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A commentary on

A predictive processing theory of sensori-
motor contingencies: explaining the puz-
zle of perceptual presence and its absence
in synaesthesia
by Seth, A. K. (2014). Cogn. Neurosci. 5,
97–118. doi:10.1080/17588928.2013.877880

In order to explain the distinct phe-
nomenology of veridical and non-veridical
percepts, Seth (2014) introduces the con-
cept of counterfactual predictions to the
Predictive Processing (PP) framework pro-
posed by Clark (2013). The PP framework
assumes that the brain generates predic-
tions of its own sensory inputs based on
generative models of the world that are
learned over time. Seth (2014) proposes to
extend this framework by assuming that
the brain not only makes predictions of
actual sensory inputs, but also of the pos-
sible sensory consequences of a variety
of possible actions. These so-called coun-
terfactual predictions are presumed to be
based on generative models that encode
previously learned sensorimotor depen-
dencies. Seth then argues that counterfac-
tually rich generative models can explain
why the phenomenology of veridical per-
cepts differs from that of non-veridical
percepts, such as arise in synaesthesia.

While Seth deliberately—and under-
standably, given the aims of his paper—
decided to put “the detailed mathematics
aside” (Seth, 2014, p. 8), we would
like to point out that these details
become of primary concern when assum-
ing that counterfactual models can encode
learned sensorimotor dependencies. The
only current candidate formalization of

counterfactual predictive processing is
given by Friston et al. (2012), work on
which Seth says to build. Yet, this par-
ticular formalization does not seem to
provide the degrees of freedom required
to accommodate the counterfactual rich-
ness of generative models as envisioned
by Seth. The reason is that this for-
malism is committed to the Laplace
assumption: the brain encodes probabil-
ity distributions as (potentially, multidi-
mensional) Gaussian densities. Friston has
consistently defended the Laplace assump-
tion for its neural plausibility and repre-
sentational efficiency (Friston et al., 2007,
2008; Friston, 2009; Friston et al., 2012).
Be that as it may, the Laplace assumption
seems to be too restrictive for encoding
the distributions corresponding to learned
sensorimotor dependencies. We illustrate
this point with an example scenario.

Assume one perceives a fruit lying on
the table, and it is tilted such that only its
bottom is visible. From this perspective it
is not possible to tell what type of fruit it
is exactly (e.g., it could be an apple or a
pear), and hence there is ambiguity about
the counterfactual predictions that apply
about the sensory consequences of possi-
ble actions that can be performed on the
fruit. For instance, it could be that if one
were to grasp the bottom of the fruit and
turn it, one would see that the other side of
the fruit is round (e.g., if it were an apple),
or alternatively, one may see that the fruit
is cone shaped (e.g., if it were a pear).
Similarly, it could be that if one were to
grasp the non-visible top of the fruit that
the aperture of the fingers will be relatively
large when the fingers touch the surface
(e.g., if it were an apple), or alternatively,

relative small (e.g., if it were a pear). In our
world, fruits are often round (e.g., when
they are apples), sometimes cone shaped
(e.g., when they are pears), but rarely
do fruits have shapes in-between round
and cone. Given these relative frequen-
cies of fruit shapes, learned sensorimotor
contingencies will lead to probability den-
sities for counterfactual predictions that
are multimodal; e.g., have a peak around
“round” and a peak around “cone,” but
lower probabilities for shapes in between
(see Figure 1 for an illustration).1

Note that in our example scenario
the Laplace assumption made by Friston
et al. (2012) is violated. Given that we
can distinguish between the sensory con-
sequences of acting upon round shapes
(such as are characteristic of apples)
and cone shapes (such as are charac-
teristic of pears) there must exist at
least one dimension—and possibly multi-
ple dimensions—in the multidimensional
density that constitutes the counterfac-
tual generative model with the property
that there is a range of values represent-
ing shapes in-between the value on that
dimension for “round” and the value for
“cone” (otherwise the value of “round”
and “cone” would be equal for all dimen-
sions, making it impossible for us to tell

1 To be clear, we do not mean to suggest that in
ambiguous cases such as these, that humans experi-
ence the ambiguity between “seeing an apple” vs. “see-
ing a pear” when presented with an ambiguous view
from the bottom. For all we know, no such ambiguity
is ever experienced. Our point is merely that if coun-
terfactual predictions are based on learned veridical
sensorimotor dependencies, then the densities cor-
responding to those predictions need to capture the
actual frequencies of those dependencies in the world,
which can be multimodal distributions.
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FIGURE 1 | Probability density for a dimension for which we can distinguish the round

shapes characteristic of an apple from the cone shape characteristic of a pear, conditioned on

(i) the sensory input generated by the bottom view of the fruit, (ii) the prior density

describing the frequency of different shaped fruits in the world, and (iii) the hypothetically

performed action of, say, grasping the fruit from the bottom and turning it so as to view it

from the side.

them apart). The Laplace assumption
would imply that the probability of each
of these intermediate values would need
to be at least as high as the probability
of the values corresponding to “round” or
“cone” shape (otherwise the density would
be multimodal, and hence not Gaussian).
Yet, as illustrated in our scenario, this is
arguably not true for fruits in our world.

Given the above considerations, the
existing formalization of counterfactual
PP seems to lack the degrees of freedom
required for counterfactual PP explana-
tions of phenomenological experience as
envisioned by Seth.2 This does not mean
that such a formalization is unattainable,
but it may look substantially different from
the one presumed by Seth. For instance,
there exist mixture models that can per-
form inferences on the types of mixtures
of Gaussians illustrated in our Figure 1,
and contrary to Friston (2009), it has been
argued that these mixture models have

2 We note that this concern is not specific to Seth’s the-
ory, and may in fact apply more broadly to other PP
explanations in the current literature. For instance, the
prominent account of binocular rivalry as put forth
by Hohwy et al. (2008) seems to also appeal to multi-
modal distributions within a PP framework (see their
Figure 5, p. 693).

neural (Pecevski et al., 2011) and repre-
sentational (Gershman et al., 2009) plausi-
bility. Yet, the integration of these models
in the PP framework is highly non-trivial,
because simple formalizations of central
concepts in PP that hold under the Laplace
assumption (such as “precision” defined
as 1

σ 2 ) do not straightforwardly translate
to multimodal distributions. Hence, Seth’s
proposal looks promising, but to reach its
full explanatory potential, work urgently
needs to be done on the mathematical
formalization of his theory.
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