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Abstract

Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are intro-

duced into the diet, decreasing pH and disturbing the microbial ecology of the rumen.

Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the

rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have

been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone pro-

duced by red clover (Trifolium pratense), mitigates changes associated with starch fermen-

tation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic

bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were

assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1),

or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller’s grains ad libitum.

The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d

1–4: 40% corn; d 5–8: 70% cracked corn). Samples for pH and enumeration were taken on

the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting

bacteria (APB) were enumerated. Enumeration data were normalized by log transformation

and data were analyzed by repeated measures ANOVA using the MIXED procedure of

SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulo-

lytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiolog-

ical, and fermentative changes associated with SARA challenge (P < 0.05). Similar results

were also observed with MON (P < 0.05). These results indicate that BCA may be an effec-

tive alternative to antibiotics for mitigating SARA in cattle production systems.
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Introduction

The rumen is an anaerobic ecosystem in which nutrients that the animal consumes are fer-

mented by a resident phylogenetically and metabolically diverse microbial community [1].

These fermentative substrates from the diet can be converted into short chain fatty acids

(SCFA), which are then removed from the rumen by absorption into the blood stream or pas-

sage to the lower tract. A healthy stable rumen environment can be maintained if substrate fer-

mentation rates are not in excess of buffering capacity (primarily via salivary secretions) and

the rate of absorption/passage keeps up with production of SCFA. Subacute rumen acidosis

(SARA) is commonly associated with adaptation to high grain diets. The pathogenesis of

SARA is characterized by the accumulation of SCFA in the rumen leading to environmental

pH decline (pH 5.6–5.0; [2–5]). When an adapted animal consumes a diet rich in starch, resi-

dent amylolytic bacteria (e.g., lactobacilli and Streptococcus bovis) proliferate and produce

SCFA and lactic acid [6]. Rumen lactate-utilizing bacteria (e.g., Megasphaera elsdenii, Seleno-
monas ruminatium) then metabolize lactate into the SCFA propionate. When environmental

pH drops below 5.6, SCFA absorption rate is enhanced preventing excess SCFA accumulation

in the environment and further pH decline [7].

Despite this adaptation, low pH can have negative impacts on the fermentative efficiency of

other rumen microbial guilds, production of microbial toxins, and animal physiology. For

example, resident cellulolytic bacteria that are solely responsible for dietary fiber utilization, do

not grow at a rumen pH< 6.0 leading to decreases in viable numbers and consequent fiber

digestibility (in situ studies: 20–25% reduction in fiber digestibility; [8–10]). Additionally,

rumen ciliated protozoa are extremely sensitive to reductions in rumen pH [11–13]. Subacute

rumen acidosis has also been associated with damage to the rumen epithelial tissue (rumeni-

tis), increased endotoxin and inflammatory mediators, liver abscesses, and laminitis [5,6,14–

16].

Feed additive antimicrobials (e.g., monensin, virginiamycin, lasalocid) are often employed

in the prevention and treatment of SARA in cattle [17–20]. Dietary inclusion of the ionophore,

monensin (MON), has been demonstrated to: reduce the incidence of acidosis via antimicro-

bial action against amylolytic bacteria [21,22], improve feed efficiency [23,24], decrease rumen

methane production [25–27], and increase rumen bypass protein by inhibiting amino acid/

peptide-fermenting bacteria (APB) in the rumen [28–30]. Despite the advantages of MON,

due to the concern for the spread of antibiotic resistance both the European Union [31] and

the United States [32,33] have taken steps to reduce the use of antibiotics in food animal pro-

duction systems. Therefore, antibiotic alternatives are of interest for the treatment and preven-

tion of SARA. In addition to these regulatory issues, it is important to note that a marked

disadvantage of commonly utilized feed antibiotics (e.g., ionophores like monensin) is that

they have a broad spectrum of activity, which include some rumen cellulolytic bacteria [34].

Discovery and development of novel antimicrobials provides the opportunity to find com-

pounds with improved spectra of activity, reduced toxicity and other advantages over currently

available products.

Many plants, including forage species in pastures, can produce antimicrobial secondary

metabolites that can have beneficial impacts on rumen fermentation and function [35–38].

Biochanin A (BCA), an isoflavone produced by the forage legume red clover (Trifolium pra-
tense), has been shown to reverse the impacts of rumen acidosis via selective antimicrobial

action in an in vitro and ex vivo model [39]. Additionally, BCA has been shown to inhibit APB

[38,40–43], promote cellulolytic bacteria and fiber degradation [39,42,43], and improve aver-

age daily gains of grazing cattle [41,43]. Therefore, BCA could potentially serve as an effective

mitigation strategy for SARA, but evaluation in vivo is required. The following experiment was
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conducted to determine the microbiological impacts of BCA in comparison to the feed antimi-

crobial MON in steers subjected to a short 2-step SARA challenge. The hypotheses were that

BCA would: 1) mitigate microbiological changes and pH decline associated with the SARA

challenge, 2) increase cellulolytic viable numbers and fiber degradation, and 3) suppress

rumen APB.

Materials and methods

All procedures were approved by the Institutional Animal Care and Use Committee at the

University of Kentucky (protocol #: 2016–2450). General housing and care of the animals were

consistent with the Guide for Care and Use of Agricultural Animals in Research and Teaching

[44].

Experimental design and diets

Twelve rumen fistualted Holstein steers (Initial BW: 373 ± 7.5 kg) with no history of antibioitic

administration or gastrointestinal disease in the preceding 4 months were blocked by weight

and randomly assigned to 1 of 4 treatments: 1) high fiber control (HF CON; n = 3), 2) SARA

control (SARA CON; n = 3), SARA + monensin treatment (MON CON; n = 3), or SARA

+ BCA treatment (BCA; n = 3). The experiment was conducted over 29 days. All steers were

first adapted to the basal diet (corn silage + 2.27 kg dried distillers’ grains, to meet protein

requirements; Table 1) for 14 days (adaptation period). After the adaptation period, the steers

remained on the basal diet for another 7 days (high fiber period). During the high fiber period,

the MON and BCA treatments were mixed in loose mineral and dosed transruminally

(through the cannula) with 0.45 kg of dried distillers’ grain, at 09:00 each day. The MON medi-

cated loose mineral was dosed to provide 200 mg of MON per day as per manufacturer’s direc-

tion (Rumensin Beef Mineral Medicated Premix, KNS #634; Kentucky Nutrition Service,

Lawrenceburg, KY, USA). Purified BCA (Indofine Chemical Company Inc., Hillsborough, NJ,

USA) was dosed at 6 g per day (representing ~30% red clover diet; [41]) in an equal amount of

conventional loose mineral (Beef Pasture Mineral, KNS #600; KNS). The high fiber control

and SARA control steers also were dosed transruminally with an equal amount of dried distill-

ers’ grain and loose mineral. Following the high fiber period, the high fiber control steers

remained on the basal diet. All other steers were subjected to a cracked corn challenge

designed to elicit SARA consisting of a 40% cracked corn diet (40% cracked corn + 60% basal

diet, as fed basis) for 4 days (Table 1; 60:40 SARA challenge period) immediately followed by a

70% cracked corn diet (70% cracked corn + 30% basal diet, as fed basis) for 4 days (30:70

Table 1. Nutrient composition corn silage, dried distillers’ grain (DDG), and cracked corn (dry matter basis)1.

Nutrient2 Corn Silage DDG Cracked Corn

DM, % 45.0 86.0 88.0

CP, % 8.39 25.18 9.77

ADF, % 25.75 18.62 19.21

NDF, % 50.11 27.65 12.27

IVTD, % 78.91 84.71 71.31

1Basal diet: Corn silage ad libitum + 2.27 kg DDG; 60:40 SARA Challenge Period: 60% basal diet:40% cracked corn,

as fed; 30:70! 30% basal diet:70% cracked corn, as fed.
2DM-dry matter; CP-crude protein; ADF-acid detergent fiber; NDF-neutral detergent fiber; IVTD–in vitro true

digestibility.

https://doi.org/10.1371/journal.pone.0253754.t001
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SARA challenge period). Transruminal dosing of dried distillers’ grain, loose mineral, and

treatments when applicable continued during the SARA challenge periods.

Holstein steers were housed at the University of Kentucky C. Oran Little Research Center

Beef Unit in Woodford County, KY, USA. Steers were group housed in outdoor pens for the

first 7 days of the adaptation period. For the remainder of the study (22 days), steers were

housed in outdoor individual pens (3 x 3.7 m) to allow for monitoring of feed intake daily.

Steers were allowed 1 h of group turnout daily immediately prior to feeding (09:00) when indi-

vidually housed. All steers were provided water and the basal diet ± cracked corn ad libitum
over the course of the study. Free choice conventional loose mineral (KNS #600) was available

to all steers during the adaptation period. Samples of dietary components were collected every

week over the course of the experiment. All samples were dried, ground to pass through a

1-mm screen using a Wiley mill, and analyzed for CP, ADF, NDF, and true in vitro digestible

DM (IVTD). Crude protein was analyzed using a Leco FP-215 N Analyzer (CP = % N × 6.25;

Leco Corp., St. Joseph, MI, USA). Acid detergent fiber and NDF were analyzed using an

ANKOM fiber analyzer as a modification to procedures of Goering and Van Soest ([45]; addi-

tion of α-amylase to the NDF procedure). True IVTD was determined by following procedures

for estimating true digestibility using the ANKOM Daisy II Incubator [46].

Fistulated Holstein rumen sampling

Rumen fisulated Holstein steers were sampled at 4 h post-feeding (13:00) on the last day of

each experimental period (d 14, 21, 25, 29). On each sample day, rumen contents (~ 1 kg) were

collected from each steer individually. Immediately post-collection, ~250 g of the contents

were strained through 3 layers of cheesecloth (Grade #90) to collect rumen fluid. A portion of

the collected rumen fluid (15 mL) was placed on ice and frozen for later fermentation end-

product analyses (described below). The remaining collected rumen fluid was used to inocu-

late enumeration media (10-fold dilution, as described below) and for pH determination

within 10 min of collection. Rumen fluid pH was taken with a pH meter (Accumet™ Research,

AR10 pH meter; Fisher Scientific, USA with a Broadley-James1 pH electrodes; Broadley1

James, Irvine, CA, USA), calibrated to pH 4.0 and 7.0, at 4 h post-feeding on all sample days.

Additionally, on both SARA challenge period sample days (d 25 and 29), rumen fluid pH was

determined with a pH meter at 0 (immediately prior to morning feeding), 2, 4 and 8 h.

Fistulated Holstein In situ Dry matter (DM) disappearance

In situ procedures were selected based on the recommendations for standardization by Van-

zant and colleagues [47]. For the last 72 h of each experimental period, Dacron bags (10

cm × 20 cm; pore size = 50 ± 10 microns porosity; ANKOM Technology, Macedon, NY, USA)

containing 5 g of finely ground (2 mm screen; model 4 Wiley Mill; Thomas Scientific, Swedes-

boro, NJ, USA) low-quality or high-quality grass hay (Table 2) were placed in the rumen of

each animal. Both hay quality types utilized consisted of an orchardgrass and timothy mixed

hay. Bags in duplicate were inserted in a weighted mesh bag in the rumen at approximately 0,

24, 48, 60, 66, and 70 h to be removed together at 72 h. Two blank Dacron bags incubated for

72 h were used to correct for rumen microbial and feed contamination. Loss of DM during

rinsing was determined using two non-incubated bags for each animal. Upon removal, bags

were rinsed 5 times with cold water (1min rinse-1) using a commercial washing machine set at

low water level. Rinsed bags were dried at 55˚C for 48 h, and reweighed to determine DM dis-

appearance. Dry matter disappearance was determined for all in situ replicates.
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Media and bacterial enumerations

Immediately following collection, each rumen fluid sample was serially diluted (10-fold w/w)

in anaerobic phosphate buffered saline (pH 7.4, N2-sparged; 8 g NaCl, 0.2 g KCl, 1.44 g

Na2HPO4 per L) for the inoculation of enumeration media (described below).

The carbohydrate-utilizing bacteria basal medium used was based on Mantovani and Rus-

sell [48]. This medium was heavily buffered to maximize growth, and contained (per liter): 240

mg KH2PO4, 240 mg K2HPO4, 480 mg (NH4)2SO4, 480 mg NaCl, 64 mg CaCl2 � 2H2O, 100

mg MgSO4 � 7H2O, 600 mg cysteine hydrochloride, 1,000 mg Trypticase, 500 mg yeast extract;

initial pH 6.7; autoclaved to remove O2 and cooled under O2 –free CO2. The buffer (4,000 mg

Na2CO3) was added before dispensing and autoclaving for sterility.

The carbohydrate-utilizing bacteria medium with soluble starch from potato as a substrate

(10,000 mg L-1) was used for enumeration of total amylolytic bacteria [49,50]. The tubes were

incubated (39 ˚C, 3 d). The highest dilution exhibiting bacterial growth (visual examination,

OD600) was recorded as the viable number.

Total cellulolytic medium was based on Stack et al. [51]. This medium consisted of carbohy-

drate-utilizing bacteria medium amended with 1 mg phenylacetic acid, 3.1 mL VFA solution

(7.15 mol L-1 acetic acid,1.92 mol L-1 propionic acid, 783.66 mmol L-1 butyric acid, 222.28

mmol L-1 valeric acid, 216.19 mmol L-1 isovaleric acid, 264.13 mmol L-1 isobutyric acid,

227.87mmol L-1 2-methylbutyric acid), and Whatman #1 filter paper strips as the growth sub-

strate. Additionally, the viable number of 2-deoxy, D- glucose (2-DG) resistant cellulolytic bac-

teria were enumerated by amending the total cellulolytic medium with 2-DG (6 mmol L-1).

Incubations were carried out at 39 ˚C for 10 d. Growth was evaluated daily by dissolution of

the cellulose substrate and microscopy. The final dilution exhibiting dissolution of cellulose on

d 10 was recorded as the viable number of cellulolytic bacteria.

Bile esculin azide agar (Enterococcosel™; Becton, Dickinson and Co. (BD), Franklin Lake,

NJ, USA) and Rogosa SL agar (BD) were used for aerobic enumeration of Lancefield Group D

Gram-positive cocci (GPC; enterococci and streptococci) and lactobacilli, respectively. Both

media types were prepared in Petri plates according to the manufacturer’s directions. The

plates were incubated aerobically (39 ˚C, 3 d). Plates with 30 < x< 300 colonies were counted.

Black colonies on bile esculin azide agar were counted as GPC. All colonies on Rogosa SL agar

were counted as lactobacilli.

The low-N basal medium contained (per liter): 240 mg KH2PO4, 240 mg K2HPO4, 480 mg

Na2SO4, 480 mg NaCl, 64 mg CaCl2 � 2H2O, 100 mg MgSO4 � 7H2O, and 600 mg cysteine

hydrochloride, with additional vitamins and trace minerals as previously described [52]. The

initial pH was adjusted to 6.7 and the medium was autoclaved (121 ˚C, 103 kPa, 20 min) to

remove O2 and cooled under O2-free CO2. The buffer (4,000 mg Na2CO3) was added before

dispensing and autoclaving for sterility.

Table 2. Nutrient composition of low- and high-quality hay (dry matter basis).

Nutrient Low-Quality Hay High-Quality Hay

DM, % 89.0 89.0

CP, % 7.45 11.65

ADF, % 43.34 36.13

NDF, % 70.13 59.42

IVTD, % 69.12 83.29

DM-dry matter; CP-crude protein; ADF-acid detergent fiber; NDF-neutral detergent fiber; IVTD–in vitro true

digestibility.

https://doi.org/10.1371/journal.pone.0253754.t002
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Total peptide-utilizing and amino acid-utilizing bacteria were enumerated in low-Nbasal

media amended to include either 15 mg mL-1 Trypticase or 15 mg mL-1 Casamino acids,

respectively (Becton Dickinson, Franklin Lake, NJ). Inoculated tubes were incubated (39 ˚C, 3

d), and the highest dilution exhibiting bacterial growth (visual examination, OD600) was

recorded as the viable number.

Total gelatin-hydrolyzing bacteria were enumerated in low-N basal media amended to

include 100 mg mL-1 gelatin (added prior to 2nd autoclaving step). Tubes were inoculated and

incubated (39 ˚C, 5 d), and the highest dilution exhibiting bacterial growth (visual examination

of gelatin hydrolysis after 1 h at 4 ˚C) was recorded as the viable number.

Fermentation end-product analyses by HPLC

Rumen fluid samples were thawed and clarified in a microcentrifuge (21,000 × g, 2 min). Short

chain fatty acids (SCFA; lactate, acetate, propionate, butyrate, IVMB: isovalerate and/or

methylbutyrate, and valerate) were quantified using HPLC (Summit HPLC; Dionex, Sunny-

vale, CA, USA) equipped with an anion exchange column (Aminex, HP-87H; Bio-Rad, Hercu-

les, CA, USA), refractive index (Shodex/Showa Denko, Kanagawa, Japan) and UV detector.

The eluting compounds were isocratically separated with a sulfuric acid mobile phase (5 mmol

L-1, aqueous). The column was operated at 50˚C with a 0.4 mL min-1 flow rate and 0.1 mL

injection volume.

Statistical analyses

Prior to statistical analyses bacterial enumerations were normalized by log transformation. All

data were analyzed using repeated measures in PROC MIXED of SAS, with individual steer

being used as the experimental unit (SAS version 9.3, SAS Inst. Inc., Cary, NC; [53]). In the

analyses block, sample day, sampling time (pH and in situ DM disappearance), treatment, the

interaction between treatment and sample day, and the interaction between treatment and

sampling time (pH and in situ DM disappearance) were analyzed as fixed effects with animal

as the random variable. The Kenward-Roger method was used to compute the denominator

degrees of freedom for the fixed effects and the repeated statement requested the compoud

symmetry covariance structure. Mean separations were done using the PDIFF option of SAS.

Statistical significance was set at P< 0.05 with trends observed at P< 0.10.

Results and discussion

Rumen pH, SCFA and amylolytic bacteria

Feed intake was unaffected by treatment and period (P> 0.05). Total feed intake on average

was 2.9 ± 0.03% of BW on a DM basis over the course of the experiment. The average rumen

fluid pH during the adaptation period, the high fiber period, and in HF CON steers over the

course of the study (basal diet only) was 6.23 (range, 6.17–6.28) at 4 hours post-feeding. Steers

that stayed on the basal HF diet did not display any significant rumen pH changes, either more

or less acidic than the adaptation period, during any experimental period (P> 0.05). When

steers were challenged with 40 or 70% cracked corn, pH declined and there was a

treatment × time interaction for all time points (P� 0.01, in all cases; Table 3). Rumen fluid

pH in steers consuming cracked corn with no treatment (SARA CON) was ~0.5 and ~0.9 pH

units lower (regardless of time point) than HF CON steers consuming the basal diet during

the 60:40 and 30:70 SARA challenge periods, respectively (P< 0.05). BCA and MON were

both effective in partially mitigating pH decline associated with either SARA challenge

(P< 0.05). BCA treatment was found to be more effective during the 60:40 and 30:70 SARA
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challenge periods at 2, 4 and 8 h (excluding 2 h during the 30:70 SARA challenge period where

they were equally effective) in comparison to MON (P< 0.05). However, despite the statistical

differences observed between BCA and MON, the difference in pH mitigation between these

treatments were not biologically meaningful.

It is widely accepted and has been repeatedly demonstrated that rumen pH stability is a crit-

ical factor in the maintenance of normal and stable rumen function including both microbial

community (e.g., viability and fermentative capacity) and physiological stability (e.g., motility

and absorptive functions; [54]). Although rumen pH will fluctuate in proximity to feed con-

sumption, is dependent on dietary composition, and can be influenced by animal to animal

variation, normal rumen pH is typically considered to be> 5.6 [5] Therefore, accumulation of

SCFA and a decrease in rumen pH below 5.6 can have a significant impact on microbial com-

munity stability, overall rumen health and consequently animal productivity and health. Sub-

acute rumen acidosis has been defined as a rumen pH ranging between 5.0 and 5.6 [2–5].

Based on this definition, all SARA CON steers in the current study suffered from SARA at 2

and 4 h post-feeding during the 60:40 SARA challenge period and at all time points tested dur-

ing the 30:70 SARA challenge period. Therefore, both cracked corn challenge levels were effec-

tive at inducing SARA. No MON or BCA treated steers were in SARA during the 60:40

challenge period demonstrating that both treatments were able to mitigate SARA development

at a 40% cracked corn diet concentration. In contrast, when steers were stepped up to a 70%

cracked corn diet, MON treated steers entered SARA at 2 (2/3 steers), 4 (all 3 steers) and 8 h

(1/3 steers) post-feeding, but BCA treated steers suffered from SARA only at 4 h (2/3 steers).

The minimum amount of time of suboptimal rumen pH required to have negative impacts on

microbial and physiological rumen function is unknown. However, studies utilizing continu-

ous culture systems have suggested that there is a direct relationship between increasing dura-

tion of suboptimal pH and a decline in microbial stability and fermentative capacity [55–60].

Continuous rumen pH monitoring was not evaluated in the current study, but the interval pH

data that was collected suggest that at higher levels of cracked corn supplementation (70% in

the current study), BCA treatment may be more effective than MON at decreasing the dura-

tion of time that the rumen pH was suboptimal for fermentation. It is important to note that

the corn challenge utilized in the current study was short in comparison to what animals

Table 3. Effect of biochanin A on rumen fluid pH during a 40% and 70% corn SARA challenge at 0 (pre-feeding), 2, 4, and 8 h (true means; n = 3).

Hour1 SARA Challenge Period2 Treatments3 Statistics4

HF CON SARA CON MON CON BCA Sig SEM

0 60:40 6.64a 6.16cα 6.39bα 6.48bα P < 0.01 0.03

0 30:70 6.65a 5.58cβ 5.99bβ 5.94bβ

2 60:40 6.02a 5.56dα 5.71cα 5.83bα P = 0.01 0.03

2 30:70 6.09a 5.36cβ 5.61bβ 5.68bβ

4 60:40 6.12a 5.49dα 5.76cα 5.92bα P < 0.01 0.02

4 30:70 6.10a 5.28dβ 5.43cβ 5.59bβ

8 60:40 6.22a 5.72dα 5.82cα 6.00bα P < 0.01 0.03

8 30:70 6.23a 5.28dβ 5.65cβ 5.79bβ

1Hour 0 is pre-feeding. Hours 2, 4 and 8 are post-feeding.
260:40! 60% basal diet:40% cracked corn; 30:70! 30% basal diet:70% cracked corn.
3HF CON: High Fiber Control (basal diet only; corn silage + dried distillers’ grains, to meet protein requirements); SARA CON: SARA Control; MON CON: SARA

+ Monensin (200 mg d-1); BCA: SARA + Biochanin A (6 g d-1).
4Values with different English letters (a,b,c,d) are statistically different within period between treatments (P< 0.05); Values with different Greek letters (α,β) are

statistically different within treatment between periods (P< 0.05).

https://doi.org/10.1371/journal.pone.0253754.t003
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would be exposed to in finishing systems (> 100 d). Therefore, although the corn challenge

was effective at inducing SARA, a longer exposure may elicit different results.

When steers consumed a basal diet of corn silage and dried distillers’ grains to meet protein

requirements ad libitum, on average rumen SCFA concentrations were approximately: 40

mmol L-1 acetate, 32 mmol L-1 propionate, 16 mmol L-1 butyrate, 1.6 mmol L-1 IVMB, 2 mmol

L-1 valerate and 91 mmol L-1 total SCFA (Table 4). Although lactate was detected in some

rumen fluid samples, it was negligible and below the level of quantification (< 1 mmol L-1).

There was no individual effect or interaction of treatment and sample day on butyrate, IVMB,

or valerate concentrations (P> 0.05, in all cases). A treatment × sample day interaction was

detected for acetate, propionate, total SCFA and acetate to propionate ratio (P< 0.01, in all

cases). Steers treated with BCA had higher rumen fluid acetate concentrations (+10 mmol L-1)

and total SCFA (+14 mmol L-1) during the high fiber period than any other treatment

(P< 0.05). The apparent promotion of acetate production with BCA treatment is consistent

Table 4. Effect of biochanin A on rumen fluid short chain fatty acid (SCFA) concentrations at 4 h post-feeding (mmol L-1; true means; n = 3).

Treatment1 Experimental Period2 Statistics3

Adaptation High Fiber 60:40 SARA 30:70 SARA Sig SEM

Acetate P< 0.01 1.75

HF CON 40.0 40.3α 40.0β 40.0βγ

SARA CON 39.0b 40.3α,b 39.7β,b 26.3α,a

MON CON 37.3ab 40.3α,b 33.7α,a 35.7β,ab 37.33333333

BCA 40.3a 50.7β,b 47.0γ,b 42.7γ,a

Propionate P< 0.01 1.86

HF CON 31.7 33.3αβ 30.7α 32.7α

SARA CON 31.7a 29.7α,a 63.0γ,b 75.3δ,c

MON CON 33.7a 36.3β,a 45.3β,b 55.3γ,c

BCA 31.0a 36.3β,ab 31.0α,a 42.3β,b

Butyrate P = 0.29 1.72

HF CON 16.0 13.3 13.3 14.7

SARA CON 16.7 16.0 15.0 19.3

MON CON 18.7 12.3 13.7 14.3

BCA 17.7 13.3 18.3 13.3

Total SCFA4 P< 0.01 2.96

HF CON 90.8 90.6α 87.9α 91.4α

SARA CON 90.7a 90.3α,a 122.0γ,b 128.0γ,b

MON CON 92.4a 93.1α,a 96.0αβ,a 109.8β,b

BCA 92.8a 104.9β,b 100.2β,ab 102.4β,b

Acetate:Propionate Ratio P< 0.01 0.09

HF CON 1.3 1.2αβ 1.3β 1.2γ

SARA CON 1.2c 1.4αβ,c 0.6α,b 0.4α,a

MON CON 1.1b 1.1α,b 0.7α,a 0.6β,a

BCA 1.3a 1.4β,a 1.5β,a 1.0γ,b

1HF CON: High Fiber Control (basal diet only); SARA CON: SARA Control; MON CON: SARA + Monensin (200 mg d-1); BCA: SARA + Biochanin A (6 g d-1).
2Adaptation: 100% basal diet (corn silage + dried distillers’ grains, to meet protein requirements); High Fiber: 100% Basal Diet; 60:40 SARA: 60% basal diet:40% cracked

corn; 30:70 SARA: 30% basal diet:70% cracked corn.
3Values with different English letters (a,b,c,d) are statistically different within treatment between periods (P< 0.05); Values with different Greek letters (α,β) are

statistically different within period between treatments (P< 0.05).
4Total SCFA = Acetate + Propionate + Butyrate + Valerate + IVMB (isovalerate and/or methylbutyrate).

https://doi.org/10.1371/journal.pone.0253754.t004
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with previous results Acetate is a common product of both ecological generalist microbiota

and cellulolytic bacteria [54]. Previous results from our research group indicated that BCA was

selectively inhibitory to some cellulolytic bacteria, but the net impact was increased acetate

concentrations and DMD by mixed rumen microbiota during in vitro experiments [42]. Simi-

larly, rumen fluid from grazing steers showed greater acetate concentrations and fiber diges-

tion when the steers were supplemented with isoflavones via red clover hay [43].

When steers were challenged with 40% cracked corn (SARA CON), propionate (+32 mmol

L-1) and total SCFA (+34 mmol L-1) concentrations increased, and consequently the acetate to

propionate ratio decreased in comparison to HF CON (P< 0.05). Treatment with MON

decreased propionate and acetate production in comparison to SARA CON and HF CON,

respectively (P < 0.05). BCA treated steers had similar propionate concentrations (P > 0.05)

but had increased acetate (+7 mmol L-1) and total SCFA (+12 mmol L-1; P< 0.05), allowing

for maintenance of an acetate to propionate ratio that was present in the HF CON steers

(P> 0.05). After being stepped up to a 70% cracked corn challenge, propionate (+42.6 mmol

L-1) and total SCFA (+37 mmol L-1) concentrations continued to increase in SARA CON steers

and acetate (-14 mmol L-1) decreased in comparison to HF CON (P< 0.05). Both MON and

BCA treatment partially mitigated the increase in propionate and total SCFA production

(P< 0.05). BCA treatment continued to maintain higher acetate concentrations than any

other treatment during the SARA challenge periods and an acetate to propionate ratio that

was similar to HF CON (P< 0.05).

It is widely accepted that rumen fermentation and the products produced are dependent on

diet. Acetate to propionate ratio is generally lower in cereal grain fermentations as opposed to

forages. Typically, these differences in dietary SCFA production are primarily attributed to the

metabolic characteristics of fiber-degrading vs. starch-degrading bacteria. However, it has also

been suggested that a reduction in pH alone can partially account for decreased acetate to pro-

pionate ratio by decreasing the viability of rumen methanogens and consequently impairing

H2 reduction [56,61]. When a high carbohydrate diet is consumed, amylolytic bacteria prolif-

erate and lactate is rapidly produced in the rumen. In SARA this lactate does not accumulate

in the rumen environment because it is rapidly metabolized to propionate by resident lactate-

fermenting bacteria [13]. Therefore, the negligible lactate concentrations and increased propi-

onate concentrations detected in the current study with SARA challenge were expected. The

observed increased concentrations of total SCFA and lower acetate to propionate ratio with

SARA induction in the current study are consistent with fermentation of high-starch diets and

the pathogenesis of SARA [2,3,6,56]. It is important to note, that although the total SCFA con-

centrations reported are comparable, the acetate to propionate ratio over the course of the cur-

rent study was relatively low when compared to reported values in the literature [14,16,20].

This could be partly attributed to any of the aforementioned variables described above but is

likely multifactorial and requires further investigation.

When steers were consuming corn silage and dried distillers’ grain, 108–109 total viable

amylolytic bacteria per mL rumen fluid were detected, regardless of treatment (Fig 1). There

was a trend for a treatment × sample day interaction for the viable number of amylolytic bacte-

ria (P = 0.07). When steers were challenged with 40% cracked corn, the total number of amylo-

lytic bacteria increased 2.5-fold with no effect of MON or BCA treatment (P < 0.05). The

viable number of amylolytics continued to increase 10-fold in the SARA control when the

corn challenge was increased to 70% (P < 0.05). Both BCA and MON treatment were equally

effective at preventing further proliferation of amylolytic bacteria when cracked corn was

increased from 40% to 70% (P< 0.05).

Results similar to total amylolytics were also observed for two broad phylogenetic groups

within the amylolytic guild, Gram-positive cocci (GPC; Fig 2) and lactobacilli (Fig 3). When

PLOS ONE Biochanin A mitigates subacute acidosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0253754 July 21, 2021 9 / 28

https://doi.org/10.1371/journal.pone.0253754


steers were consuming the basal diet, on average 8.34 × 104 and 3.3 × 105 CFU per mL total

GPC and lactobacilli were enumerated, respectively. There was a treatment × sample day inter-

action for both GPC and lactobacilli (P< 0.0001, in both cases). When steers were challenged

with a 40% cracked corn diet, GPC and lactobacilli proliferated and continued to increase when

Fig 1. The effect of biochanin A on the viable number of amylolytic bacteria in rumen fluid (4 h post-feeding). Holstein steers (n = 12) were

blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein

requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA

+ biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation period (100% basal diet),

high fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA

challenge period (30% basal diet + 70% cracked corn + treatments) for amylolytic bacterial enumeration. The enumerations were performed in

anaerobic liquid media with soluble starch as the growth substrate. The tubes were incubated (39˚C, 3 d), and the final dilution exhibiting bacterial

growth (visual examination; OD600) was recorded as the viable number. Means lacking a common English letter are different within sample day

(P< 0.05). Means lacking a common Greek letter are different over sample days within treatment (P< 0.05). Treatment: P = 0.0150, sample day:

P = 0.0002, and treatment × sample day: P = 0.0680; Pooled SEM: Treatment = 0.0833, sample day = 0.1102, treatment × sample day = 0.2205 (log

transformed).

https://doi.org/10.1371/journal.pone.0253754.g001

PLOS ONE Biochanin A mitigates subacute acidosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0253754 July 21, 2021 10 / 28

https://doi.org/10.1371/journal.pone.0253754.g001
https://doi.org/10.1371/journal.pone.0253754


the diet was stepped up to 70% cracked corn (P< 0.05). There was no effect of MON treatment

on GPC or lactobacilli when steers consumed the basal diet or the 60:40 SARA challenge diet

(P> 0.05). During the 30:70 SARA challenge, MON treatment partially inhibited the GPC pro-

liferation compared to SARA CON steers (P< 0.05) but had no effect on the viable number of

Fig 2. Effect of biochanin A on the viable number of Group D Gram-positive cocci (GPC; Streptococcus bovis, Enterococcus spp.) in rumen fluid

(4 h post-feeding). Holstein steers (n = 12) were blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage

+ dried distillers’ grain, to meet protein requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg

d-1 monensin; n = 3), or SARA + biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the

adaptation period (100% basal diet), high fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked

corn + treatments), and 30:70 SARA challenge period (30% basal diet + 70% cracked corn + treatments) for GPC bacterial enumeration. GPC were

enumerated on bile esculin azide agar (BD). The plates were incubated aerobically (39˚C, 3 d). Plates with 30< x< 300 colonies were counted. Black

colonies on bile esculin azide agar were counted as GPC. Means lacking a common English letter are different within sample day (P< 0.05). Means

lacking a common Greek letter are different over sample days within treatment (P< 0.05). Treatment: P< 0.0001, sample day: P< 0.0001, and

treatment × sample day: P< 0.0001; Pooled SEM: Treatment = 0.0156, sample day = 0.0192, treatment × sample day = 0.0385 (log transformed).

https://doi.org/10.1371/journal.pone.0253754.g002
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lactobacilli (P> 0.05). Similarly, there was no effect of BCA during the HF period for either

amylolytic population or on the viable number of GPC during the 60:40 SARA challenge period

(P> 0.05). Biochanin A treatment partially mitigated the proliferation of lactobacilli in both

SARA challenge periods and GPC in the 30:70 SARA challenge period (P< 0.05).

Fig 3. Effect of biochanin A on the viable number of lactobacilli in rumen fluid (4 h post-feeding). Holstein steers (n = 12) were blocked by

weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein requirements;

n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA + biochanin A

treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation period (100% basal diet), high fiber

period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA challenge

period (30% basal diet + 70% cracked corn + treatments) for lactobacilli bacterial enumeration. The enumerations were performed on Rogosa SL

agar (BD). The plates were incubated aerobically (39˚C, 3 d). Plates with 30< x< 300 colonies were counted. All colonies on Rogosa SL agar were

counted as lactobacilli. Means lacking a common English letter are different within sample day (P< 0.05). Means lacking a common Greek letter

are different over sample days within treatment (P< 0.05). Treatment: P< 0.0001, sample day: P< 0.0001, and treatment × sample day:

P< 0.0001; Pooled SEM: Treatment = 0.0352, sample day = 0.0398, treatment × sample day = 0.0796 (log transformed).

https://doi.org/10.1371/journal.pone.0253754.g003

PLOS ONE Biochanin A mitigates subacute acidosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0253754 July 21, 2021 12 / 28

https://doi.org/10.1371/journal.pone.0253754.g003
https://doi.org/10.1371/journal.pone.0253754


Cellulolytic bacteria and In situ DM disappearance

When steers consumed corn silage with supplemental dried distillers’ grains (to meet protein

requirements), 107 viable cells per mL total cellulolytic bacteria were detected, regardless of

MON or BCA treatment (Fig 4). A treatment × sample day interaction was observed for the

viable number of total cellulolytic bacteria (P< 0.0001). Cellulolytic bacteria were inhibited

10-fold (106 viable cells per mL) and an additional 100-fold (104) during the 60:40 and 30:70

SARA challenge periods, respectively (P< 0.05). When steers were treated with MON, an

even greater inhibition of total cellulolytic bacteria was observed (100-fold, 105 viable cells per

mL) during the 60:40 challenge (P< 0.05), but no further inhibition occurred in the 30:70

SARA challenge period (P> 0.05). In contrast BCA treatment was able to partially mitigate

the decline in viable cellulolytic bacteria associated with both levels of SARA challenge

(P< 0.05).

The inhibitor 2-deoxy-D-glucose (2-DG) is a non-metabolizable glucose analog that inhib-

its phosphorylation of glucose by hexokinase, the first step of glycolysis. Historically, 2-DG has

been used to study carbohydrate metabolism and transport by cellulolytic microorganisms

[62,63], but has also been used as a selective agent for the isolation of glucose de-regulated,

highly cellulolytic (high cellulase producing), microorganisms [64–67]. Therefore, 2-DG was

utilized in the current study as a media addition to enumerate a subset of strictly cellulolytic

bacteria from the rumen. These cellulolytic organisms that do not transport monomeric glu-

cose are a subset of the cellulolytic guild in the same way that lactobacilli and GPC are subsets

of the amylolytic guild.

Steers consuming the basal diet on average had 9.1 × 104 2-DG resistant cellulolytic bacte-

ria, approximately 1% of the total cellulolytic bacteria (Fig 5). There was a treatment × sample

day interaction detected for 2-DG resistant cellulolytic bacteria (P< 0.0001). Treatment with

BCA during the HF period increased the viable number of 2-DG resistant cellulolytic bacteria

>10-fold (106 viable cells per mL; P< 0.05). Similarly, to what was observed in total cellulo-

lytic bacteria enumerations, 2-DG resistant cellulolytic bacteria were inhibited by 60:40 SARA

challenge (104), with even greater inhibition observed with 30:70 SARA challenge (103;

P< 0.05). Treatment with MON had no effect on 2-DG resistant cellulolytics during the 60:40

SARA challenge period (same as SARA CON), but partially mitigated their inhibition in 30:70

SARA challenge (+10-fold compared to SARA CON; P < 0.05). This latter result suggests that

the 2-DG resistant species might be more sensitive to acidic pH or fermentation acids than to

the inhibitor, monensin. Treatment with BCA maintained 106 total 2-DG resistant cellulolytic

bacteria despite SARA challenge (P< 0.05). These results indicate that not only does BCA

treatment mitigate declines in viable cellulolytic bacteria during SARA, it also promotes a sub-

population of cellulolytic 2-DG resistant bacteria, even when steers were consuming the basal

diet with no added cracked corn.

Please note that results obtained through broth dilution and growth of fibrolytic microor-

ganism must be interpreted critically. Many cellulolytic and more generally fibrolytic bacteria

can adhere to the fiber. In the method used, only those fiber particles small enough to pass

through 3 layers of cheesecloth and an 18-gauge needle are added to the media. Thus, fiber-

adherent microorganisms will be underrepresented. Furthermore, any growth medium is lim-

ited by the nutritional requirements of the microorganisms; i.e., only those which nutritional

requirements are met by the medium will grow. Nevertheless, culture-based enumeration has

a distinct advantage over the culture independent molecular methods commonly used today.

The relationships inferred by alignment of 16S ribosomal subunit sequences are phylogenetic.

They do not necessarily indicate the physiology or ecological roles of the microorganisms.
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However, when an organism grows on and dissolves cellulose, then it is clear that the organism

is cellulolytic, regardless of its phylogenetic identity.

In addition to increasing the viable number of cellulolytic bacteria, BCA treatment also

increased in situ disappearance of high (Fig 6A–6D) and low-quality hay (Fig 7A–7D). An

Fig 4. Effect of biochanin A on the viable number of total cellulolytic bacteria in rumen fluid (4 h post-feeding). Holstein steers (n = 12) were

blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein

requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA

+ biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation period (100% basal diet),

high fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA

challenge period (30% basal diet + 70% cracked corn + treatments) for total cellulolytic bacterial enumeration. The enumerations were performed in

anaerobic liquid media with cellulose (Whatman #1 filter paper strips) as the growth substrate. The tubes were incubated (39˚C, 10 d), and the final

dilution exhibiting dissolution of cellulose (visual examination) was recorded as the viable number. Means lacking a common English letter are

different within sample day (P< 0.05). Means lacking a common Greek letter are different over sample days within treatment (P< 0.05). Treatment:

P< 0.0001, sample day: P< 0.0001, and treatment × sample day: P< 0.0001; Pooled SEM: Treatment = 0.0417, sample day = 0.0417,

treatment × sample day = 0.0833 (log transformed).

https://doi.org/10.1371/journal.pone.0253754.g004
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effect of treatment was detected for the in situ dry matter disappearance of both the high- and

low-quality hay substrates (P< 0.0001, in both cases). When steers consumed the basal diet

only, the extent of in situ degradation after 72 h of incubation were 62% and 50% for high-

(Fig 6A) and low- (Fig 7A) quality hay, respectively. Treatment with BCA during the HF

Fig 5. Effect of biochanin A on the viable number of 2-deoxy-D-glucose (2-DG) resistant cellulolytic bacteria in rumen fluid (4 h post-

feeding). Holstein steers (n = 12) were blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried

distillers’ grain, to meet protein requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1

monensin; n = 3), or SARA + biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the

adaptation period (100% basal diet), high fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked

corn + treatments), and 30:70 SARA challenge period (30% basal diet + 70% cracked corn + treatments) for 2-DG resistant cellulolytic bacterial

enumeration. The enumerations were performed in anaerobic liquid media with cellulose (Whatman #1 filter paper strips) as the growth substrate

with added 2-DG (6 mmol L-1). The tubes were incubated (39˚C, 10 d), and the final dilution exhibiting dissolution of cellulose (visual

examination) was recorded as the viable number. Means lacking a common English letter are different within sample day (P< 0.05). Means lacking

a common Greek letter are different over sample days within treatment (P< 0.05). Treatment: P< 0.0001, sample day: P< 0.0001, and

treatment × sample day: P< 0.0001; Pooled SEM: Treatment = 0.1273, sample day = 0.0867, treatment × sample day = 0.1735 (log transformed).

https://doi.org/10.1371/journal.pone.0253754.g005
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Fig 6. Effect of biochanin A addition on the in situ DM disappearance (% in situ DMD) of ground high quality grass hay in the steer rumen. Holstein steers (n = 12)

were blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein requirements; n = 3),

SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA + biochanin A treatment (BCA; 6 g d-1 biochanin

A; n = 3). In situ Dacron bags were added at 0, 24, 48, 60, 66, and 70 h of incubation into a weighted mesh bag in the rumen and removed together at 72 h on the last day of

the (a) adaptation period (100% basal diet) (b) high fiber period (100% basal diet + treatments), (c) 60:40 SARA challenge period (60% basal diet + 40% cracked corn

+ treatments, as fed basis), and the (d) 30:70 SARA challenge period (30% basal diet + 70% cracked corn + treatments, as fed basis). Means lacking a common English

letter are different within incubation time (P< 0.05); Treatment: P< 0.0001; Pooled SEM: Treatment = 0.8882.

https://doi.org/10.1371/journal.pone.0253754.g006
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Fig 7. Effect of biochanin A addition on the in situ DM disappearance (% in situ DMD) of ground low quality grass hay in the steer rumen. Holstein steers (n = 12)

were blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein requirements; n = 3),

SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA + biochanin A treatment (BCA; 6 g d-1 biochanin

A; n = 3). In situ Dacron bags were added at 0, 24, 48, 60, 66, and 70 h of incubation into a weighted mesh bag in the rumen and removed together at 72 h on the last day of

the (a) adaptation period (100% basal diet) (b) high fiber period (100% basal diet + treatments), (c) 60:40 SARA challenge period (60% basal diet + 40% cracked corn

+ treatments, as fed basis), and the (d) 30:70 SARA challenge period (30% basal diet + 70% cracked corn + treatments, as fed basis). Means lacking a common English

letter are different within incubation time (P< 0.05); Treatment: P< 0.0001; Pooled SEM: Treatment = 0.4265.

https://doi.org/10.1371/journal.pone.0253754.g007
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period increased in situ DMD of high-quality hay after 2 (+3%), 6 (+3%), 12 (+4%), 24 (+5%)

and 72 h (+4.5%) of rumen incubation (Fig 6B; P< 0.05). BCA treatment also increased in situ
DMD of the low-quality hay substrate 2–4% at all time points during the HF period (Fig 7B;

P< 0.05). In contrast, MON treatment had no impact on in situ DMD of hay when steers con-

sumed the basal diet (P> 0.05). The effect of BCA on in situ DMD observed may be partially

attributed to the observation that more, and/or compositionally different, cellulolytic micro-

biota were present in the rumen of steers given BCA.

Addition of cracked corn to the diet decreased in situ DMD of high-quality hay by 12 and

30% compared to the HF CON treatment during the 60:40 (Fig 6C) and 30:70 (Fig 6D) SARA

challenge, respectively (72 h of rumen incubation). Similar, but let dramatic, results were

observed with the low-quality hay substrate after 72 h of rumen incubation (8% less, 60:40

SARA challenge, Fig 7C; 19% less, 30:70 SARA challenge, Fig 7D; P< 0.05, in all cases). Treat-

ment with MON had variable results on in situ DMD during the 60:40 SARA challenge period.

At 6, 12 and 24 h of rumen incubation (excluding 6 h with high quality hay) MON treatment

partially mitigated DMD decline associated with the SARA challenge (+0.3–3%, P< 0.05, in

all cases). In contrast, at 72 h of incubation MON treated steers had 5% lower in situ DMD of

high-quality hay than SARA CON steers (P< 0.05). A hypothesis to explain this latter result is

that many generalist species, such as the numerically dominant, Gram-negative Prevotella spe-

cies, can degrade NDF components [68]. The Gram-negative cell envelope makes these species

more resistant to monensin [26]. However, to degrade more recalcitrant fibers left at 72 h

would require different species, including the Gram-positive and monensin-sensitive rumino-

cocci. During the 30:70 SARA challenge period, MON treatment partially mitigated in situ
DMD decline at all time points for both hay substrates (excluding 24 h with high quality hay;

+1.3–8.3%; P< 0.05, in all cases). Biochanin A treatment partially mitigated in situ DMD

decline associated with SARA challenge at all time points regardless of challenge period or hay

substrate (excluding 2 h with high quality hay during the 60:40 SARA challenge period;

P< 0.05, in all cases). After 72 h of rumen incubation, in situ DMD of high-quality hay in

BCA treated steers was 4.6% and 16.8% higher than SARA CON steers during the 60:40 and

30:70 SARA challenge periods, respectively (P< 0.05, in all cases). Similar improvements of in
situ DMD were also observed with the low-quality hay substrate (after 72 h of incubation

+3.5% and +7.3% during the 60:40 and 30:70 SARA challenge periods, respectively; P< 0.05,

in all cases). Additionally, after 72 h of incubation, BCA treatment was consistently more effec-

tive than MON at mitigating in situ DMD decline with SARA challenge (P< 0.05. in all cases).

Cellulose is the most abundant carbohydrate in the world [69]. Furthermore, enzymes

required for cellulose degradation are strictly microbial. Therefore, cellulolytic microbes are

arguably the most important metabolic guild in the rumen. Cellulolytic bacteria in the rumen

are highly sensitive to changes in environmental pH [8–10]. As expected, in the current study,

both SARA challenge periods elicited rumen pH decline, cellulolytic bacteria inhibition, and

reduced high- and low-quality hay in situ DMD in comparison to HF CON.

As mentioned previously, a disadvantage of commonly utilized feed antibiotics (e.g., iono-

phores like monensin) is that they have a broad spectrum of activity which include rumen cel-

lulolytic bacteria. Therefore, their efficacy and benefits to both the health and performance of

the animal are often considered to be diet dependent. For example, ionophore antibiotics do

not consistently increase and oftentimes can actually decrease growth performance in cattle

consuming high-fiber diets like those in pasture-based systems [70]. In contrast, research has

demonstrated that when animals consume high-starch diets, like those in finishing systems,

ionophore antibiotics consistently have both health and performance benefits [24,26,71–75].

When steers consumed the high-fiber basal diet in the current study, there was no effect of

MON treatment on the viable number of cellulolytic bacteria or the digestibility of either hay
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substrate. However, during the 60:40 SARA challenge period, steers supplemented with MON

had fewer viable cellulolytic bacteria (100-fold) detected and lower in situ hay digestibility

(-5%, HQ hay, 72 h) than control steers that consumed the same diet, but with no supplement.

Therefore, consistent with previous research, MON treatment in the current study was not

beneficial when steers consumed diets that were higher in fiber. However, when steers were

challenged with a 70% cracked corn diet in the current study (similar to feedlot rations), MON

treatment partially mitigated cellulolytic inhibition and improved high- and low-quality hay

digestibility. Monensin, like other, more specific protonophores, is more potent at lower pH

values [76]. The inhibition of sensitive microbial species decreases the total extentof fermenta-

tion and the higher pH and lower concentration of fermentation acids might spare some acid-

sensitive, monensin-insensitive fibrolytic species.

Across all experimental conditions, BCA treatment provided greater benefits to the stability

and presumably improved fermentative efficiency of the rumen cellulolytic bacterial commu-

nity when compared to MON. During the HF period, BCA treatment selected for a metaboli-

cally different cellulolytic bacterial guild (+2-DG resistant) and demonstrated increased

utilization of both the high- and low-quality hay substrates in situ (+2–5% DMD). In situ
DMD of the fiber component specifically was not evaluated in the current study. However,

these results are consistent with previous work from our laboratory that demonstrated that

BCA treatment can improve cellulolytic fermentative efficiency presumably by ecological

manipulation of the cellulolytic guild in an ex vivo rumen model [42]. Additionally, field

experiments conducted by our research group have demonstrated increased ex vivo fiber deg-

radation (+10–25% DMD) and average daily gains (+0.1–0.2 kg d-1) when BCA was supple-

mented in a purified form or via red clover hay to steers grazing mixed grass pastures in

comparison to protein-matched controls [41,43]. Therefore, the improvement of in situ DMD

of hay with BCA treatment observed in the current study could be result of improved fiber

digestibility. Future research is needed to better elucidate the relationships between rumen

microbial community structure and function with BCA treatment.

During both SARA challenge periods BCA treatment was most effective at partially mitigat-

ing cellulolytic bacteria inhibition and decreased in situ DMD of hay observed in the SARA

CON steers. In addition to ecologically altering and apparently optimizing the cellulolytic

guild, it is likely that the improvement in in situ DMD of hay with BCA treatment may be

attributed to the less acidic pH during the SARA challenge periods.

Protein-, peptide- and amino acid-utilizing bacteria

Over the course of the experiment, 102–103 gelatin-hydrolyzing bacteria per mL rumen fluid

were detected regardless of diet or treatment (P = 0.17; S1 Fig). When steers consumed the

basal diet of corn silage and dried distillers’ grains 107–108, and 106−108 total peptide- (Fig 8)

and amino acid-utilizing (Fig 9) bacteria were detected per mL rumen fluid, respectively. A

treatment × sample day interaction was observed for the total viable number of peptide-

(P< 0.0001) and amino acid-utilizing (P< 0.01) bacteria. During the HF period, BCA treat-

ment decreased peptide- and amino acid- utilizing bacteria 10-fold and 100-fold, respectively

(P< 0.05). In contrast, MON treatment had no effect during the HF period (P> 0.05). The

viable numbers of peptide- and amino acid-utilizing bacteria increased 10–100-fold with

SARA challenge (P< 0.05). Monensin treatment effectively inhibited the proliferation of pep-

tide-utilizing bacteria and amino acid-utilizing bacteria during the 60:40 and 30:70 SARA chal-

lenge periods, respectively (P< 0.05); but remained similar to SARA CON steers in all other

cases (P> 0.05). In contrast, BCA treatment inhibited the proliferation of peptide- and amino
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acid-utilizing bacteria in both SARA challenge periods to be lower (P< 0.05) or equal

(P> 0.05) in viable number to the HF CON treatment.

In a manner that is analogous to cellulose degradation, proteolytic microflora in the rumen

produce extracellular enzymes that convert consumed dietary proteins into peptides and

Fig 8. Effect of biochanin A on the viable number of peptide-utilizing bacteria in rumen fluid (4 h post-feeding). Holstein steers (n = 12) were

blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein

requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA

+ biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation period (100% basal diet), high

fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA challenge

period (30% basal diet + 70% cracked corn + treatments) for peptide-utilizing bacteria enumeration. The enumerations were performed in anaerobic

liquid media with Trypticase (BD) as the growth substrate. The tubes were incubated (39˚C, 3 d), and the final dilution exhibiting growth (visual

examination, OD600) was recorded as the viable number. Means lacking a common English letter are different within sample day (P< 0.05). Means

lacking a common Greek letter are different over sample days within treatment (P< 0.05). Treatment: P = 0.0242, sample day: P< 0.0001, and

treatment × sample day: P< 0.0001; Pooled SEM: Treatment = 0.2269, sample day = 0.1345, treatment × sample day = 0.2690 (log transformed).

https://doi.org/10.1371/journal.pone.0253754.g008
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amino acids [77]. The free peptides and amino acids can then by utilized to make microbial

protein or deaminated to ammonia, which can also be assimilated to meet microbial require-

ments [78]. However, when the rate of ammonia production exceeds the rate of assimilation,

ammonia is absorbed into the blood and lost as urea in the urine. Many rumen bacteria are

Fig 9. Effect of biochanin A on the viable number of amino acid-utilizing bacteria in rumen fluid (4 h post-feeding). Holstein steers (n = 12)

were blocked by weight into 1 of 4 treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’ grain, to meet protein

requirements; n = 3), SARA control (SARA CON; n = 3), SARA + monensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA

+ biochanin A treatment (BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation period (100% basal diet),

high fiber period (100% basal diet + treatments), 60:40 SARA challenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA

challenge period (30% basal diet + 70% cracked corn + treatments) for amino acid-utilizing bacteria enumeration. The enumerations were performed

in anaerobic liquid media with Casamino acids (BD) as the growth substrate. The tubes were incubated (39˚C, 3 d), and the final dilution exhibiting

growth (visual examination, OD600) was recorded as the viable number. Means lacking a common English letter are different within sample day

(P< 0.05). Means lacking a common Greek letter are different over sample days within treatment (P< 0.05). Treatment: P = 0.0026, sample day:

P< 0.0001, and treatment × sample day: P = 0.0005; Pooled SEM: Treatment = 0.1718, sample day = 0.1382, treatment × sample day = 0.2764 (log

transformed).

https://doi.org/10.1371/journal.pone.0253754.g009
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proteolytic, but excess ammonia production is primarily attributed to resident APB [79]. The

APB guild includes both peptide- and amino acid-utilizing bacteria, but all species are charac-

terized by having rapid rates of ammonia production and a limited or no ability to utilize sug-

ars. Amino acid/peptide-fermenting bacteria bacteria have been isolated from the rumen and

identified in cattle [49,80] and other ruminant species [81,82].

Unlike the enzymes required for fiber degradation, ruminants produce mammalian

enzymes necessary for catabolizing and utilizing protein; therefore, protein degradationby

rumen microflora is considered to be a source of nutritional inefficiency. Decades of research

has demonstrated that MON and other ionophores can have an “amino acid-sparing” effects

by inhibiting APB in the rumen [28,80], but these effects can be animal and diet dependent

[83,84]. In the current experiment MON treatment inhibited peptide- and amino acid-utiliz-

ing bacteria in some cases with SARA challenge, but not consistently. In contrast, BCA treat-

ment reduced both peptide- and amino acid-utilizing bacteria on all sample days. Despite

differences observed with peptide- and amino acid-utilizing bacteria, gelatin-hydrolyzing bac-

teria were unaffected by treatment. The gelatin media liquification method is commonly used

in microbiology. However, it captures only gelatin-hydrolyzing species and not necessarily

those that can hydrolyze other proteins such as the zein, gluten and rubisco abundant in the

study diets. Also, note that the enumeration methods utilized in the current experiment do not

account for other microorganisms, such as ciliates, that might be contributing to nutrient fer-

mentation in the rumen including protein. Nevertheless, the results of the current study sup-

port the long-standing hypothesis that proteolysis and amino acid-deamination are distinct

metabolic steps and are carried out by distinct microbial groups in the rumen [77]. Overall,

these results are consistent with 10-years of experiments that have demonstrated that the spec-

trum of BCA antimicrobial activity includes rumen APB [38,40–43,85]. The current study is

the first to show that amino acid- and peptide-fermenting bacteria are inhibited by the isofla-

vone in a high-starch diet.

Conclusions

There is no indication that isoflavones, like BCA, have ionophore-like mechanisms of action

[38]. Ionophores act by depolarizing the cell membrane [26]. Many phytochemical phenolic

compounds do in fact share an ionophore-like mechanism of action [86]. Instead, BCA poten-

tiates the antimicrobial activity of bacteriocins and possibly other rumen-endogenous antimi-

crobials [40]. This mode of action is consistent with results that show isoflavones can interfere

with multidrug efflux pumps in some bacterial species [87,88].

The difference in mechanism of antimicrobial action between BCA and ionophores leads to

a different spectrum of activity that would be advantageous in more than one production set-

ting. The current study indicates that BCA could ameliorate pH and microbial changes in the

rumen associated with high-starch diet consumption. It is also beneficial that amino acid-

catabolizing bacteria, such as APB, are inhibited. It has long been recognized that rumen

ammonia production can be reduced to increase bypass amino-nitrogen without limiting

ammonia or branched chain VFA to the fibrolytic bacteria that require them [89]. BCA has

the additional benefit of more limited inhibition of the cellulolytic bacteria [42]. In multiple in
vitro and in vivo experiments, BCA has promoted net fiber utilization [42,43; current results].

These results stand in contrast to commonly used ionophores, which can negatively impact

animal growth on high-fiber, forage-based diets [69]. It is important to note that monensin

has veterinary use beyond antimicrobial growth promotion (i.e., it functions as a coccidostat),

which can be important in many circumstances. The promotion of fiber degradation by a
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rumen microbiota exposed to BCA makes this compound advantageous in both high-starch

and high-fiber diets.

The current experiment was conducted with purified BCA, which is not currently economi-

cal. However, supplemented grazing experiments indicated that red clover hay contained

enough BCA to decrease APB, promote ex vivo DMD and ADG in steers [43]. Isoflavones,

including BCA, can be found in many legume species (red clover, white clover, alfalfa, etc.).

However, both isoflavone concentrations and profiles can vary between species. For example,

although both red clover and white clover have similar isoflavone profiles (predominantly bio-

chanin A and formononetin), red clover contains 200× more total isoflavones than white clo-

ver [90]. Research has demonstrated that red clover contains the highest concentrations of

biochanin A, but isoflavone concentrations can vary depending on maturity and cultivar

[85,91]. A survey of biochanin A concentrations in 10 cultivars of red clover demonstrated

that concentrations can range from 4,081 to 5,332 μg g−1 DM [91].

The effects of BCA as a highly selective antimicrobial in both high-starch and high-fiber

diets indicate its potential utility in both backgrounding and finishing systems. Steers were

only subjected to a short corn step-up challenge in the current experiment. Although, these

results clearly demonstrate advantages of BCA supplementation in cattle transitioning from

high-fiber to high-starch diets, further research is needed to evaluate the efficacy of BCA sup-

plementation over a longer period (>100 d) more relative to standard finishing systems. These

results also highlight the potential roles of legumes and legume-based supplements in hybrid

background/finishing systems. These systems might include pasture finishing as well as feedlot

housing that incorporates the advantages of forage.

Supporting information

S1 Fig. Effect of biochanin A on the viable number of gelatin-hydrolyzing bacteria in

rumen fluid (4 h post-feeding). Holstein steers (n = 12) were blocked by weight into 1 of 4

treatments: High fiber control (HF CON; basal diet control, corn silage + dried distillers’

grain, to meet protein requirements; n = 3), SARA control (SARA CON; n = 3), SARA + mon-

ensin treatment (MON CON; 200 mg d-1 monensin; n = 3), or SARA + biochanin A treatment

(BCA; 6 g d-1 biochanin A; n = 3). Rumen fluid samples were taken at the end of the adaptation

period (100% basal diet), high fiber period (100% basal diet + treatments), 60:40 SARA chal-

lenge period (60% basal diet + 40% cracked corn + treatments), and 30:70 SARA challenge

period (30% basal diet + 70% cracked corn + treatments) for gelatin-hydrolyzing bacteria enu-

meration. The enumerations were performed in anaerobic liquid media with gelatin as the

growth substrate. The tubes were incubated (39˚C, 5 d), and the final dilution exhibiting

growth (visual examination of gelatin hydrolysis after 1 h at 4˚C) was recorded as the viable

number. Means lacking a common English letter are different within sample day (P< 0.05).

Means lacking a common Greek letter are different over sample days within treatment

(P< 0.05). Treatment: P = 0.0023, sample day: P = 0.0031, and treatment × sample day:

P = 0.1674; Pooled SEM: Treatment = 0.0680, sample day = 0.0970, treatment × sample

day = 0.1939 (log transformed).

(TIF)
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