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Abstract

Ongoing goal-directed movements can be rapidly adjusted following new environmental information, e.g., when chasing pray or
foraging. This makes movement trajectories in go-before-you-know decision-making a suitable behavioral readout of the ongo-
ing decision process. Yet, existing methods of movement analysis are often based on statistically comparing two groups of trial-
averaged trajectories and are not easily applied to three-dimensional data, preventing them from being applicable to natural free
behavior. We developed and tested the cone method to estimate the point of overt commitment (POC) along a single two- or
three-dimensional trajectory, i.c., the position where the movement is adjusted towards a newly selected spatial target. In
Experiment 1, we established a “ground truth” data set in which the cone method successfully identified the experimentally
constrained POCs across a wide range of all but the shallowest adjustment angles. In Experiment 2, we demonstrate the power of
the method in a typical decision-making task with expected decision time differences known from previous findings. The POCs
identified by cone method matched these expected effects. In both experiments, we compared the cone method’s single trial
performance with a trial-averaging method and obtained comparable results. We discuss the advantages of the single-trajectory
cone method over trial-averaging methods and possible applications beyond the examples presented in this study. The cone
method provides a distinct addition to existing tools used to study decisions during ongoing movement behavior, which we
consider particularly promising towards studies of non-repetitive free behavior.
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Introduction

While interacting with our environment, we often need to make
fast choices about our upcoming path of movement while already
being engaged in an ongoing action. When we hurry through the
train station to catch our connection, we have to dodge other
passengers, the same way soccer players need to quickly decide
which direction to dribble or pass the ball in response to the
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movement of their opponents, or hunting animals have to pick
their prey from a fleeing herd. Being able to make such online
choices is the result of a continuous sensorimotor integration
process, as we constantly take in new information to dynamically
select and adapt our actions (see Pezzulo & Cisek, 2016 for
review). Consequently, decision-making and the preparation
and control of action are considered to be parallel and interlinked
rather than separate and serial processes, both, at the behavioral
(e.g., Morel et al., 2017) and neural level (e.g., Cisek & Kalaska,
2005; Klaes et al., 2011; Pastor-Bernier & Cisek, 2011; Suriya-
Arunroj & Gail, 2019; see also Gallivan et al., 2018; Wispinski
et al., 2020 for review). Decision-related online movement ad-
justments have been demonstrated in movements ranging from
timescales of more than a second (e.g., Cheng & Gonzalez-
Vallejo, 2017), over rapid reaches lasting only a few hundred
milliseconds (e.g., Chapman et al., 2015), down to the fastest
correctional responses to sudden perturbations (Carroll et al.,
2019; Nashed et al., 2012, 2014). Here we want to introduce a
method that allows us to estimate the timing of decision-related
trajectory adjustments towards a spatial target from an individual
movement trajectory.


http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01579-5&domain=pdf
mailto:pulbrich@dpz.eu

Behav Res (2021) 53:2456-2472

2457

One class of behavioral paradigms that capitalizes on our
ability to online select spatial targets are commonly referred to
as go-before-you-know (Gallivan & Chapman, 2014) or
mouse tracking tasks (Freeman et al., 2011; Spivey et al.,
2005). In both cases, tight time constraints require subjects
to initiate their movements prior to knowing which of multiple
potential targets to select. Thus, subjects need to adjust their
movement mid-flight and the resulting trajectories serve as
online behavioral readout of cognitive processes such as sen-
sory processing and decision-making as they unfold during
the movement (Chapman et al., 2014; Dotan et al., 2019;
Scherbaum et al., 2010). Conversely, conventional “first de-
cide, then act” reaction time paradigms provide all necessary
information prior to the behavioral response and the latter
(e.g., a button press) only serves as confirmation of the already
finished target selection process without the opportunity for
online revisions of the choice. However, reaction time para-
digms by design have the advantage that they provide an
inherent time measure for the termination of a decision pro-
cess (the reaction time), which is not easily obtained in online
decisions during ongoing movements.

Our newly developed cone method aims at combining the
advantages of online decision-making paradigms with the
ability of estimating decision times of individual choices di-
rectly from movement trajectories. The cone method continu-
ously compares the current movement direction with the range
of possible directions aiming at the finite-size target. We as-
sess how reliably the cone method allows to identify straight-
to-target movement, i.e., cases in which a decision is made
prior to movement start and, in the other cases, to estimate
when a decision occurred along a movement trajectory.
While the cone method was conceived with behavioral para-
digms in mind that possess a segmented trial-by-trial
structure, its independence from a defined movement
onset point makes it applicable to more naturalistic par-
adigms that utilize continuous movements without a trial
structure, such as chasing pray or foraging.

Methods
Conceptual experimental design

We conducted two experiments. The first experiment aimed at
establishing “ground truth” data for tuning the cone method.
The second experiment created a test scenario under the real-
istic conditions of a choice experiment with predictable out-
come. In the first experiment, subjects performed go-before-
you-know reaches towards instructed targets. During the ini-
tial segment of the movement along a predefined trajectory
(movement corridor), one of eight possible locations was vi-
sually indicated as the target. Subjects could only curve the
movement towards the laterally offset target within a

predefined region in space (via-sphere) along the movement
corridor. We thereby controlled when the online adjustment of
movement had to happen (point of commitment [POC] to the
target) and used this information as ground truth for
confirming how well our newly developed cone method was
able to recover these POCs within their known spatial con-
straints. We hypothesized that the cone method’s performance
would depend on the steepness of the angle at which the
movement had to be adjusted towards the target (adjustment
angle), with larger adjustment angles leading to better perfor-
mance due to the more easily detectable curvature of the
movement. Therefore, we varied the distance of the via-
sphere from the hand starting position and the lateral offset
of the target, which required the subjects to produce a wide
range of adjustment angles.

In Experiment 2, we used a similar layout as in Experiment
1, but asked subjects to choose between two continuously
visible targets of different value in order to maximize their
reward. Subject were free in how to approach their chosen
target, i.e., no via point constrained the movement, but they
had to be fast. In each trial, subjects either decided between
gaining tokens and a neutral (+/-0 token) outcome (gain trial)
or losing tokens and a neutral outcome (loss trial). Previous
results showed that when cueing the target-associated value
information at different stimulus onset asynchronies (SOA)
relative to the go cue, the value cue in the loss trials had to
be presented on average 100 ms earlier compared to the gain
trials to elicit similar trajectories (Chapman et al.,
2015). The idea of Experiment 2 is to use this strong
effect on choice latency to compare our cone method
with an established trial-averaging trajectory measure
in an actual choice experiment.

Setup

Both experiments were conducted in a 3D augmented reality
(3D-AR, Fig. 1A) haptic reach setup (Morel et al., 2017).
Subjects performed reaching movements using a parallel-
type haptic manipulator (Delta.3, Force Dimension, Nyon,
Switzerland). The manipulator was connected to a computer
running custom software (C++, OpenGL), responsible for task
control, incl. visual stimulus generation, hand position record-
ing (manipulator handle position sampled at 2 kHz), and task
event recording (digital 10).

The 3D-AR environment consisted of two computer mon-
itors (BenQ XL2720T, 590 mm % 338 mm screen size, 60-Hz
refresh rate, 47-mm viewing distance, driven with a Matrox
DualHead2Go Display Port Splitter) that were viewed through
a pair of semitransparent mirrors, tilted 45° relative to the
screens. Subjects only viewed one screen per eye, which
allowed for the creation of stereoscopic 3D images perceived
as directly projected into the manipulator’s workspace. This
means that all movement-related stimuli such as movement
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starting points and targets were directly presented at their sup-
posed physical location. The position of the manipulator’s
handle was represented in the 3D-AR environment as yellow
sphere cursor (d = 6 mm) at its actual physical location.
Display and manipulator latencies were fully compensated
by a forward prediction using a Kalman filter with position,
speed, and acceleration as state variables to synchronize the
movement of the handle and the cursor. The haptic manipula-
tor was mounted approx. at chest height to allow for comfort-
able operation. Consequently, the monitors and the mirror
were additionally tilted by 30° to lower the 3D representation
into the manipulator’s workspace. (Fig. 1C, angle ).

The 3D-AR environment was calibrated by making the
physical handle position coincide with multiple sequentially
presented visual targets. This manually adjusted handle posi-
tion was used to compute a manipulator-to-display transfor-
mation matrix. This calibration was further adjusted for each
subject by setting the location and projection matrix of the
virtual openGL cameras according to the subject’s interpupil-
lary distance.

Participants

In Experiment 1, 16 lab-internal subjects (age M+ SD =27.6 +
4.2, five female, three left-handed, all normal or corrected-to-
normal vision), including the first author of this study, partic-
ipated without receiving monetary compensation. Due to the
straightforward nature of the experiment, subject naivety was
not required, and subjects were instructed verbally by the
experimenter.

In Experiment 2, six subjects (age M + SD = 23.3 + 3.4,
three female, all right-handed, all normal or corrected-to-
normal vision) participated, recruited via the university's no-
tice board. All subjects were naive to the purpose of the task
and had not participated in similar experiments before. While
the behavioral paradigm of Experiment 2 matches elements of
Chapman et al. (2015), the purpose of this study is not to
replicate the previous study now with a 3D manipulator task,
but rather to exploit a known effect of choice latency on on-
going movement trajectories to demonstrate the cone
method’s capability to capture ongoing decisions. For this
purpose, six subjects were enough to express the effect of a
gain- versus loss framing on the trajectories and at the same
time to provide sufficient variability in movement patterns.
The subjects received a base remuneration of 8€ per hour, with
the experiment lasting on average 1.5-2 h. Based on their
choices and performance during the experiment, subjects
could either gain an overall bonus or suffer an overall loss.
Bonuses were added to the base remuneration in full. Losses,
where applicable, would have been capped such that the net
remuneration does not fall below 6€ per hour. Subjects were
unaware of the latter and there was no need to apply this rule.
On average, subjects received a bonus of 2.53€ (SD =+ 0.87).
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In both experiments, subjects gave their written informed
consent prior to participation. Experiments were in accor-
dance with institutional guidelines for experiments with
humans, adhered to the principles of the Declaration of
Helsinki, and were approved by the ethics committee of the
Georg-Elias-Mueller-Institute for Psychology at the
University of Gottingen.

Experiment 1: Simulated online decisions via
constrained movement trajectories

In Experiment 1 (Fig. 1B, C), subjects were asked to move the
handle with their dominant arm from a starting sphere (d = 20
mm) through a via-sphere (d = 50 mm) to a target sphere (d =
30 mm) in 3D space. Subjects were required to maintain a
certain minimum velocity during each stage of the movement
(starting sphere to via-sphere: 0.02 m/s; within via-sphere:
0.12 m/s; via-sphere to target: 0.1 m/s). Outside the via-
sphere, the angular deviation of movement was constrained
to maximally 30°; i.e., the difference between the momentary
movement direction and the initial movement direction when
leaving the starting sphere and via-sphere, respectively, was
not allowed to exceed this threshold (movement corridor).
These constraints required subjects to perform fluent, non-
intermitted movement adjustments towards the target within
the experimentally defined via-sphere. The via-sphere was
displayed as soon as the subject moved the cursor into the
starting sphere and remained visible until the trial was com-
pleted. The via-sphere was semi-transparent to enable subjects
to still see the cursor when moving inside the via-sphere. The
display of the target was triggered when the cursor fell below a
20-mm distance from the edge of the via-sphere (median vis-
ibility onset = 43 ms later; 5™ and 95™ percentiles = 36 and 51
ms, respectively, available only for subjects 1-8 due to tech-
nical issues). The median target onset time relative to entering
the via-sphere additionally depended on the cursor speed be-
tween surpassing the 20-mm threshold and entering the via-
sphere, and was then — 59 ms (5™ and 95" percentile: — 29 and
— 100 ms, available only for subjects 1-8 due to technical
issues). This timing allowed subjects to correct their move-
ment towards the target within the via-sphere while at the
same time adhering to the minimum velocity constraints. We
did not display the target earlier to avoid anticipatory move-
ment curvature before entering the via-sphere to the amount
that the 30° limit of the movement corridor would allow.
Since the minimum delay to which motor corrections in re-
sponse to visual stimuli can occur is around 110 ms (e.g.,
Brenner & Smeets, 1997; Carroll et al., 2019), our subjects
were not able to respond to the early onset of the target before
entering the via-sphere. Unreported pilot data showed that a
later onset of the target, constraining angular deviations out-
side the via-sphere to less than 30°, or choosing a smaller via-
sphere diameter made the task too difficult.
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Subjects viewed the starting sphere from diagonally above,
at an elevation of 42° below the horizontal viewing direction
(Fig. 1C, angle f3), corresponding to 12° below the straight-
ahead viewing direction of the 30°-tilted setup, and at 286-mm
distance (both measured relative to the optical mirrors; Fig.
1C). To enforce different POCs, as well as differently sized
angular adjustments of the movement trajectories when
starting to aim at the target, the via-sphere was located 60,
80, or 100 mm away from the starting sphere (center-to-cen-
ter) on the Z-axis, i.e., perpendicular to the subjects’ fronto-
parallel plane. The distance from the starting sphere to the
target sphere was 160 mm. To sample the range of differently
sized angular adjustments more densely, the target sphere was
additionally laterally offset either 10° or 25 ° relative to the Z-
axis (Fig. 1C, angle y). This resulted in a nominal via-sphere-
to-target adjustment angle (Fig. 1C, angle 6) between 15.89
and 56.35°, depending on starting-sphere to via-sphere dis-
tance and the lateral offset of the target (Fig. 1D). The target
sphere was located at one of four oblique directions within one
of two planes (depending on the lateral offset of the targets)
fronto-parallel to the subjects, spaced 90° apart, starting at 45°
from the horizontal (Fig. 1C, top). For illustration purposes
and certain analyses, we projected the 3D movement trajecto-
ries onto a plane, defined by the Z-axis (Fig. 1C distance-
from-start) and one of two vectors orthogonal to the Z-axis,
depending on the target location (Fig. 1C, lateral deviation).

The experiment was comprised of 3 (via-sphere distance) x
2 (target sphere lateral offset angle) x 4 (target direction) = 24
conditions, which had to be successfully completed ten times
each. Conditions were drawn randomly such that, at each time
during the experiment, the difference in number of success-
fully completed trials between each condition did not exceed
one. Failed trials were not automatically repeated immediately
but placed back into the pool of conditions from which the
randomization algorithm drew. Additionally, subjects re-
ceived verbal onscreen feedback that informed them about
the type of error they made (“too slow”, or “too curved”).

Prior to the actual experiment, subjects were successively
trained on two easier versions of the task (120 successful trials
each). In both training sets, the final reach target was already
displayed at movement onset. Additionally, in the first train-
ing set, the maximum curvature requirements outside the via-
sphere were relaxed to 45° and the minimum velocity require-
ments were lowered to 0.02 m/s for the entire movement.

Experiment 2: Go-before-you-know decision-making
between monetary gains and losses

In Experiment 2 (Fig. 1E,F), subjects performed go-before-
you-know reaches towards two potential targets. Each target
was associated with a different monetary outcome and sub-
jects freely chose between the two on each trial. Subjects
performed their movements from a starting sphere (d = 20

Fig. 1 3D Augmented reality setup and behavioral paradigms. a P>
Augmented reality setup. Subjects performed reaching movements by
grasping and moving a haptic manipulator. Visual stimuli such as
cursor and reaching targets were viewed through a mirror stereoscope
and thereby projected directly into the 3D manipulator’s workspace. b
Experiment 1, behavioral paradigm. Subjects moved the handle from the
starting sphere (bottom) through the via-sphere (middle) to the target
sphere (top) while adhering to the maximum curvature and minimum
velocity constraints. ¢ Experiment 1, stimulus arrangement. For ergonom-
ic reasons, the manual workspace was below eye level. For this, the
optical mirrors were tilted down by 30° () such that subjects viewed
the stimuli diagonally from the top () and performed the movements
away from the body. The target was displayed only once the cursor was
close enough (green dashed line) to the via-sphere to prevent anticipatory
curving of the movement prior to entering the via-sphere. For 2D
illustration and analysis purposes, the trajectories were projected onto
the lateral deviation axis while retaining the original Z-axis (“distance-
from-start”). d Experiment 1, single subject example trajectories for target
directions 45° and 225°. e Experiment 2, stimulus arrangement (bottom:
starting sphere; fop: potential reach targets). The mirror tilt, identical to
Experiment 1, defined the orthogonal workspace plane on which the
starting- and target spheres were placed. f Experiment 2, example trial,
possible mappings of value cue symbols to trial outcomes, and possible
value cue combinations. Subjects reached from the starting sphere to one
of the two targets and were asked to select the target based on the value
cue in order to maximize the outcome of the trial. The value cue contrast
in this figure is inverted compared to its actual appearance

mm) towards one of two targets (d = 30 mm), located
180 mm (center-to-center) away from the starting sphere and
spaced 50° apart (Fig. 1E). The location of the starting sphere
and both targets was kept constant throughout the experiment.
The lateral deviation — distance-from-start plane that was de-
fined by these three stimuli was tilted 30° relative to the sub-
jects’ fronto-parallel plane (Fig. 1E, angle ). This practically
resulted in a 2D task, unlike Experiment 1. Subjects were
nonetheless free to guide their movements, as we did not
physically constrain the movements of the manipulator handle
to the task plane. Again, we projected the resulting trajectories
on a plane spanned by the lateral deviation and the distance-
from-start vectors. Subjects started each trial (Fig. 1F) by
moving the cursor into the starting sphere. After 500-800
ms an auditory go cue (440 Hz, 100 ms) indicated that the
movement had to be initiated within 325 ms. The onset of the
value cue (black triangle, circle, or square on a square white
background, edge length = 20 mm, appearing next to the tar-
get) was triggered at an SOA of 0-360 ms in steps of 60 ms
relative to the go-cue. Due to the screen latency (see descrip-
tion of the target onset time in Experiment 1), the value cue
appeared onscreen approx. 43 ms later. Consequently, we
added 43 ms (corresponding to the median target visibility
latency measured in Experiment 1) to each SOA in all analy-
ses and figures. Subjects were supposed to pick the econom-
ically best target based on the value cue mid-flight and finish
the movement within 900 ms. Upon successfully acquiring
one of the two targets, the amount of money gained/lost was

@ Springer



2460 Behav Res (2021) 53:2456-2472
a b c .
Via-sphere to target 2
rF:aratI.IeI movement corridor ,Z
aptic .30°
mapnipulator Max. curv.: 30 Side view E

Within via-sphere
Max. curv.: N/A
Min. vel.:0.12 m/s

45°angled ;
optical mirror

Starting sphere

to via-sphere
movement corridor
Max. curv.: 30°

Min. vel.: 0.02 m/s

Left-eye
monitor

Right-eye
monitor

180

120

Distance-from-start [mm]
[}
o

o

Left - right

-60 0 60
Lateral deviation [mm]

©

Lateral deviation

>
14

Target display

triggered here A&
-~ - ’

/7

R

4
y = lateral target 30mm

offset angle
(10/25°)

8 =nominal
adjustment angle
(15.89 - 56.35°)

Lateral deviation

v

Nominal
adjustment angle [°]

30mmI ‘ f

Front view

©

Value cue onset:
0/60/120/180/240/300/360 ms

relative to go cue

Hold fixation
(500-800ms)

Side view

provided as written onscreen feedback. Trials were aborted when
subjects left the starting sphere too early or too late, slowed down
during the movement below 0.0275 m/s, or did not acquire one
of the targets within 900 ms after movement onset.

The three different value cue symbols were assigned
a value of +4€ cent, —4€ cent or O€ cent, respectively,
which was constant throughout the experiment. The
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value cue-outcome mapping was counterbalanced across
subjects. In each trial, one target was always associated
with neutral outcome, while the other target was either
associated with a gain or a loss (Fig. 1F). Consequently,
subjects were either supposed to decide for the gain
target, or against the loss target. The aggregated net
outcome was added to the subject’s base remuneration.



Behav Res (2021) 53:2456-2472

2461

Data analysis
Data preparation and conventions

All data analyses and visualization were carried out with Matlab
2015b (The Mathworks, Inc., Natwick, Massachusetts, USA)
and the gramm plotting toolbox for Matlab (Morel, 2018). We
obtained the movement velocity by differentiating the raw posi-
tion data. To remove high-frequency noise, we filtered both, the
position and velocity data (zero-phase filter [Matlab function
filtfilt] using a 4™-order Butterworth low-pass filter with a 12-
Hz cut-off frequency [Matlab function butter]). We resampled
the filtered position and velocity data at 200 Hz using cubic
spline interpolation (Matlab function interp1). For all analyses,
movement start was defined as the first data point outside the
starting sphere and the end of the movement as the last data point
outside the target sphere. All trajectories were truncated
accordingly.

Cone method rationale and application

We developed the cone method (Fig. 2) as an algorithm to
estimate from which point onwards a decision to move to a
specific spatial target is visible in a single movement trajectory
(point of overt commitment as recovered by the cone method,
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Fig. 2 Cone method rationale. a 2D projection of an example trajectory
(black), and the momentary movement direction (red) and cone (blue) at
four different points along the trajectory. Grey circles show (from bottom
to top) starting sphere, via-sphere and target sphere. At each point along
the trajectory, the cone encompasses all possible directions aimed any-
where at the target. b Difference between the momentary direction and

the closest cone surface as function of distance-to-targets. ¢ Speed as

POC* ™). For each location along a trajectory, along the
distance-from-start vector (Fig. 1), we define a cone with its
tip at the current location and its base being defined by the
maximum-diameter intersection of the spherical target area.
This means, the curved surface area of the cone is defined
by the tangential directions from cone tip to target circumfer-
ence (see Fig. 2A for a 2D representation). In effect, for each
location on the trajectory this cone describes the entirety of
directions aimed anywhere at the target. As long as the current
direction stays outside the cone, the movement is not directed
towards the target. Yet, the decision to move towards the
target might have become overt through a corresponding cur-
vature of the trajectory before entering the cone. Our cone
method accounts for this possibility and, accordingly, the
POC®° is defined as follows: A decision to move towards
the target becomes overt in the trajectory at the earliest when
the current movement direction for the first time starts to be
adjusted towards the cone (Fig. 2, purple marker), i.e., when
the angle between the current direction and the closest direc-
tion along the cone’s surface (Fig. 2B) starts to decrease. This
decrease has to be monotonic until the current direction stays
inside the cone (Fig. 2, brown marker).

By defining the POC®*™ like this, the commitment to the
target is not necessarily assigned to the point in time when the
effector direction for the first time changes into the general
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direction of the target (e.g., left of the vertical midline if the
goal is located somewhere in the left of the workspace).
Instead, the POC*" is assigned to the point when the effector
direction starts changing towards the surface area of the cone
and keeps pace with the cone’s ever-changing orientation to
finally enter the cone. The orientation and the opening angle
of the cone, which define the range of directions aimed at the
target, dynamically change because they are position depen-
dent. For example, with smaller distance from the target the
opening angle increases. As long as the current direction stays
within the cone after entering it, the movement is considered
to be “on target”. This means, once inside the cone, increases
in the deviation of the current direction from the direction
aiming at the center of the target are allowed, since the
methods acknowledges the finite size of the target. Thus, the
cone method takes into account that a larger target as well as
decreasing distance from the target reduces demands on accu-
racy of the movement direction.

The cone method can be applied to both 2D and 3D trajecto-
ries. Since in our experiments subjects produced 3D trajectories,
we used the 2D projection onto the plane defined by the lateral
deviation and distance-from-start vectors to demonstrate the cone
method’s capability to handle 2D data. We computed the current
direction at the trajectory’s sampling point k as the vector be-
tween the cursor positions at k and k + 1 (= k + 5 ms since the
trajectories were downsampled to 200 Hz), and the closest in-
cone direction as the tangent from the position of sampling point
k to ad = 30mm circle placed on the target position. To apply the
cone method to the original 3D trajectories, we again extracted
the cursor position atk and k + 1, and the target center’s position,
all in XYZ coordinates. Since three positions in 3D space de-
scribe a plane, we were again able to compute both, the current
direction and the closest in-cone-direction (i.e., intersection of the
cone’s surface with this plane) in 2D as described above. Since
this plane is position-dependent it is computed separately for
each sampling point. For Experiment 1, we report the results of
applying the cone method to 3D data (see Supplementary
Material 1 for 2D results). For Experiment 2, we report the results
of applying the cone method to 2D data, thereby disregarding
movement components orthogonal to the task plane, since these
orthogonal components did not carry any additional decision-
related information in this factual 2D task.

We implemented three additional steps to the basic cone
method to improve the POC®®™ estimates. We adjust the
POC™ for two classes of cases where subjects temporarily
moved out of the cone again, possibly without intent, after having
already aimed the movement at the target, and we introduced a
speed criterion.

First, we control for accidental out-of-cone slips by applying a
3° tolerance window to the cone (folerance). This tolerance win-
dow comes into effect once the movement direction had already
been inside the cone once. This means, when the movement
direction moves out of the cone again by less or equal than 3°,
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we treat this epoch as “within-cone”. Second, we control for
overshooting, i.e., moving inside the cone, followed by tempo-
rarily moving out again at the opposite side by more than 3°
(overshoot). In Experiment 1, the opposite target was defined
by the target direction plus 180° and identical nominal adjust-
ment angle. If the movement direction moved away from the
opposite target’s cone at a steeper rate than it moved away from
the selected target’s cone, we defined this temporary slipping-
out-of-cone as overshoot and treated the current direction during
this epoch as “within-cone”. We applied this definition to both
2D and 3D trajectories. Third, we acknowledge the possibility
that the movement direction already by chance may have started
to approach the cone, but subjects did not actually commit to the
target yet. We assumed that in these cases, the actual commit-
ment to the target later along the trajectory may be marked by the
onset of an additional acceleration period (speed). Between the
start of the movement adjustment (Fig. 2, purple marker) and the
point from which on the current direction remained in the cone
(brown marker), we therefore searched for local minima in
movement speed (Fig. 2C). If a speed minimum was found,
the POC®™ was defined as the location on the trajectory corre-
sponding to this minimum (Fig. 2, orange marker), otherwise the
POC®* remained as defined before (Fig. 2, purple marker).

The three adjustments were applied hierarchically in the
order they are presented above, i.e., the overshoot adjustment
was applied to the data that resulted from applying the toler-
ance window, and the speed criterion was applied to the data
that resulted from applying the overshoot control. All adjust-
ments were applied to the data from both experiments, but
their parameters were only tuned to Experiment 1. This is
because only in Experiment 1 we were able to quantify the
effects of the adjustments on the cone method’s performance,
i.e., how they affected the proportion of POC®"® correctly
recovered inside the via-sphere (see Supplementary Material
1 for a comparison of the different cone method adjustments).
In the main text, for Experiment 1, we present the POC*"°
that are estimated by the method including all three adjust-
ments and being applied to the original three-dimensional tra-
jectories, since this version of the cone method outperformed
all other tested versions (see Supplementary Material 1 for an
in-depth comparison). For Experiment 2, we only applied the
cone method with all three adjustments. For brevity, we refer
to this version as the “cone method”, as opposed to the “raw
cone method” in Supplementary Material 1, which refers to
the cone method without any of the three adjustments.

Cluster-based permutation test

Previous methods for quantifying choice latencies from trajecto-
ry data focused on group-level comparisons, i.e., comparisons
between task conditions considering all trials in each condition.
Therefore, in order to create a reference measure against which
we can compare our novel approach as a control, we analyzed
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the data at the group level with an alternative method. While
different specialized ad hoc methods have been proposed for
trajectory data in spatial selection tasks (e.g., Chapman et al.,
2015), we here compare to a sensitive, yet rather general-
purpose model-free method based on a cluster-based permutation
test (CP test; Maris & Oostenveld, 2007; implementation used in
this study based on Dann et al., 2016). CP tests provide a means
for non-parametric statistical comparison of time series data that
accounts for the multiple comparison problem when performing
statistical tests across many time points.

Here, we statistically determined when the trajectories to-
wards two opposite targets started to branch. We tested per sub-
ject from which point onwards the lateral deviation between
pairwise groups of trajectories started to be significantly different
from one another using ¢ tests embedded in the CP test. For
Experiment 1, we tested trajectories pooled across the upper
two target positions versus trajectories pooled across the lower
two target positions. We conducted separate CP tests per nominal
adjustment angle. In Experiment 2, we tested trajectories towards
the left versus the right target. We tested per subject, per SOA,
and separately for gain and loss trials (see Supplementary
Material 2 for a detailed account of how we applied the CP
test). We treated the obtained significance onsets as point of overt
commitment as recovered by CP tests (POC®P).

Statistical assessment of the POC®°™ and POC results

We analyzed the POC®®™ and POC®" results extracted from
the trajectories in Experiment 1 and 2 using generalized linear
mixed effects models (GLME, Matlab function fitgime).
Whenever we fitted a model to proportions, we assumed bi-
nomially distributed data and used a logit link function. For
each model, we started off by only including the main factors
and added interaction terms where applicable. In these cases,
we decided whether to include the interaction terms based on
Akaike’s information criterion (AIC). Main effects are always
reported from the models without interaction. Each model
included, per subject, a random intercept and random slopes
for each fixed effect.

In Experiment 1, first, we assessed whether the proportions
of POC®*" recovered inside the via-sphere (in-bounds-POC),
prior to entering the via-sphere (foo-early-POC), and after
leaving the via-sphere (foo-late-POC) depended on the steep-
ness of the adjustment angle. We fitted the following GLME
separately on each of these three proportions.

p(in bounds/too early/too late POC“")

~actual adjustment angle + (actual adjustment angle | subject)

(GLMEI — 1)

The actual angle about which a movement had to be
adjusted inside the via-sphere deviated from the nominal
adjustment angle defined by the spatial stimulus

arrangement. This is because of the finite size of the
starting-, via-, and target spheres, as well as the 30°
range for the movement direction inside the movement
corridors. We therefore estimated the actual adjustment
angle (see Supplementary Material 3) for use in this (1)
and the following analyses. Second, we assessed wheth-
er the POC®" itself varied as function of the steepness
of the adjustment angle. To measure the effect of ad-
justment angle on POC®®" independently of the distance
between starting- and via-sphere, we used the POC®*"°
relative to the via-sphere entry point:

POC" (relative to via—sphere entry)

~actual adjustment angle + (actual adjustment angle | subject)

(GLMEI —2)

Third, we quantified how well POC®*"® and POCC?
matched depending on the adjustment angle. For this, we
grouped the trials according to their nominal adjustment angle
instead of their actual adjustment angle since the former had to
be used to group the data for the CP tests. We fitted the fol-
lowing GLME on the POC® and, to directly compare be-
tween the two, also on the POC®*" data:

POCEP | POC " (relative to via—sphere entry)
~nominal adjustment angle + (nominal adjustment angle | subject)

(GLME1 — 3)

In Experiment 2, we converted the POCs obtained by both,
the cone method and the CP test, into their correspond-
ing movement time stamps (time of overt commitment,
TOC), to directly relate them to the value cue SOA.
First, we used the results of the cone method to group
trials into three partially overlapping classes to demon-
strate how we can identify trials with pre-movement
commitment (TOC at movement start), potential guesses
(TOC prior to value cue onset + 50 ms), and the com-
bination of the two (“all early”; i.e., all trials without
putative online decisions that follow value cue onset,
regardless of whether this was the result of a pre-
movement commitment or a commitment prior to value
cue onset), respectively. We separately fitted these pro-
portions as function of SOA to study how they
depended on the timepoint at which the informed-
choice-enabling value cue became available:

p(TOC at movement start/before value cue/all early)~SOA + (SOA | subject)
(GLME2 — 1)

Second, we assessed how SOA and gain vs loss frame
influenced the time of overt commitment. We computed the
following GLMEs, only including trials in which subjects
chose the higher valued option:
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TOC*"™ |TOC"~SOA + frame,, Jtoss + (SOA + frame gy j1oss | subject)
(GLME2 — 2)

In the results section we only report significant effects of
each GLME. The full results of each model can be found in
the corresponding tables in Supplemental Material 4. We ad-
ditionally performed a cross-validation analysis in which we
compared the congruency of the results between subjects 1-8
and subjects 9-16 (Supplementary Material 5). Note, that for
visualization purposes we discretized the actual adjustment
angle into 10° wide bins starting at 0° in each results figure
that shows data as function of the actual adjustment angle
(main results and supplementary materials). We do not display
the 90-100° and 100—110° bins since only 19 and two trials in
total (= 0.6% of all trials), distributed across nine and two
subjects, respectively, ended up in these two bins.

Results
Experiment 1

In Experiment 1, we assessed the cone method’s capability to
correctly recover POCs inside the via-sphere as proxy of how
close the POC®™ estimates are to the true point of overt com-
mitment trial-by-trial. We further assessed how the cone meth-
od performed in comparison to a CP test in across-trial data.

Rate of successful in-bounds POC"® estimates

Figure 3A shows how the majority of all POC**"® were de-
tected within the via-sphere across all three possible via-
sphere distances from the starting position. Except for putative
outliers, the distributions of POCs were narrower than the via-
sphere diameter and approximately centered on the via-
spheres. This shows that the cone method produced plausible
POC estimates, nicely tracking the position of the via-sphere.

However, the cone method also produced a certain frac-
tion of too-early-POCs, especially (and not surprisingly) at
low adjustment angles. These putative misclassifications are
instructive for understanding the limitations of the method.
In cases of POC detection prior to entering the via-sphere,
example trajectories often either show a smooth, shallow
adjustment towards the target position, with the absence of
a clear turn in the trajectory (Fig. 3B, lower row from left to
right: example trials 1-5), or a movement in the general
direction of the target sphere prior to its onset and the sub-
sequent within-via-sphere turn (example trial 6). We
assessed whether movement biases prior to entering the
via-sphere could have accounted for the higher number of
too-early POCs at low adjustment angles. Since there were
tolerances in movement curvature during the outside-via-
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sphere movement corridors, such biases were possible.
Figure 3C shows how subjects indeed on average moved
towards the via-sphere in an upward ark, entering the via-
sphere from slightly above. In the case of downward targets,
this led to smaller actual adjustment angles, especially at
small nominal adjustment angles (compared to the actual
adjustment angles towards upper targets within the same
nominal adjustment angle condition; see Supplementary
Material 3). Consequently, the movement direction upon
target onset already coincided with the general target direc-
tion. In summary, the movement constraints outside the via-
sphere did not fully prevent the subjects from making slight-
ly curved movements towards the via-sphere. This led to
partial misclassifications which should not be attributed to
a suboptimal performance of the cone method, but rather
reflect limited compliance in behavior (see Supplementary
Material 3 for a discussion on the performance of the cone
method at small adjustment angles independent of the
susceptibility to initial movement biases).

POC estimates as function of adjustment angle

We assessed quantitatively how the steepness of the actual
adjustment angle influenced the number of out-of-bounds
POCs. For this, we separately fitted 1 (see also
Supplementary Table 4-1) to the proportions of in-bounds/
too-early/too-late POC®*", respectively (Fig. 4A). In-bounds
POCs on average accounted for 92% of all trials. Their pro-
portion increased with increasing adjustment angle (f =
0.051; p < .001) and stayed above 90% for angles equal or
larger than 30°. This increase was almost exclusively attribut-
able to the decrease of too-early POCs (total average = 6%)
with increasing adjustment angle (3 = — 0.065; p < .001), in
line with the pattern visible in the raw data presented above.
Too-late-POCs only accounted for a total average of 2% of all
trials and did not significantly vary with adjustment angle (p =
.2). We did not perform analyses on the proportions of out-of-
bound POC®" as all but two (one too-early-POC each at
19.71° and 25.76°, respectively) out of the 96 (total across
subjects) CP tests yielded in-bounds POCs. The two too- ear-
ly-POC" deviated from the respective per-nominal-
adjustment-angle means by more than three standard devia-
tions, which is the conventional threshold for outliers. We
therefore report all statistics based on POC* data (see the
following paragraph) both with, and without these outliers.
Figure 4D-F show the POC®™ and POC® relative to the
via-sphere entry point and relative to each other. POC®*"®
were recovered further up along the distance-from-start axis
with increasing actual adjustment angle (Fig. 4D & 2: 3 =
0.164, p < .001; see also Supplementary Table 4-2). This
pattern was weaker, but still observable, when grouping the
POC**™ according to the nominal adjustment angle (Fig. 4E
and 3: 3 =0.144, p <.001; see also Supplementary Table 4-3).
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the same data, pooled across adjustment angles, including a box-and-

In comparison, the POC®? were trend-wise recovered ecarlier
with increasing nominal adjustment angle (Fig. 4E and 3: 3 =
—0.138, p =.08 [full dataset], 3 =—0.206, p = <.001 [without
outliers]). We performed one-sample ¢ tests on the difference
between POC®™ and POC** per nominal adjustment angle to
assess at which adjustment angles the two POC measurements
yield different results (Fig. 4F). Due to the positive slope of
POC®" and the negative slope of POC", both methods re-
covered different POCs at small to intermediate adjustment an-
gles. Statistical significance was determined at the Bonferroni-
corrected alpha level of % = 0.0083, and partially depended on
the exclusion of the two outliers (15.89°: ¢ = — 8.62, p < .001;
1971°t=—-1.04, p =32/ t=—-"7.39, p <.001 [with/without
outlier]; 25.76% t = — 1.95, p = .07 / t = — 9.10, p < .001
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whisker plot representing median and 25"/75" percentiles, and the 1.5-
times interquartile ranges. b Example trials (2D projections of the
trajectories, as in Fig. 1D) and POC®™ estimates (blue dots) detected
in-bounds (upper row) or too early (lower). Dashed red lines indicate
the distance-to-targets axis. ¢ Average trajectories across all trials per
via-sphere distance in the side view (manipulator workspace-defined X-
and Y-axes). The Y-axis is magnified three-fold to emphasize the degree
of early movement bias due to ballistic lifting of the hand during anterior
transport

[with/without outlier]; 38.5°: ¢ = — 3.06, p = .008; 46.13°: ¢ =
1.18, p = .26; 56.35°: t = 1.26, p = .23; all df = 15/14
[with/without outlier]).

Experiment 2

Subjects performed a go-before-you-know decision-making
task to targets that were associated with different monetary
outcomes. The outcomes were cued at different SOAs relative
to the go-cue. We used the cone method to classify trials in
pre-movement and peri-movement decisions and compared
how well the cone method and the CP test were able to capture
the known and expected effects of value cue SOA and gain-
versus loss frame on the times of overt commitment.
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of actual adjustment angle. The actual adjustment angle was discretized in
10° wide bins for visualization purposes. The gray bar graphs show the
average per-subject proportion of trials in each bin, out of the 240 trials
per subject across all bins. Note, this data is identical in A—C. The black
bar graphs show the corresponding proportions of in-bounds, too-early-,
and too-late-POC®®", respectively. The dashed line graphs represent the
corresponding 1 fits (using the original, non-discretized actual adjustment
angle data). The Y-axis tick marks without parentheses refer to the line
graphs, the Y-axis tick marks in parentheses refer to the bar graphs.

Single-trial trajectory classification using the cone method

Figure 5A shows all trajectories of a single example sub-
ject, grouped by the experimentally controlled SOA
(columns). Additionally, we classified the trials based
on whether the cone method estimated the TOC to have
occurred during the movement (top panels) or already at
movement start (bottom panels). Visual inspection
shows how the classification of trajectories based on
the cone method successfully split the data into move-
ments with at least one clear turn and thus putative
“online” commitment to choice (top) versus direct-to-
target movements (bottom). A few trajectories in the
bottom panel deviated from this pattern but showed a
single smoothly arched movement towards the chosen
target (e.g., 283 ms SOA subpanel).

@ Springer

Nominal adjustment angle [°]

o R o
s © &

Nominal adjustment angle [°]

Bottom row: Across-subject average of the within-subject average
POC™ (solid lines), relative to the via-sphere entry-position and as
function of the actual adjustment angle (d), POC™" and POC®" relative
to the via-sphere entry point and as function of the nominal adjustment
angle (e data averaging as in d), and POC®"™ relative to POC® and as
function of the nominal adjustment angle (f data averaging as in d).
Dashed lines represent the corresponding GLME fits (d 2; E: 3).
Asterisks in f are one-sample ¢ test p values with * = p < .0083, *** = p
<.001, and n.s. = not significant. 3 fits and # test p values are based on the
POC®" data without outlier exclusion. All error bars are bootstrapped (N
=2000) 95% confidence intervals of the mean

When designing a go-before-you-know experiment to
measure TOCs/POCs, it is important to select an appropriate
SOA for the stimulus that determines target selection (here:
value cue). If this stimulus is displayed to early, subjects can
select the target prior to movement start. If it is displayed to
late, subjects might resort to guessing because they run out of
time to adjust their movement in response to the stimulus. In
both cases, the resulting trajectories are uninformative regard-
ing the TOC in response to the stimulus. We therefore dem-
onstrate, using the cone method, how to determine an optimal
SOA that yields the highest number of informative trajecto-
ries. We sorted the trajectories into “TOC at movement start”
(value cue displayed too early), “TOC prior to value cue on-
set” +50 ms (value cue displayed too late), and “All early
TOC” (POC either at movement start or before value cue
onset; Fig. 5B). The proportion of TOC at movement start
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Fig. 5 Experiment 2 results. a Single subject example trajectories (all
successful trials) split by whether TOC®"® was estimated to have
occurred during the movement (fop) or directly at movement start
(bottom). b Across subject mean proportions of TOC®" (solid lines) at
movement start, before value cue onset + 50 ms, and the total of the two.
Note that the proportion of all early TOC does not need to be the sum of
the other two proportions since a single TOC can be both, estimated at

decreased with increasing value cue SOA (4: 3 =—0.006; p <
.001; see also Supplementary Table 4-4), while the proportion
of TOC before value cue onset increased with increasing SOA
(4: $ =0.016; p <.001). Both was to be expected, given the
explanation above. Critically, the proportion of “All early
TOC” overall decreased with increasing SOA (4: 3 =
—0.005; p = .003), and was lowest at 283 ms, which made it
the optimal value cue onset latency relative to the go cue.

Effects of value cue SOA and gain- versus loss frame
on time-points of overt commitment

We assessed how gain/loss framing and value cue SOA
influenced the time subjects needed to commit to the
higher-value target (Fig. 5C), similarly to Chapman et al.
(2015). We estimated the TOC®™ using the cone method
and fitted 5 (see also Supplementary Table 4-5) to the
resulting TOCs, only including trials where subjects chose
the higher-value target and pooling across higher-value

43 103 163 223 283 343 403
Value cue SOA [ms]

43 103 163 223 283 343 403
Value cue SOA [ms]

movement start, and estimated prior to value cue onset. Dashed lines
represent the corresponding 4 fits. ¢ TOC®*" (solid lines) and
movement initiation times (RT, dashed lines at the bottom of each
subfigure) relative to the go-cue (higher-value choices only). Dashed
lines underneath the TOC®"™ plots represent the corresponding 5 fits. d
TOCC?, same conventions as in ¢. All error bars are N = 2000
bootstrapped confidence intervals of the mean

target location (left versus right). TOCs were on average
faster by 58 ms (3 = — 57.978, p < .001) in gain trials
compared to loss trials. Further, TOCs increased on aver-
age at 49.7% the rate of the increasing SOA (f = 0.497,
p < .001). This increase existed in both, gain- and loss
trials, but was larger for gain- compared to loss-trials (in-
teraction SOA x gain-/loss frame 3 = 0.148, p = .009).
This difference in slope was accounted for by the gain-
versus loss effect being most prominent at low to mid
SOAs and almost absent at high SOAs.

We additionally estimated the TOC®", i.e., the timepoint
underlying the position at which trajectories towards the left
and right target began to differ significantly from one another.
We obtained separate TOC®? per subject, SOA, and gain-
versus loss frame. We were unable to detect a significant sep-
aration of the two groups of trajectories between high- and
low-value targets for five out of the 84 computed CP tests,
due to the trajectories exhibiting high within-group variability.
We compared the results of the remaining CP tests with the

@ Springer



2468

Behav Res (2021) 53:2456-2472

cone method by fitting 5 (see also Supplementary Table 4-5)
to the corresponding TOC” estimates (Fig. 5D) and obtained
comparable results (main effect of SOA: 3 = 0.608, p < .001;
main effect of gain-/loss frame 3 = — 64.365, p =.001).

Discussion

We developed and tested the cone method to estimate on a
single trial basis when online commitment to move towards a
spatial target becomes detectible in ongoing movements. The
cone method estimates these points of overt commitment
(POC) by identifying the point where the momentary move-
ment direction starts to become adjusted monotonically to-
wards the range of possible movement directions aimed at
the target, and additionally factors in the movement speed as
marker for commitment to further improve this estimate. We
conducted two experiments. In Experiment 1, subjects per-
formed instructed go-before-you-know reaches to one of eight
potential targets, the position of which was revealed only
shortly before entering a via-sphere. Only during the move-
ment portion inside the via-sphere subjects could curve their
movements towards the target position, thus establishing a
“ground truth” data set with a bounded range of commitment
points based on which we established a proof-of-concept and
fine-tuned the cone method. In Experiment 2, subjects per-
formed unconstrained go-before-you-know reaches to one of
two potential targets with varied monetary outcomes. We
were able to estimate POCs in this choice task on a trial-by-
trial basis, confirming known dependencies of choice
latency on cue timing and reward framing. We also
demonstrated the cone method’s ability to classify trials
as direct reaches without online decision versus curved
reaches with online decisions.

Advantages of measuring online decision
processes over the use of reaction time
paradigms

Conventional laboratory settings usually impose a strict and
temporal segmentation of stimulus presentation and behavior-
al readout. Stimuli are presented before subjects are able to
initiate their response and discrete behavioral readouts such as
button presses prevent subjects to revise their response once
initiated. Only under rare circumstances however, one needs
to withhold all movement until a trigger allows a sudden re-
sponse, the latency of which can be measured as reaction time.
Natural behavior instead unfolds as result of a continuous
sensorimotor integration process (Pezzulo & Cisek, 2016).
In ecologically more valid situations, action selection and
movement control are parallel processes. These processes
are characterized by similar minimization principles (Morel
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et al., 2017; Shadmehr et al., 2016) and movement paths can
be selected rapidly in response to sudden perturbations of
ongoing movements (Nashed et al., 2012, 2014; see also
Gallivan et al., 2018; Wispinski et al., 2020 for review),
underscoring the link between selection and control of action.

Novel experimental approaches seek to break up artificial
temporal constraints in favor of more naturalistic behavioral
paradigms in which sensory encoding and action selection can
take place during continuously evolving behavior. Go-before-
you-know tasks (e.g., Gallivan & Chapman, 2014), including
mouse tracking tasks (e.g., Freeman et al., 2011), maintain a
fixed trial structure but enable subjects to start their action
during continuing stimulus-guided action selection. Other par-
adigms allow subjects to sequentially make multiple decisions
within a given trial while continuously moving around the
task environment (Diamond et al., 2017; Michalski et al.,
2020), effectively abolishing the one-decision-per-trial struc-
ture for more naturalistic choice sequences. Also, coordination
of action with others, be it in a cooperative or a competitive
setting, requires continuous integration of selection and
control when the opponents’ actions are mutually visible
and leads to specific dyadic choice behavior, like
leader-follower strategies in transparent games (Moller
et al., 2020; Unakafov et al., 2020).

In summary, decision-making and action execution are
highly linked, rather than the latter only being a mere behav-
ioral confirmation of an already finished, preceding choice
process. Estimating decision processes during continuously
evolving action will thus be an important task for studying
increasingly ecologically relevant behaviors.

Methods to analyze movement trajectories
as marker of online decision processes
in spatial selection tasks

The paradigms described above capitalize on our ability to
online-select and revise movement targets by using move-
ment trajectories to study cognitive processes such as stim-
ulus processing and decision-making. They provide richer
data than conventional “decide, then act” reaction time
paradigms. In turn, they lack an inherent measure for the
duration of the decision process. In go-before-you-know
tasks, reaction times are often uninformative (Gallivan &
Chapman, 2014), while in paradigms without segmented
trial structure reaction times cannot be measured as sub-
jects move uninterruptedly between their consecutive deci-
sions. A variety of methods, especially for go-before-you-
know paradigms, has been established to investigate the
complexity and temporal structure of decision processes
during ongoing movements. Here, we discuss two classes
of such methods and how the cone method complements
them or provides an advantage over them. The cone
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method is the first method to our knowledge that allows
to directly quantify decision times on a single trial basis,
thereby combining the advantages of investigating decision
processes during ongoing movements and conventional re-
action time paradigms. Additionally, the cone method can
also be applied to 3D trajectories, which is not easily
obtained with the methods described below. Therefore, it
provides a distinct addition to existing tools used to study
decision-making during ongoing movements.

Summary measures

Measures such as maximum deviation (Freeman et al., 2011)
or area under the curve (Freeman & Ambady, 2010) per each
trajectory provide a summary value of how close this trajec-
tory is to an idealized straight-to-target movement. What is
typically measured is the size of the maximum deviation of
the trajectory orthogonal to a straight line from movement
starting point to endpoint or the area between the trajectory
and said line, respectively. According to this logic, a trajectory
following the straight line between movements starting point
and target marks the extreme of a decision prior to movement
start. These summary measures, which translate the course of
the trajectory relative to an idealized reference trajectory into a
single scalar number, allow ordinal statements about the rela-
tive decision latency between trajectories. The smaller the
maximum deviation or area and hence the higher the proxim-
ity to a straight-to-target movement, the earlier the decision.

In an Experiment similar to our Experiment 2, Chapman
et al. (2015) translated area measures into decision time differ-
ences between two experimental conditions by estimating how
much earlier the value cue had to be presented in loss- com-
pared to gain trials to evoke trajectories with similarly sized
areas. They found that the value cue had to be presented on
average 100 ms earlier in loss trials compared to gain trials,
which means deciding against a loss target took subjects
100 ms longer than deciding for a gain target. When using this
method, the successful estimation of decision times depends on
how reliably the trajectory areas change with increasing SOA.
Without such SOA-dependency of the trajectory area, the ap-
proach of varying SOA for identifying similar-size trajectories
between two experimental conditions does not work. In our
Experiment 2, the area measures decreased only very little with
increasing SOA, while at the same time the effect of gain-
versus loss trials on the areas was large. As consequence, the
approach of Chapman and colleagues would not have allowed
us to determine the amount of SOA difference between gain
and loss trials that would equal the area measures between these
two conditions (data not shown).

When we instead measured the difference in TOC with
both, the cone method and the CP test, a ~ 50 ms TOC differ-
ence between gain and loss trials and a ~ 50% increase in TOC
relative to the increase in SOA became evident, suggesting

that these measures are more sensitive than summary mea-
sures. With the cone method, we were able to measure the
differences between gain- and loss trials directly and
without having to resort to trajectory areas and their
dependency on value cue SOA.

Also, cognitive dynamics like changes of mind easily will
be underappreciated with summary measures since they lead
to trajectories of more complex shape. Two trajectories with
identical time-point of final commitment will differ in their
areas or deviation measure, depending on the history of pre-
liminary choices that might have preceded the final commit-
ment, e.g., because they curved the trajectory in S-shape. The
cone method is designed to identify the final point of commit-
ment leading to the ultimate selection.

Finally, methods depending on a reference trajectory
against which an area or deviation is measured (Freeman
et al., 2011; Freeman & Ambady, 2010), or which determine
areas otherwise (Chapman et al., 2015), require a defined
starting and end point, between which the measure is
taken. The cone method can be applied to ongoing
movements without defined starting point, as long as
the target region is defined.

Time series analyses

In contrast to the summary measures described above, time
series analysis such as per-time-point regression (Dotan et al.,
2019; Scherbaum et al., 2010; Scherbaum & Dshemuchadse,
2020) allow to measure the temporal evolution of the decision
making process. Separate linear regression models are fitted at
each sampling point of all trajectories. The decision-enabling
variables (e.g., the value cue from our Experiment 2) are the
predictors in these regression models. The coordinates of the
trajectories along the dimension defined by the axis between
the potential movement targets (the lateral deviation in our
experiments) are the dependent variable. The resulting curve
of regression weights quantifies the size and onset of the pre-
dictors’ effects on the trajectories and thus allow to determine
when these variables start to influence the decision pro-
cess. The regression weights do not tell when this pro-
cess is finished, though. The cone method here offers a
complementary metric. The POC estimates when the
decision process is completed.

A method to directly infer POCs from movement trajecto-
ries is to determine when trajectories towards spatially sepa-
rated targets start to branch, as we statistically assessed using a
cluster-based permutation test in our Experiments 1 and 2.
Effectively, this is a differential measure, with the conse-
quence that the POC estimate depends on how the trajectories
towards either target are shaped in relation to each other. This
comparison of trajectories leads to two drawbacks that we
were able to circumvent with the cone method, which esti-
mates POCs independently based on a single trajectory.
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Firstly, one needs to assure that the trajectories to the alter-
native targets do not branch prior to the putative POCs, as
would be the case, for example, if differently high instruction
probabilities cause subjects to bias their movements towards
the more likely target prior to the instruction onset. Using
methods like the CP test could then cause erroneously early
POC estimates. With the cone method, instead, a pre-
commitment separation of trajectories does not lead to prema-
ture POC®®" estimates as long as the actual commitment is
still marked by a clear turn in the trajectory. This can be facil-
itated via a sufficiently large target separation angle, as dem-
onstrated by the dependency of the cone method’s perfor-
mance on the adjustment angle in our Experiment 1.

Secondly, a large variability within the groups of trajectories
towards either target (e.g., due to a large variability in the true
POCs), especially in conjunction with a small group separability
(e.g., due to spatially close targets), cannot be properly captured
by trial-averaging approaches. If the true POCs are widely dis-
tributed along the distance to the target array, this can lead to
erroneously late or even no POC estimates, i.e., only once most
of the trajectories are adjusted to the targets and the within-group
variability does not overlap anymore. This means, group-level
trajectory comparisons are biased towards late POCs when deci-
sion times are more variable in time. The late POC" estimates
(relative to the POC*™ at small nominal adjustment angles
resulting from spatially close targets in our Experiment 1 are an
example for this effect. The cone method instead captures this
variability and allows to extract the unbiased distribution of de-
cision times. We were mostly able to control for differences in
the variability of the decision times with the strict movement
constraints in our Experiment 1. Nevertheless, we measured later
POC®" at small, compared to larger lateral target offsets. In prop-
er choice experiments, however, it is not meaningful to constrain
the time of movement curvature as it is the main outcome vari-
able of interest. In our Experiment 2, the results of the CP test
were similar to the results of the cone method, but we were
unable to obtain significant trajectory differences for five out of
84 CP tests, indicating limited sensitivity of the CP test. The cone
method instead was able to properly capture the mean and vari-
ability of the POCs. As a single-trajectory measure, the cone
method aggregates the within-group data after estimating the
commitment points per each trajectory, as opposed to group-
level measures doing the opposite, allowing to estimate the dis-
tribution of commitment points.

Limitations and recommendations when
applying the cone method

In Experiment 1, we found a 25° lateral target offset (equivalent
to the 50° target separation in Experiment 2) to produce suffi-
ciently high trajectory adjustment angles for the cone method to
validly estimate the POC®". We consider these estimates valid
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since in this range of larger adjustment angles the fraction of in-
bounds recoveries was close to 100% and since the average
POC®™ across trials and POC" estimates were highly similar.
Consequently, we find it reasonable to argue that both methods
produced plausible POC estimates at mid to high adjustment
angles, only that the POC™" achieves this also at single-trial
basis, not just on average. Assuming that the true point of com-
mitment on average does not vary with nominal adjustment an-
gles, the fact that the POC®™ shows a flat curve towards low
adjustment angles (Fig. 4B middle) suggests a more truthful
POC®®" estimate within this range of low adjustment angles,
compared to the POC®P, which seems biased towards later
POCs. Yet, also POC® suffers from small adjustment angles,
as the fraction of too-early recoveries of POC was higher for
small angles (Fig. 4B).

Conclusions

We developed the cone method as algorithm to estimate points of
overt commitment from go-before-you-know trajectories on a
single trial basis. The method is applicable to both, two- and
three-dimensional movements. We demonstrated how the cone
method can be used as reaction time analog for online decisions
during movements and to classify those movements based on the
decision time relative to specific task events. Even though we
validated the cone method using three-dimensional manipulator-
based reaching movements, we believe it can also be applied to
other settings where subjects make decisions midflight during
ongoing, tracked movements such as tap-to-touchscreen para-
digms (e.g., Gallivan & Chapman, 2014) and mouse tracking
(e.g., Freeman et al., 2011; Spivey et al., 2005). We consider
the method also suited to analyze decision processes in free con-
tinuous movements during naturalistic tasks like chasing pray or
foraging, when both, trial-averaging methods and 2D-
constrained trajectories are not applicable.
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