticum aestivum and its A and D subgenome
progenitors, T. urartu and A. speltoides, respectively, subgeno-
mically clustered throughout the sampled k‐mer frequency
range (Figure 4D, Table S4), except for the short k‐mers
including k= 7 and k= 10. For k= 7, chromosome 4B became
an outgroup, whereas the outgroup chromosome was 5D at
k= 10 (Figure S5A, B). Interestingly, the A and D subgenomes
exhibited different clustering patterns with their progenitors for
these two k‐mers. Whereas subgenome A and its progenitor T.
urartu maintained distinct subgenomic clustering structures,
subgenome D and its progenitor exhibit a homeologous
clustering structure (Figure S5A, B). In contrast to the k‐mer
frequency used above, both subgenomes and their progenitors
exhibited a homeologous clustering structure throughout the
sampled k‐mer range for k‐mer composition (Figure S5C).

To assess how sourmash would cluster the potential
B subgenome progenitor A. speltoides, an additional
subgenomic clustering investigation was performed with
the addition of this genome. Aegilops speltoides exhibited a
very different relationship to the B subgenome than the A
and D progenitors (T. urartu and A. tauschii) did to their
donated subgenomes. Most notably, the A and D sub-
genomes showed greater subgenomic similarity to their
respective progenitors than the B subgenomes showed to
A. speltoides (Figure S6).

Brassica species

The hybridization between three economically important
diploids (B. nigra (L.) W. D. J. Koch, B. rapa, and B. oleracea)
formed the three tetraploid crops B. carinata, B. juncea, and
B. napus (Xue et al., 2020). Using k‐mer frequencies, all three
tetraploid Brassica genomes showed some level of
subgenomic–progenitor clustering, and they exhibited varying
degrees of sequence similarity between the subgenomes and
their progenitor species (Figure S7A–C), which may reflect an
unequal evolution of the subgenomes post‐hybridization.
Similar asymmetries were also observed when assessing these
genomes without including progenitors (Figure 2A–C).

Brassica carinata, its B subgenome progenitor B. nigra,
and its C subgenome progenitor B. oleracea formed
subgenomic–progenitor clustering pairs for k‐mer frequency
signatures (Figure S7A), with the exception of k = 11 and
k = 61 (Figure S8A, B). As the k‐mer size increased from
k = 11 to k = 61, the uneven sequence divergence from
progenitors became clearer, with the B. carinata B sub-
genome showing greater sequence similarity to its progenitor
relative to the C subgenome.

Brassica napus, which also shares the same C subgenome
progenitor as B. oleracea, showed subgenomic–progenitor
clustering at k = 21 (Figure S7C), as outgroup chromosomes
A01 and A08 interrupted the expected subgenomic–progenitor
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F IGURE 3 Diversity in failure to cluster as demonstrated for 21‐mer frequency. (A) Avena sativa showed a subgenomic clustering structure interrupted
by chromosomal misplacements. (B) Camelina sativa, (C) Eragrostis tef, and (D) Panicum virgatum showed no subgenomic clustering structure.
(E) Solanum tuberosum and (F) Saccharum spontaneum showed no subgenomic clustering structure. (G) Coffea arabica subgenomic clustering for 21‐mer
frequency is shown. Each branch of the dendrograms represents a chromosome from the corresponding genome. The letter labels on the branch tips indicate
the subgenome origin (with the exceptions of (B) where subgenome origin is indicated after the label SG with a number or in (E) where subgenome origin is
indicated following the decimal point), and the number represents the chromosome number. The heatmap shows the sequence similarity among
chromosomes based on k‐mer signatures using a color scale, with dark blue at the value of 1 indicating complete similarity.
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clustering at smaller k‐mers (Figure S8C). The B. napus
subgenome C chromosomes showed a greater sequence
similarity to their progenitor B. oleracea than the subgenome
A chromosomes showed to their progenitor B. rapa.
Conversely, B. carinata showed lower subgenome–progenitor
similarity for its C subgenome than its B subgenome and
progenitor B. nigra.

Brassica juncea shares the same B subgenome progenitor as
B. carinata and also exhibited greater B subgenome–progenitor
similarity than observed for its A subgenome and progenitor
B. rapa (Figure S8). Brassica napus also demonstrated this
lower A subgenome–progenitor relationship. Brassica juncea
showed subgenome–progenitor clustering from k = 7, but this
is interrupted for k= 8–9 due to chromosome A01 being an
outgroup (as observed for B. napus as well), and for k= 31 due
to the B subgenome clustering away from its progenitor B.
nigra and instead clustering with the C subgenome and
progenitor (Figure S8D, E).

In contrast to these k‐mer frequency‐based results, all
Brassica genomes did not cluster subgenomically with their
progenitor species for k‐mer composition. Instead, the
genomes showed either clear homeologous clustering
(B. napus and B. juncea) or chromosomal pair clustering
(B. carinata) with their progenitor genomes from either
k = 11 (B. napus) or k = 21 (B. juncea and B. carinata)
onward (Figure S9, Table S4).

Arachis

Arachis hypogaea (cultivated peanut) is allotetraploid, arising
from hybridization between A. duranensis and A. ipaensis
occurring during domestication (Bertioli et al., 2019). Arachis
hypogaea showed subgenome–progenitor clustering patterns
from k= 21 onwards for k‐mer frequency (Figure S10A,
Table S4). For both A. hypogaea and its A genome progenitor

F IGURE 4 Triticum aestivum chromosomes subgenomically clustered within genome and with progenitors. Chromosomal subgenomic clustering
results for (A) frequency and (B) composition are shown for T. aestivum for k = 21 using sourmash. (C) Hybridization history for T. aestivum from Levy and
Feldman (2022) is shown. (D) Subgenomic and progenitor clusters for T. aestivum matched models of hybridization history for both the A and D
subgenomes found in the same clades with their respective progenitors, T. urartu and Aegilops tauschii. Each branch of the dendrograms represents a
chromosome from the corresponding genome. The letter labels on the branch tips indicate the species origin (TA: T. aestivum; TU: T. urartu; AT: A.
tauschii; AS: A. speltoides) and subgenome origin (A, B, or D), and the number represents the chromosome number. The heatmap shows the sequence
similarity based on k‐mer signatures among chromosomes using a color scale, with dark blue at the value of 1 indicating complete similarity.
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A. duranensis, chromosome 08 was an intra‐subgenomic
outgroup and exhibited lower intra‐subgenomic similarity than
the other chromosomes. Subgenomic clustering patterns were
seen for k= 9, but subgenomic clustering is interrupted by the
A. hypogaea chromosome A8 and A. duranensis chromosome 8,
which are outgroups (Figure S10B).

Using k‐mer composition information, A. hypogaea
chromosomes do not cluster subgenomically with progeni-
tors, similar to the Brassica species. Instead, A. hypogaea
and its progenitors A. ipaensis and A. duranensis show clear
homeologous clustering from k = 21 onward for composi-
tion (Figure S10C, Table S4), where the chromosomes are
organized into a subgenome‐like pattern but form no
distinct subgenome‐specific clusters.

Source of k‐mer‐based subgenome clustering
of chromosomes

To understand if a particular class of sequences was driving
the subgenomic clustering results, an investigation into the
sequences responsible was performed. Given that repetitive
elements are rapidly evolving sequences that make up a
sizeable portion of most of the genomes under investigation
(Table S3), they were naturally under suspicion (Bourque
et al., 2018; Session and Rokhsar, 2023). As such, the
sourmash procedure was performed with repeat‐masked
sequences for the Triticum genomes.

With the use of repeat‐masked sequences, T. aestivum and
T. dicoccoides completely lost subgenomic clustering for both
k‐mer frequency and composition (Figure 5A–D). Where the
repeat‐rich sequences showed subgenomic clustering
(Figures 4A, S1B), the repeat‐masked sequences showed
homeologous clustering structures for T. aestivum and T.
dicoccoides. The sequences showed less sequence similarity,
with barely discernible sequence similarities between the
homeologous clusters, in contrast to the very high intra‐
subgenomic and moderately high inter‐subgenomic sequence
similarities observed in the presence of repeats. The repeat‐
masked percentages for the T. aestivum and T. dicoccoides
genome sequences were 86.99% and 87.64%, respectively,
which are highly similar to the repeat‐masked percentage
given in the genome assembly publications (Table S3).

In contrast, T. turgidum (Figure 5E) maintained its
subgenomic clustering with the loss of repeat sequences
for k‐mer frequency, although there is a marked decrease in
sequence similarity for both intra‐ and inter‐subgenomic
relationships. The repeat‐masked proportion for the
T. turgidum genome sequence was determined to be 75.45%,
which is 6.75% less than the published TE percentage
(Table S3). For k‐mer composition in T. turgidum, clustering
of homeologs was observed rather than clustering of
subgenomes (Figure 5F).

To further investigate the role of repeats in sub-
genomic clustering, we performed an in silico knock‐in of
repetitive sequences to non‐clustering chromosomes. We
selected the non‐clustering, allohexapolyploid C. sativa as

the target because its genome contains only 28% repetitive
content (Kagale et al., 2014). In this experiment, annotated
TEs, including LTR retrotransposons, were copied from
T. aestivum (Wicker et al., 2018) and “knocked‐in” to the
genome of the non‐subgenomically clustering allopoly-
ploid C. sativa (Table S2). For the knock‐in C. sativa, only
the subgenomic clustering patterns of all TEs and isolated
LTR subfamilies mirrored those observed for T. aestivum
for k‐mer frequency and composition (Figures 6, S11),
although the pattern was markedly weaker for k‐mer
composition than was observed for the T. aestivum
genome (Figure 4B).

We next examined whether certain LTR families drove
subgenomic chromosomal clustering. When the knock‐in
was limited to specific RLC (Copia) or RLG (Gypsy) LTR
sequences, subgenomic clustering remained for k‐mer
frequency, but k‐mer composition exhibited a homeologous
or homeologous‐like relationship for RLC and a very weak
subgenomic clustering for RLG (Figure S12A–D, Table S5),
in contrast to the T. aestivum subgenomic relationship
(Figure 4B, Table S3). For a knock‐in of RLX sequences,
which are unclassified LTR retrotransposons, there was a
subgenomic‐like clustering structure present from 21‐mer
frequency onwards and a homeologous‐like clustering
structure for k‐mer composition (Figure S12E, F;
Table S5). For non‐LTR TE sequences, we observed a
subgenomic clustering structure for the vast majority of k‐
mers tested, but the distinction between and within the
subgenomic clusters was weaker than the clustering results
for LTR and T. aestivum (Figures 4A, S11C–F; Table S5).
Interestingly, the T. aestivum B subgenome donated a
visibly stronger intra‐subgenomic similarity for non‐LTR
sequences throughout the k‐mer ranges, and for 51‐mer
frequency, the chromosomes transplanted with 4B and 7B
exhibited a distinctly strong similarity (Figure S13). This
relationship was shared for k‐mer composition for small
k‐mers (k < 15). Other chromosomes exhibited a
homeologous‐like structure (Figure S11F) for k = 15
onwards (Table S5).

Sourmash parameter suitability

Given that sourmash was developed for metagenomic
applications, a comprehensive assessment of parameter
suitability for polyploid applications was performed for
T. aestivum, T. dicoccoides, and T. turgidum. These species
were chosen for their robust subgenomic chromosome
clustering across a range of sourmash parameters, which
enables an in‐depth investigation of parameter interplay.
Furthermore, their close relationship with each other and
known technical artifacts regarding the T. turgidum repeat
content allow us to potentially isolate biological and
technical factors.

Overall, the parameter with the largest impact on
chromosomal subgenomic clustering was whether k‐mer
signatures were based on frequency or composition
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(Table S3, Figure S14). The interaction between k‐mer size
and dendrogram cut height demonstrated a positive linear
relationship for k‐mer frequency and composition. However,
this relationship was more gradual for k‐mer frequency,
never reaching a value of 1, unlike k‐mer composition
(Figure S14), which showed a cut height of almost 1
(indicating little or no similarity between chromosomes)
by k = 61.

The scale factor, which controls how much of the k‐mer
space is sampled, had little effect on the subgenomic cut
height (Figure S14). This indicates that using the default
scale factor of 1000 is just as effective as using small scale

factors that require more time and space to work with,
especially for genomes with similar characteristics as the
Triticum genus.

An assessment of the suitability of the hierarchical
clustering method implemented in sourmash was per-
formed using the cophenetic correlation, a metric used to
assess how faithfully the dendrogram represents the data
held in the underlying similarity or dissimilarity matrix
(Saraçli et al., 2013). The results revealed that while the
single‐linkage hierarchical clustering strategy implemen-
ted by sourmash is rarely the optimal strategy, there was
only a small difference in cophenetic correlations between

F IGURE 5 Repeat‐masked chromosomes fail to subgenomically cluster. Triticum aestivum frequency (A) and composition (B), T. dicoccoides frequency
(C) and composition (D), and T. turgidum frequency (E) and composition (F) clustering results are shown. Each branch of the dendrogram represents a
chromosome from the genome. The letter labels on the branch tips indicate the subgenome origin, and the number represents the chromosome number.
The heatmap shows the sequence similarity based on k‐mer signatures among chromosomes using a color scale, with dark blue at the value of 1 indicating
complete similarity.
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the often‐optimal average‐linkage strategy and the
implemented single‐linkage strategy (Figure S15).

DISCUSSION

The whole‐genome MinHash sketching approach for com-
parative genomics of polyploid crops is capable not only of
revealing polyploid type relationships among subgenomes,
but also of uncovering evolutionary relationships among
species previously described in the literature through
sensitivity to the repeat content of the query genomes.

The legacy of the progenitors

We observed that k‐mer frequency, rather than composi-
tion, best recapitulated known polyploidy type. The
tendency of chromosomes to subgenomically cluster based
on k‐mer frequency closely matched known ploidy types,
with no autopolyploids, half of the segmental allopolyploids,
and two‐thirds of allopolyploids exhibiting a subgenomic
clustering structure for k‐mer frequency (Figure 1).

Subgenomic distinctness appears to be of great impor-
tance for subgenomic clustering here given that meiotic
recombination is driven by chromosomal sequence and
structural similarity (Scott et al., 2023). For allopolyploids in
which subgenomic information is not exchanged on a large
enough scale to disrupt a chromosomal signature, the
clustering of chromosomes by subgenome is intuitive. In
some genomes, such as T. aestivum and B. napus, the
presence of specialized loci prevents meiotic recombination
between the subgenomes, thus setting distinct evolutionary
trajectories for each subgenome (Le Comber et al., 2010;
Spoelhof et al., 2017; Mason and Wendel, 2020).

This pattern of subgenomic clustering across polyploidy
types has been observed before by Jia et al. (2022) who,
similarly to Gordon et al. (2019), developed a subgenome‐
specific k‐mer‐based clustering method for polyploid
chromosomes. As with sourmash, the method failed on
autopolyploids and a number of allopolyploid genomes due
to a lack of subgenome‐specific k‐mers. This absence of
subgenome‐specific k‐mers is likely caused by the genetic
similarity of the subgeneric progenitors. If the initial
polyploid genome was created via the hybridization of
highly similar genomes, as is expected for autopolyploids

F IGURE 6 Long terminal repeat (LTR) sequences drive chromosome sequence similarities. The sequence similarity relationship across chromosomes
(represented with color transparency) is shown for Camelina sativa transplanted with Triticum aestivum LTR content. While C. sativa with the addition of
T. aestivum LTR sequences maintains a relationship similar to that of the original T. aestivum subgenome relationship (Figure 4A), the non‐LTR sequences
show a marked reduction in sequence similarity, although the subgenomic clustering structure remains.
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and, to a lesser degree, segmental allopolyploids, then the
subgenomes can maintain some degree of inter‐subgenomic
exchange of genetic information (barring erosion of
subgenome‐specific repeats over time). This contrasts with
allopolyploids, which form through the hybridization of
highly distinct subgenomes that are not capable of meiotic
transfer of genetic information.

Repeat after me…

Many pieces of evidence support the role of repetitive
elements driving subgenomic clustering of chromosomes.
TEs and, in particular, the RLC and RLG classes of LTRs are
major drivers of subgenomic clustering for our sourmash‐
based approach in the T. aestivum genome. The removal of
these sequences resulted in a much weaker subgenomic
relationship within and between the subgenomes than is
observed when they are present (Figures 5, S11, S12). For
k‐mer frequency, subgenomic clustering of chromosomes
was dominated by LTR‐type TEs, whereas for k‐mer
composition, other non‐TE sequences contributed to the
chromosomal signatures. Considering that LTR‐type TEs
make up the vast majority of plant genomes (Zhou et al., 2021;
Jia et al., 2022), their repetitive nature would ensure they
dominate any k‐mer frequency calculations. For k‐mer
composition, however, only k‐mer presence is recorded,
which ensures that k‐mer contributions from other sequence
types—including low‐frequency repeats, non‐coding
sequences, and protein‐coding sequences—are equally repre-
sented alongside high‐copy repeats. A lack of subgenomic
clustering for k‐mer composition but not frequency (as seen
for B. napus and Gossypium species) indicates subgenomic
signals originate from subgenome‐specific repeat expansions
rather than subgenome‐specific sequences that would
maintain subgenomic clustering in the absence of frequency
information (e.g., Triticum species).

The dependence of the results on TEs could also explain
a number of anomalous results, such as the propensity for
the T. aestivum A and D subgenomes to cluster together,
despite the A and B subgenomes being responsible for the
initial hybridization that formed allotetraploid wheat. This
can potentially be explained via a B genome–specific TE
amplification burst, which appears to have undergone a
wave of RLC/Ty1/Copia amplification 1.2 million years ago
(Mya) (Avni et al., 2017).

Further evidence for the repeatome‐driven clustering
results can be found for the subgenomes exhibiting asym-
metric subgenome similarities. Brassica napus, B. juncea, G.
tomentosum, and G. hirsutum are all documented to have
subgenomes with asymmetric TE content; these subgenomes
have all been reproduced here, with the TE‐heavy sub-
genomes showing greater sequence similarity (Figure 2)
(Chalhoub et al., 2014; Sun et al., 2017; Chen et al., 2020;
Paritosh et al., 2020).

It is important to note, however, that while LTRs seem to
be the drivers of subgenomic clustering for T. aestivum, this

may not be the case for all species. The Gossypium genus, for
example, shows a post‐hybridization LTR expansion in the D
subgenome, which in our work shows less intra‐subgenomic
similarity than subgenome A (Figure 2D) (Chen et al., 2020).
In the African frog Xenopus laevis, DNA transposon families
distinguished subgenomes via k‐mer analysis, likely due to
their prevalence (Session et al., 2016). Sourmash similarly
identified repetitive elements as the sequences responsible for
subgenomic clustering.

Where sourmash fails

Unlike alternative k‐mer‐based subgenome‐assignment meth-
ods, sourmash does not identify subgenome‐specific k‐mers
(Jia et al., 2022; Session and Rokhsar, 2023). Instead, it takes a
subsample of the whole k‐mer profile of a given chromosome.
Intuitively, the strength of the subgenome‐specific k‐mer
signal within that k‐mer profile will dictate the success of
sourmash to cluster the chromosomes subgenomically.

Camelina sativa and Avena sativa both failed to
subgenomically cluster. For C. sativa, subgenome 3
clustered separately from subgenomes 1 and 2, which were
often intermingled (Figure 3). This is reflective of the
evolutionary history of C. sativa, during which two C.
neglecta‐like genomes with distinct chromosome numbers
(n = 6, n = 7) hybridized to form an allotetraploid (sub-
genome 1 and 2), which was then joined by subgenome 3
donated from C. hispida Boiss. (Mandáková et al., 2019).
The hybridization between two closely related genomes to
form subgenomes 1 and 2 has likely resulted in weak, global,
subgenome‐specific signals. Session and Rokhsar (2023)
were able to take advantage of these signals to facilitate
correct subgenomic clustering for all C. sativa subgenomes.

There is currently no empirical evidence to explain the
failure of E. tef and P. virgatum to subgenomically cluster
using sourmash. For E. tef, it is possible that the subgenome‐
specific repeat signal is weak given that the genome‐specific
k‐mers comprise only six out of 65 families of annotated TEs
for the genome (VanBuren et al., 2020). Interestingly,
centromere‐specific repeats rather than subgenome‐specific
LTRs were used to separate E. tef subgenomes (VanBuren
et al., 2020). It is also worth noting that the E. tef genome has
been flagged as “contaminated” on NCBI GenBank (https://
www.ncbi.nlm.nih.gov/datasets/genome/GCA_024500355.1/
[accessed 27 March 2024]). For P. virgatum, it is possible that
the subgenome‐specific k‐mer signal is weak due to time‐
related erosion of subgenome‐specific sequences, given that
the hybridization event occurred over 4 Mya (Table S3)
(Lovell et al., 2021). Conversely, despite A. sativa having
formed from a hybridization event more than 7 Mya
(Table S3), it did exhibit some subgenomic clustering
structure, possibly due to a C subgenome–specific LTR
expansion; otherwise, the degradation of subgenome‐specific
signals is thought to be lineage‐specific (Kamal et al., 2022;
Session and Rokhsar, 2023). However, we note that the
majority of the allopolyploid species examined here have
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relatively recent hybridization events (<1 Mya; Table S3), and
the capability of sourmash to cluster chromosomes for older
hybridization events, such as those found in vertebrates (Van
de Peer et al., 2017), is unknown.

A low repeat content could be the driver of the strangely
clustering chromosome 8 of A. hypogaea and A. duranensis
(Figure S10). These chromosomes have a much lower
percentage of repeat content (49.76% and 44.32%, respec-
tively) than the rest of the chromosomes, which ranges from
72.66–77.98% for the A. hypogaea A subgenome (with the B
subgenome being even higher) and 49.14–56.67% for A.
duranensis (Bertioli et al., 2016).

In all, it is clear that sourmash requires a strong,
subgenome‐specific k‐mer signal in the global k‐mer space
to produce the correct subgenome assignment of chromo-
somes. This does not present a problem for methods that
identify and utilize subgenome‐specific k‐mers, such as
SubPhaser (Jia et al., 2022) and the protocol developed by
Session and Rokhsar (2023). The drawback to those
approaches is their computational complexity and multi‐
program implementation. Sourmash therefore complements
such approaches and may be a sensible first step for the
investigation of ploidy type and assignment of chromo-
somes to a subgenome.

It is important to note that all subgenomic assessments
in this work have been performed for chromosome‐scale
whole‐genome data. Given poorly assembled data, which
often suffers from collapsed repetitive sequences, sourmash
may not produce optimal subgenomic clustering results.

Progenitor clustering

The sourmash approach produced chromosome clustering of
multiple allopolyploids with their progenitors that matched
phylogenetic‐based approaches and insights into genome
evolution pre‐ and post‐hybridization. Consistent with the
use of k‐mer frequency for subgenomic clustering within a
species, intra‐subgenomic monophyly dominated in compar-
isons of allopolyploid chromosomes with progenitor chro-
mosomes (Figures 4C, S7, S10). The progenitors and derived
subgenomes were often found within the same clade.

We speculate that the progenitor–subgenomic clustering
patterns can be attributed to species‐specific TEs inherited
during hybridization (Bourque et al., 2018). Although the
Brassica species and A. hypogaea underwent post‐
hybridization repeatome alterations, their relatively recent
hybridization suggests that they have a TE landscape more
similar to their progenitors (Vitte and Panaud, 2005;
Bourque et al., 2018; Wicker et al., 2018; Bariah et al., 2020).
This progenitor repeatome legacy is also evidenced through
the A. hypogaea anomalous chromosome 8 and its
progenitor sequence, both of which feature an unusually
low repeat content, which together comprised an outgroup.

We further assessed the ability of sourmash to resolve
phylogenetically confirmed progenitor subgenomes by includ-
ing the purported subgenome B progenitor A. speltoides.

Consistent with the phylogenetic methods that determined A.
speltoides is not the B subgenome progenitor (Li et al., 2022),
we found that A. speltoides showed a markedly different
relationship to the B subgenome than the A and D
subgenomes show with their progenitors (Figure S6).

Impacts of MinHashing and clustering
parameters

A comprehensive assessment of sourmash MinHashing
parameters (k‐mer size and scale factor) and clustering
parameters (linkage strategy) was performed. Ultimately,
scale factor had little impact on the detected subgenome
dissimilarity for both k‐mer frequency and composition
(Figures S14, S15). While this has only been tested in the
Triticum genus, it should be tested on a greater range of
species to ensure robustness. Larger scale factors generate
smaller genomic signatures, which take less time and
require fewer resources to compute and compare, thereby
keeping computational overhead to a minimum.

For k‐mer frequency, the most pronounced differences
are for the smaller k‐mer sizes (k < 17), after which they
become largely identical. For k‐mer composition, differ-
ences in subgenome dissimilarity for the different scale
factors are even less pronounced. As such, it is advisable to
use larger k‐mer sizes (around k = 21 and larger) to ensure
that the results correctly represent the underlying relation-
ships between the data. This again reflects our findings, with
several subgenomes exhibiting anomalous results for small
k‐mer sizes. It is important to note that theoretically the
memory consumption of sourmash increases linearly with
the number of unique k‐mers in the downsampled k‐mer
space. In practice, this has such a minimal impact on the
size of the resulting set of k‐mers that sourmash memory
usage is little affected by k‐mer size (Brown, 2023). This
contrasts with other k‐mer‐based tools, for which, in the
worst case, memory usage can increase at a rate of 2k, where
k is the k‐mer size (Rødland, 2013).

There is a clear, linearly positive relationship between k‐
mer size and subgenome dissimilarity; for k‐mer frequency,
this increases gradually with k‐mer size, whereas for k‐mer
composition it increases rapidly, peaking at values close to 1
(Figure S14). The reason behind this is that the k‐mer space
increases with k‐mer size at a rate of 4k. For example, for
k = 4, the k‐mer space is 44 = 256, whereas for k = 31 the
k‐mer space is 431 = 4.611686 × 1018. As a general rule, the
chances of encountering the same k‐mer in two (or more)
distinct sequences will decline as the k‐mer space increases
(Bussi et al., 2021). In reality, those chances will be
influenced by factors such as sequence similarity and
sequence length, and while it is important to note that no
natural genome contains all possible k‐mers, the concept
holds true nonetheless (Bussi et al., 2021).

A final investigation to assess the optimal k‐mer
clustering strategy utilized cophenetic correlation, which is
a measure of how faithfully the similarity is represented by
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hierarchical clustering (Saraçli et al., 2013). Given that
sourmash was developed for microbial genomes, it is
sensible to ensure that the method remains robust for plant
genomes. We found that while a minor modification in
linkage strategy is advisable for the most accurate results,
the clusters identified using sourmash's defaults remain
faithful representations of the underlying similarity matrix
(Figure S15).

Final recommendations and conclusions

This comprehensive investigation into the implementation
of MinHash‐based k‐mer analysis of polyploid crop
genomes has demonstrated that such a strategy, as
implemented via the metagenomic software package
sourmash, can reveal evolutionary relationships and
genome dynamics that are verified in the literature. Multiple
layers of evidence from experiments conducted herein,
combined with published research, support the notion that
subgenomic and progenitor clustering results are repeatome
driven, possibly by LTRs.

An investigation into MinHash sketching parameters
has revealed that the use of k‐mer frequency or composition
directly influences which regions of the genome dominate
the results, providing two different windows into compara-
tive polyploid genomics. We find that all other parameters
(i.e., hierarchical clustering method) have little impact,
although these can be tuned for optimal results on polyploid
genomes. Overall, the rapid and highly scalable MinHash
sketching method, as implemented by sourmash, produces
robust and biologically accurate results for comparative
genomic analysis for even the largest and most complex
allopolyploid crops.
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Figure S1. 7‐mer frequency for (A) Triticum aestivum, (B)
T. dicoccoides, and (C) T. turgidum. Each branch of the
dendrogram represents a chromosome from the corre-
sponding genome. The letter labels on the branch tips
indicate the subgenome origin, and the number represents
the chromosome number. The heatmap shows the sequence
similarity based on k‐mer signatures among chromosomes
using a color scale with dark blue at the value of 1 indicating
complete similarity.

Figure S2. Diversity in failure to cluster as demonstrated for
21‐mer composition for (A) Avena sativa, (B) Camelina
sativa, (C) Eragrostis tef, and (D) Panicum virgatum. Avena
sativa shows a subgenomic clustering structure for the A
and D subgenomes, with the B subgenome acting as an
outgroup. Eragrostis tef, P. virgatum, and Coffea arabica
show homeologous clustering while C. sativa shows a
homeologous‐like clustering structure. The letter labels on
the branch tips indicate the subgenome origin (with the
exception of (B) where subgenome origin is indicated after
the label SG with a number), and the number represents the
chromosome number. The heatmap shows the sequence
similarity based on k‐mer signatures among chromosomes
using a color scale with dark blue at the value of 1 indicating
complete similarity.

Figure S3. 15‐mer plots for Panicum virgatum for scale
factor 1000 frequency (A) and composition (B), scale factor
500 frequency (C) and composition (D), scale factor 250
frequency (E) and composition (F), scale factor 150
frequency (G) and composition (H), and scale factor 50
frequency (I) and composition (J). Each branch of the
dendrogram represents a chromosome from the genome.
The letter labels on the branch tips indicate the subgenome
origin, and the number represents the chromosome
number. The heatmap shows the sequence similarity among
chromosomes using a color scale with dark blue at the value
of 1 indicating complete similarity.

Figure S4. (A) 21‐mer frequency results for Arachis
hypogaea. (B) 13‐mer frequency results for A. hypogaea
where chromosome 08 acts as an outgroup and exhibits
much lower similarity to the rest of the subgenome A
chromosomes. (C) 21‐mer composition results for A.
hypogaea. (D) 21‐mer composition results for Coffea
arabica. The letter labels on the branch tips indicate the
subgenome origin (with the exceptions of (A–C) where
subgenome origin is indicated after the label SG with a
number), and the number represents the chromosome
number. The heatmap shows the sequence similarity based
on k‐mer signatures among chromosomes using a color
scale with dark blue at the value of 1 indicating complete
similarity.

Figure S5. (A) 7‐mer frequency for Triticum aestivum, A
subgenome progenitor T. urartu, and D subgenome
progenitor Aegilops tauschii shows chromosome 4B as an
outgroup. (B) 10‐mer frequency for T. aestivum, A
subgenome progenitor T. urartu, and D subgenome
progenitor A. tauschii shows chromosome 5D as an
outgroup. (C) 21‐mer composition for T. aestivum, A
subgenome progenitor T. urartu, and D subgenome
progenitor A. tauschii. Both relevant subgenomes and
progenitors exhibit a homeologous clustering structure.
Each branch of the dendrograms represents a chromosome
from the corresponding genome. The letter labels on the
branch tips indicate the species origin (TA: T. aestivum; TU:
T. urartu; AT: A. tauschii) and subgenome origin (A, B, or
D), and the number represents the chromosome number.
The heatmap shows the sequence similarity based on k‐mer
signatures among chromosomes using a color scale with
dark blue at the value of 1 indicating complete similarity.

Figure S6. 21‐mer (A) frequency and (B) composition for
Triticum aestivum: A subgenome progenitor T. urartu, D
subgenome progenitor Aegilops tauschii, and potential B
subgenome progenitor A. speltoides. Both dendrograms and
heatmaps show that A. speltoides exhibits distinctly less
sequence similarity to the T. aestivum B subgenome than
either A or B progenitors do to their respective subgenomes.
Each branch of the dendrograms represents a chromosome
from the corresponding genome. The letter labels on the
branch tips indicate the species origin (TA: T. aestivum; TU:
T. urartu; AT: A. tauschii; AS: A. speltoides) and subgenome
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origin (A, B, or D), and the number represents the
chromosome number. The heatmap shows the sequence
similarity based on k‐mer signatures among chromosomes
using a color scale with dark blue at the value of 1 indicating
complete similarity.

Figure S7. Asymmetry summary for 21‐mer frequency
showing progenitor asymmetry in sequence similarity. (A)
Brassica carinata and its progenitors B. nigra and B. oleracea
and (B) B. juncea and its progenitors B. nigra and B. rapa
show greater subgenomic similarity within the B subge-
nome. (C) Brassica napus and its progenitors B. oleracea
and B. rapa show greater subgenomic similarity within the
C subgenome. Each branch of the dendrograms represents a
chromosome from the corresponding genome. The letter
labels on the branch tips indicate the species origin (BN: B.
nigra; BR: B. rapa; BO: B. oleracea) and subgenome origin
(A, B, or C), and the number represents the chromosome
number. The heatmap shows the sequence similarity based
on k‐mer signatures among chromosomes using a color
scale with dark blue at the value of 1 indicating complete
similarity.

Figure S8. (A, B) Brassica carinata, its B genome progenitor
B. nigra, and its C genome progenitor B. oleracea for (A)
11‐mer and (B) 61‐mer frequency. (C) Brassica napus and
progenitors B. oleracea and B. rapa for 9‐mer frequency. (D,
E) Brassica juncea and progenitors B. nigra and B. rapa for
(D) 9‐mer and (E) 31‐mer frequency. All show non‐
subgenomic clustering results. Each branch of the dendro-
grams represents a chromosome from the corresponding
genome. The letter labels on the branch tips indicate the
species origin (BN: B. nigra; BR: B. rapa; BO: B. oleracea)
and subgenome origin (A, B, or C), and the number
represents the chromosome number. The heatmap shows
the sequence similarity based on k‐mer signatures among
chromosomes using a color scale with dark blue at the value
of 1 indicating complete similarity.

Figure S9. (A) Brassica carinata, its B genome progenitor
B. nigra, and its C genome progenitor B. oleracea. (B)
Brassica juncea and progenitors B. nigra and B. rapa. (C)
Brassica napus and progenitors B. oleracea and B. rapa. All
show homeologous clustering for 21‐mer composition. Each
branch of the dendrograms represents a chromosome from
the corresponding genome. The letter labels on the branch
tips indicate the species origin (BN: B. nigra; BR: B. rapa;
BO: B. oleracea) and subgenome origin (A, B, or C), and the
number represents the chromosome number. The heatmap
shows the sequence similarity based on k‐mer signatures
among chromosomes using a color scale with dark blue at
the value of 1 indicating complete similarity.

Figure S10. (A–C) Arachis hypogaea and progenitors
A. ipaensis and A. duranensis for (A) 21‐mer frequency,
(B) 9‐mer frequency, and (C) 21‐mer composition. (A)
Results show correct subgenomic clustering. (B) Results
show chromosome 8 from A. hypogaea and A. duranensis
outgrouping. (C) Results show the homeologous clustering

structure exhibited for A. hypogaea and progenitors for
21‐mer onwards for k‐mer composition. Each branch of the
dendrograms represents a chromosome from the corre-
sponding genome. The letter labels on the branch tips
indicate the species origin (AD: A. duranensis; AH: A.
hypogaea; AI: A. ipaensis) and subgenome origin (SG A, B,
or C), and the number represents the chromosome number.
The heatmap shows the sequence similarity based on k‐mer
signatures among chromosomes using a color scale with
dark blue at the value of 1 indicating complete similarity.

Figure S11. Camelina sativa with the addition of transpos-
able element (TE) content for all (A, B) TE 21‐mer (A)
frequency and (B) composition; (C, D) LTR 21‐mer (C)
frequency and (D) composition; and (E, F) non‐LTR (E)
frequency and (F) composition. All show a subgenomic
repeat clustering structure but with differences. Both A and
C show a very strong intra‐ and strong inter‐subgenomic
similarity, although C shows a slight reduction in sequence
similarity. E shows a markedly reduced sequence similarity
and inter‐subgenome similarity has become nonuniform,
with subgenome B showing the greatest similarity followed
by a D and then A. Inter‐subgenome similarity is also
reduced and no longer uniform. Both B and D show a
subgenomic relationship with little‐to‐no sequence similar-
ity, while F shows a homeologous clustering structure. The
C. sativa chromosome numbers are indicated after “chr”.
The letter labels on the branch tips indicate the subgenome
origin, and the number represents the T. aestivum
chromosome number. The heatmap shows the sequence
similarity based on k‐mer signatures among chromosomes
using a color scale with dark blue at the value of 1 indicating
complete similarity.

Figure S12. Triticum aestivum differing LTR‐subclasses of
sequence transplanted onto Camelina sativa. (A, B) RLC 21‐
mer (A) frequency and (B) and composition; (C, D) RLG
21‐mer (C) frequency and (D) composition; (E, F) RLX (E)
frequency and (F) composition. RLC and RLG show
subgenomic clustering for k‐mer frequency (A and C).
RLC shows homeologous clustering for k‐mer composition,
while RLG shows homeologous clustering. RLX shows a
subgenomic‐like clustering structure for k‐mer frequency,
while k‐mer composition shows a homeologous‐like
clustering structure, both of which are interrupted by
chromosomal misplacements. The C. sativa chromosome
numbers are indicated after “chr”. The letter labels on the
branch tips indicate the subgenome origin, and the number
represents the T. aestivum chromosome number. The
heatmap shows the sequence similarity based on k‐mer
signatures among chromosomes using a color scale with
dark blue at the value of 1 indicating complete similarity.

Figure S13. Triticum aestivum non‐LTR sequence trans-
plantation to Camelina sativa for (A) 51‐mer frequency and
(B) 13‐mer composition, both of which exhibit a markedly
strong relationship for the chromosomes transplanted with
T. aestivum 4 and 7B sequences. The C. sativa chromosome
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numbers are indicated after “chr”. The letter labels on the
branch tips indicate the subgenome origin, and the number
represents the T. aestivum chromosome number. The
heatmap shows the sequence similarity based on k‐mer
signatures among chromosomes using a color scale with
dark blue at the value of 1 indicating complete similarity.

Figure S14. Subgenomic cut height for (A) Triticum
aestivum, (B) T. dicoccoides, and (C) T. turgidum and its
relationship to k‐mer size for k‐mer composition and
frequency across scale factors 1000, 500, 250, and 125. All
three plots show a positive linear relationship for cut height
and k‐mer size, although the relationship for k‐mer
frequency is more gradual yet jagged, whereas k‐mer
composition shows a rapid, smooth relationship. (B) shows
two anomalies that correspond to a failure to subgenomi-
cally cluster for scale factors 125 (k = 17) and 500 (k = 37).

Figure S15. Cophenetic correlation scores and their relation-
ships to k‐mer size for Triticum aestivum k‐mer frequency (A)
and composition (B), T. dicoccoides k‐mer frequency (C) and
composition (D), and T. turgidum k‐mer frequency (E) and
composition (F). All k‐mer frequency plots show a similar
relationship between cophenetic correlation and k‐mer size,
with k‐mer frequency showing a rapid positive relationship that
nears 1 by k= 7 and remains there except for small
perturbations. For k‐mer composition, the same rapid rise to
near 0.9–1 is followed by a sharp drop at k= 17, followed by

another rapid rise and gradual peak near 1 for all by k= 21,
which remains in place for k= 31–61 except for a small
anomalous result at k= 37 for T. dicoccoides.

Table S1. Genome assemblies examined.

Table S2. Repeat knock‐in experiment design.

Table S3. Summary results of sourmash single genome
chromosome clustering with strict dendrogram cut require-
ments and genome repeat content.

Table S4. Summary results of sourmash progenitor genome
chromosome clustering with strict dendrogram cut
requirements.

Table S5. Summary results of sourmash clustering with
strict dendrogram cut requirements for Camelina sativa
with Triticum aestivum transposable elements transplant.
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