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ABSTRACT

Integrative prioritisation promotes translational use
of disease genetic findings in target discovery. |
report ‘PiER’ (http://www.genetictargets.com/PiER),
web-based facilities that support ab initio and real-
time genetic target prioritisation through integrative
use of human disease genetics, functional genomics
and protein interactions. By design, the PiER fea-
tures two facilities: elementary and combinatory. The
elementary facility is designhed to perform specific
tasks, including three online tools: eV2CG, utilising
functional genomics to link disease-associated vari-
ants (particularly located at the non-coding genome)
to core genes likely responsible for genetic associa-
tions in disease; eCG2PG, using knowledge of pro-
tein interactions to ‘network’ core genes and addi-
tional peripheral genes, producing a ranked list of
core and peripheral genes; and eCrosstalk, exploit-
ing the information of pathway-derived interactions
to identify highly-ranked genes mediating crosstalk
between molecular pathways. Each of elementary
tasks giving results is sequentially piped to the next
one. By chaining together elementary tasks, the com-
binatory facility automates genetics-led and network-
based integrative prioritisation for genetic targets at
the gene level (cTGene) and at the crosstalk level
(cTCrosstalk). Together with a tutorial-like booklet
describing instructions on how to use, the PIiER facil-
ities meet multi-tasking needs to accelerate compu-
tational translational medicine that leverages human
disease genetics and genomics for early-stage target
discovery and drug repurposing.
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INTRODUCTION

Genetic targets, defined as genetically informed target can-
didates, are increasingly appreciated for their importance in
enhancing late-stage drug approval. Retrospective analyses
show that drug-target pairs with human disease genetic ev-
idence are twice as likely to be therapeutically successful as
those without such evidence (1-3). The success rate is even
higher for drugs supported by genetic targets with causal
relation to disease (4).

The field of target discovery has been advanced by ge-
netically driven target prioritisation approaches (5,6). Inte-
grative prioritisation for early-stage genetic target discovery
has proven cost-effective in promoting the translational use
of disease genetic associations [i.e. summary-level data aris-
ing from genome-wide association studies (GWAS) (7-9)],
which is increasingly recognised in reducing drug attrition
rate in late-stage clinical trials. As a general guidance, ef-
fective prioritisation is likely to use integrative predictors
that incorporate multi-layered functional genomic data and
knowledge of protein interactions as well. Firstly, incorpo-
rating functional genomics is motivated by the intrinsic dif-
ficulty in linking disease-associated variants (mostly located
at the non-coding genome for common disease) to candi-
date genes. This difficulty can be resolved by measuring reg-
ulatory effects of non-coding variants on genes. Such effects
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are likely to modulate genes via long-range chromatin con-
formations and to act in a cell-type-specific manner. The
effects of variants on gene regulation can be mapped in pro-
moter capture Hi-C (PCHi-C) studies that capture long-
range physical interactions with gene promoters (i.e. con-
formation evidence) (10). These effects can also be mapped
in quantitative trait loci (QTL) studies that provide evidence
of genetic regulation of gene expression (eQTL) (11,12) or
protein abundance (pQTL) (13). Secondly, integrating ge-
netic findings with protein interaction networks increases
the chance of recovering existing therapeutic targets (5,14),
highlighting the usefulness of protein interactions during
drug development.

Priority index or Pi, a genetics-led target prioritisation
approach (5), has already supported specific applications
for a wide range of diseases, including but not limited
to: Alzheimer’s disease (15), Dupuytren’s disease (16), en-
dometriosis (17), kidney stone disease (18), myasthenia
gravis (19) and type 1 diabetes (20). The Pi approach is
unique in three ways. Firstly, the approach is competitive
compared with other genetics-based methods, according to
performance benchmarking in recovering known drug tar-
gets for immune-mediated diseases (21). Secondly, the ap-
proach respects the omnigenic model for complex traits
(22,23), considering target candidates that include core
genes (directly linked to disease-associated variants using
functional genomics) and peripheral genes (linked to core
genes using knowledge of protein interactions). Lastly, the
endpoint (and the uniqueness) of the Pi target prioritisation
is the ability in identifying interconnected (or nodal) genes
that mediate crosstalk between molecular pathways (24).
Identification of pathway crosstalk is motivated by clini-
cal interests in pathway-centric therapeutic targeting strate-
gies, particularly targeting crosstalk genes (that is, meet-
points between closely related pathways).

In this study I present web-based facilities, namely
‘PiER’, allowing the users to perform genetic target pri-
oritisation. The PiER is capable of ab initio genetic target
prioritisation. The entire prioritisation process can be com-
pleted almost real-time, considering that a multi-step priori-
tisation process is typically required for complex tasks. This
level of capacity from the PiER is not available elsewhere.
Such capacity is lacking in the Priority index (21) and the
Open Targets Genetics Portal (25), the most relevant to the
PiER. Both allow the users to access pre-computed genetic
targets stored in relational databases; in other words, inte-
grative prioritisation using user-input data on the fly is not
supported.

In the remaining sections, I first describe the PIER de-
sign, two facilities and implementation. I then detail the
tasks supported in each of two facilities, with utilities illus-
trated using a real-world example [i.e. shared genetic vari-
ants identified from GWAS in inflammatory disorders (26)].
Finally, I discuss limitations of the PiER and the scope for
future developments.

MATERIALS AND METHODS
Design

By design, the PiER is simplistic but efficient, featuring two
web-based facilities: elementary and combinatory (Figure

1A). As per the piano stave, the PIER consists of five hori-
zontal lines in blue, with thinner lines representing the ele-
mentary facility designed to perform specific tasks through-
out the prioritisation process, and thicker lines signifying
the combinatory facility designed to automate integrative
target prioritisation at both the gene and crosstalk levels.
For case of use, a tutorial-like booklet describing step-by-
step instructions in detail is provided where needed.

Elementary and combinatory facilities

A schematic overview of two facilities supported in the
PiER isillustrated in Figure 1B and C. The elementary facil-
ity supports specific tasks (Figure 1B), including three on-
line tools: (i) eV2CG, utilising functional genomics to link
disease-associated variants (including those located at the
non-coding genome) to core genes likely responsible for ge-
netic associations; (il) eCG2PG, using knowledge of pro-
tein interactions to ‘network’ core genes with each other
and with additional peripheral genes as well, producing a
ranked list of core and peripheral genes and (iii) eCrosstalk,
exploiting the information of pathway-derived interactions
to identify highly-ranked genes that mediate crosstalk be-
tween molecular pathways. By chaining together elemen-
tary tasks supported in the elementary facility, the com-
binatory facility enables automation of genetics-led and
network-based integrative prioritisation for genetic targets,
both at the gene level (¢T'Gene) and at the crosstalk level
(c¢TCrosstalk) (Figure 1C). In addition to target crosstalk,
the ¢TCrosstalk also supports target pathway prioritisation
and crosstalk-based drug repurposing analysis (i.e. reposi-
tioning clinically approved drugs from original disease in-
dications into new ones).

Implementation

The PiER was developed using a next-generation Perl web
framework ‘Mojolicious’ that requires nearly zero-effort
maintenance for interface updates. The PIER was also built
using ‘Bootstrap’ that supports the mobile-first and respon-
sive webserver in all major platform browsers (Figure 1D).
All tasks using online tools in the PIER can be completed
within three minutes on the server side (Figure 1E), though
the estimated runtime on the client side varies depending on
the users’ broadband connection speed.

RESULTS
Elementary facility: ¢ V2CG — linking variants to core genes

The task of the eV2CG is to link disease-associated variants
(SNPs) to core genes likely responsible for genetic associa-
tions (Figure 1B, left panel). The input includes two pieces
of information: dbSNP rsIDs (27) and the significance info
(p-values). For example, 244 SNPs and their reported p-
values for inflammatory disorders (26) are used as an illus-
trative example in the user-request interface. Input SNPs
with a typical threshold (P-value < 5 x 107%) are consid-
ered. Additional SNPs in linkage disequilibrium (R? > 0.8)
can be also included, by default, according to the Euro-
pean population. Other populations (i.e. African, Admixed
American, East Asian, and South Asian) are also supported
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Figure 1. Design and facilities of the PIER. (A) The artwork of the same name is designed to resemble the PIER. The above-water pillar structure in red
(symbolising the infrastructure) and water waves in blue (by analogy the piano stave consisting of five horizonal lines) collectively illustrate the web-based
PiER facilities enabling ab initio and real-time genetic target prioritisation. Also illustrated is the tutorial-like booklet (in an HTML format) that describes
step-by-step instructions on how to use. (B, C) Schematic illustration of five main tasks grouped into two facilities. The elementary facility performs specific
tasks, including three online tools (¢ V2CG, eCG2 PG and eCrosstalk), and each of them giving results is sequentially piped to the next one (B). By chaining
together elementary tasks supported in the elementary facility, the combinatory facility performs complex tasks, including two online tools (¢7'Gene and
c¢TCrosstalk) (C). PCHi-C, promoter capture Hi-C; QTL, quantitative trait loci. (D) A summary of the PIER browser compatibility. N/A, not available;
otherwise, the browser version is stated. (E) A summary of the runtime (on the server and client sides) per tool estimated using Google Chrome.



W586 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

(28). These SNPs are then used to define core genes based
on genomic proximity, e/pQTL or PCHi-C. Functional ge-
nomic datasets currently in support include blood eQTL
from the eQTLGene Consortium (12), plasma pQTL (13)
and PCHi-C in 17 primary blood cell types (29). As previ-
ously described (95), the scoring for core genes considers: (i)
disease genetic associations (p-values, the threshold and R?
for SNPs); (ii) distance-to-SNP window for genomic prox-
imity; (iil) the significance level of genetic association with
gene expression for eQTL datasets (or protein abundance
for pQTL datasets); and (iv) the strength of gene promot-
ers physically interacting with SNP-harbouring genomic re-
gions for PCHi-C datasets. The output includes a manhat-
tan plot and a tabular display, both used to illustrate core
genes and their scores (quantifying the level of core genes
responsible for disease genetic associations). Also provided
is an evidence table showing which SNPs are used to define
core genes based on which datasets.

Elementary facility: eCG2PG — networking core genes
to peripheral genes

The eCG2PG is tasked to ‘network’ core genes with each
other and with additional peripheral genes as well us-
ing knowledge of protein interactions (Figure 1B, middle
panel). Protein interactions are sourced from the STRING
database (version 11.5 in August 2021) only with source
codes ‘experiments’ and ‘databases’ (30). The database
has interaction score thresholds of increasing confidence
(0.4 for the medium confidence, 0.7 for the high confi-
dence, and 0.9 for the highest confidence). By default, the
high-confidence interactions are considered, correspond-
ing to a total of ~14 000 nodes/genes and ~202 000
interactions/edges used for the networking. With core
genes used as seeds, the random walk with restart algo-
rithm (31) was implemented to identify (non-seed) periph-
eral genes under network influence, leveraging protein in-
teraction network information. A non-seed peripheral gene
with higher connectivity to core genes (seeds) will receive
a higher affinity score, and a highly networked core gene
will receive a much higher affinity score. Taken together, the
eCG2PG takes as inputs core genes (together with positive
weights, such as core gene scores resulted from the e V2 CG),
and outputs a list of core and peripheral genes (ranked by
affinity scores quantifying the network connectivity to in-
put core genes).

Elementary facility: eCrosstalk — identifying pathway
crosstalk

The eCrosstalk is designed to exploit the information of
well-curated pathway-derived interactions to identify path-
way crosstalk from an input ranked list of genes (Figure 1B,
right panel). Pathway-derived interactions are derived by
merging pathways from the KEGG database (release 101.0
in January 2022) (32), collectively forming a gene network
in which each interaction/edge is found in at least one path-
way. The objective of the eCrosstalk is to identify a subset
of the gene network in a way that the resulting subnetwork
(or ‘pathway crosstalk’) contains highly-ranked genes. This

task is achieved via heuristically solving a prize-collecting
Steiner tree problem, the solver demonstrated to outper-
form other state-of-the-art algorithms (33,34). The signif-
icance of the identified crosstalk is estimated by a degree-
preserving node permutation test (34). More importantly,
the users can specify a desired number of nodes/genes in
the resulting crosstalk, with the desired output returned
via a well-established iterative search procedure (34). In
summary, the input is a ranked list of genes (together
with positive scores, such as affinity scores resulted from
the eCG2PG), and the output includes a tabular display
of crosstalk genes and a network-like visualisation of the
crosstalk (with nodes/genes colour-coded by input scores).

Combinatory facility: ¢TGene — prioritising targets at the
gene level

The ¢TGene is specially tasked to automate genetics-led
and network-based integrative prioritisation of target genes
(Figures 1C and 2). Using real-world GWAS summary-
level data from inflammatory disorders (26), I showcase this
complex task to illustrate what the users need to provide
and what can be expected. In corresponding to the multi-
step prioritisation process, the user-request interface (Fig-
ure 2A) takes as inputs disease-associated SNPs and their
significance level, and requires the users to specify the fol-
lowing information: (i) whether to include SNPs in link-
age disequilibrium (and if included, based on which pop-
ulation); (ii) how to define core genes in terms of the evi-
dence of genomic proximity, QTL and PCHi-C (i.e. confor-
mation evidence); and (iii) which protein interactions used
for ‘networking’ core and peripheral genes. The interface
also allows the users to specify additional parameters for
more controls over the prioritisation process and results.

The prioritisation results page provides a summary of in-
put data and runtime (calculated on the server side), which
can be found under the tab ‘Input into ¢cTGene’. Under the
tab ‘Output: target genes’, a manhattan plot is drawn to il-
lustrate priority rating for ~14 000 target genes across the
genome (Figure 2B). Prioritised target genes are displayed
in a table (Figure 2C), together with priority rank and rat-
ing (scored 0-5), the gene type (core genes versus periph-
eral genes), and a summary of evidence (proximity, QTL
and PCHi-C). The evidence table shows which SNPs are
used to define core genes based on which evidence (Fig-
ure 2D). For example, the user-input SNP ‘rs4129267’ is
linked to the core gene /L6 R, supported by multiple lines of
evidence from genomic proximity, monocyte PCHi-C and
plasma pQTL.

The users are referred to the Pi approach publication (5)
and benchmarking results (21) for details on how to cal-
culate, interpret and validate the priority rating. In brief,
the priority rating is calculated in an unsupervised man-
ner using a Fisher’s combined method applied to the gene-
predictor matrix that contains affinity scores (illustrated in
Figure 1C). A target gene supported by multiple lines of
evidence receives a higher priority rating (i.e. highly pri-
oritised). It differs from Open Targets in two ways. Firstly,
the Open Targets approach uses a weighted harmonic sum
strategy to combine data-source-specific scores (35), includ-



—

a toggle button
showing/hiding
the information
on use, such as
input/output

@&, Example I/0 H‘ by clicks to open up a new window showcasing the example input/output ‘

%}g cTGene - Prioritising targets at the gene level from input SNPs by clicks to open up a new

Nucleic Acids Research, 2022, Vol. 50, Web Server issue

& BOOKLET ﬁ

window giving step-by-step
instructions on use

Step 1: Paste your SNPs here (1st column for doSNP rsiDs, 2nd for significance info).

snp pvalue
rs11190133  0.000000006
rs10743181  0.00000002

Don't include LD SNPs
Y Populations

Step 2: Include SNPs in Linkage Disequilibrium (LD) defined by which population.

Population

EUR: European

AFR: African
AMR: Admixed American
EAS: East Asian

v sl v EUR: European

SAS: South Asian

Step 3: Define core genes based on genomic proximity, quantitative trait locus (QTL) and

) ‘ Within 5Kb
promoter capture Hi-C (PCHI-C). ————
Distance-to-SNP window: Within 20Kb v
Within 50Kb
QTL datasets: pQTL (plasma) v Within 0.1Mb
PCHi-C datasets: Monocytes v — Within 0.2Mb
Within 0.5Mb
Step 4: Network core and peripheral genes using knowledge of protein interactions. Within 1Mb
Network: Protein interactions with high confidence (0.7) v =

® More Controls

a cTGene - Prioritising target genes ... (please don't refresh this page)

|

Don'tinclude QTL datasets

Include all below

Blood eQTL (Nature Genetics 2021; PMID34475573)
eQTL (blood from eQTLGen)

Plasma pQTL (Nature 2018; PMID29875488)

v PQTL (plasma)

Don't include PCHi-C datasets
Primary blood cell types (Cell 2016; PMID27863249)

explore and download the resulting Activated total CDA4+ T cells

B ’—» (dynamic & self-contained) HTML file Endothelial precursors
% i " . . Erythroblasts
Prioritisation results (interactive) {oRatte [ St . Fetal thymus
Macrophages MO
I t into ¢TG: o et t Macrophages M1
nput into cTGene utput: target genes g
Megakaryocytes
: N L
Manhattan plot illustrates priority rating for target genes that g
Naive B cells
are color-coded by chromosomes, with the top 30 target genes Naive CD4+ T cells
labelled. Also provided is an editable PDF file for download. Nalye DO Ticells
Neutrophils.
Non-activated total CD4+ T cells
s
o Total B cells
§ 4 Total CD4+ T cells
g, Total CD8+ T cells
o Above all (17 primary blood cell types)
-g 2
.§'| Protein interaction networks (the STRING database)
'§ Protein interactions with highest confidence (0.9)
° L A teractions with high confidence (0.7)
Protein interactions with medium confidence (0.4)
c search for core genes, such as IL6R -+—
‘ csv l Copy ‘
‘ csv l Copy ‘ Search: __ILGR
Genes Rank Rating Type Proximity QTL PCHiC Description
Core SNP .
IL23R 1 5 Core 1 1 1 interleukin 23 receptor genes SNPs type Evidence
ERAP2 2 4.519 Core 1 1 1 enq()plasm,‘c reticulum IL6R 154129267  Input PCHiC_PMID27863249_Monocytes
aminopeptidase 2
IL6R rs4129267  Input Proximity_20000bp
macrophage
MST1 3 4.454 Core 1 1 o . .
stimulating 1 IL6R 54129267  Input QTL_pQTL_Plasma
oYLD 4 4396 Core . ° . CYLD lysine 63 IL6R rs11265613 LD Proximity_20000bp
- deubiquitinase
IL6R 1512126142 LD PCHiC_PMID27863249_Monocytes
N interferon regulatory
IRF1 5 4.393 Core 1 o 1 . . .
factor 1 Showing 1 to 5 of 31 entries (filtered from 9,359 total entries)
Showing 1 to 5 of 13,973 entries Previous ‘ 1 2 3 4 5 2795 Next Previous 1§ 2 3 4 5 6 7 Next

w587

Figure 2. Prioritising target genes using the ‘c7'Gene’. (A) The user-request interface is designed in a manner that corresponds to the multi-step prioritisation
process (left panel). Per specification, the available options are illustrated in the right panel. (B-D) The prioritisation results page. Under the tab ‘Output:
target genes’ are a manhattan plot illustrating priority rating for target genes (B) and two tabular displays about prioritisation (C) and evidence (D). In the
prioritisation table (C), the “Type’ column tells the target gene type (core genes versus peripheral genes), and the next three columns give a summary of
evidence used to define core genes, including evidence of genomic proximity (non-zero number in the ‘Proximity’ column), e/pQTL evidence (the ‘QTL’
column) and conformation evidence (the ‘PCHiC’ column). In the evidence table (D), the ‘SNP type’ column is indicative of use-input SNPs versus LD
SNPs, and the ‘Evidence’ column provides details on evidence (SNPs in the proximity, PCHi-C and e/pQTL datasets). LD, linkage disequilibrium.
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Figure 3. Prioritising targets at the crosstalk level using the ‘c7TCrosstalk’. (A) The user-request interface and the prioritisation results page. In addition
to a summary of input data and the runtime (computed on the server side) under the tab ‘Input into ¢TCrosstalk’, the prioritisation results page provides
the output, including target genes (the same as in Figure 2B-D), target pathways, targets at the crosstalk level, and crosstalk-based drug repurposing
(see Figure 4). (B) A dot plot for prioritised target pathways, with the top five labelled, available under the tab ‘Output: target pathways’. (C) A network
visualisation of the crosstalk, with genes/nodes colour-coded by priority rating and labelled in the form of ‘rating@rank’, available under the tab ‘Output:
targets at the crosstalk level’. Notably, also available are two tabular displays about prioritisation and evidence for crosstalk genes (not illustrated here as

similarly shown in Figure 2C and D).

ing the locus-to-gene score from the Open Targets Ge-
netics Portal (25). Secondly, the locus-to-gene score uses
machine learning (i.e. in a supervised manner) to link
disease-associated variants to causal genes by integrating
fine-mapping results and functional genomic datasets (25).
Thirdly, using knowledge of molecular interactions to iden-
tify functionally linked targets (i.e. peripheral genes with-
out direct genetic evidence) is not supported in Open Tar-
gets (35).

It is highly recommended to consider the top 1% priori-
tised target genes for downstream analyses and interpreta-
tions, for example, used to further prioritise target pathways
(see the next section). The validity of the priority rating
has been empirically demonstrated by showing high correla-
tions to experimentally measured target activities, with the
significance estimated using a randomised test; see (5) for

details. The validity has been further illustrated for immune-
mediated diseases according to performance benchmarking
(21), outperforming other genetics-based methods (includ-
ing Open Targets) and Naive prediction (i.e. prioritising a
gene by how often the gene has been targeted by existing
approved drugs).

In this showcase, the top prioritised target genes are es-
sential for inflammation, and more interestingly, have been
previously reported to be associated with inflammatory dis-
orders, such as IL23R [ranked Ist; well-known as an in-
flammatory bowel disease gene (36)], ERAP2 [2nd; asso-
ciated with ankylosing spondylitis (37)] and MST1 [3rd;
associated with primary sclerosing cholangitis (38)]. All
prioritised target genes are cross-referenced and linked to
GeneCards (39). Notably, all prioritisation results are em-
bedded into a dynamic and self-contained HTML file,



Nucleic Acids Research, 2022, Vol. 50,

Web Server issue W589

disease indications

3
5
@ o
Iy kN
S j<)
S S
IS e s s
2 2L L 1SN IS @ 3 &
g § S S S S @ 5 & L s
S &L e S § g &
5 RIS ] < T S o = 5
oy TZERSERS TS 9 N2 &) S IS < o]
§5 9590356 §§SSF 5= § & & & §
g $&E&F7S © S§EFS 2§ S 5 & 7 Lo
S5 S.5888& 8 s S988s< S5 Q 8o 5 g7 Qo 8K
o8 o888 £8 S§5S5FF552a0% S0 55 $EFE 0, 55588
2 ¢ 9 S L L S5 9885 S8 xxx %58 S S T 2 o s N & s 8SESOFS
53 S0S55S5 898 235 S YT ST TS E S 5 O 5 o &S SRS PRGOS
ST FSS g3 798885885 5029280 Py PSFIITLES
F O 0 F 5§80 E-S@N222 9045k SPEFOFEL SFEXO05FE
R R o N SN SOg o N SN IR N R D S N
s Q000 05T § oo IS LLL ST oS8 EESY Saa 058 2L s8>
08 s S S 3 SIS 3858855088555 8 8858555688
SO0 8 SSSS§ 5SS FU T PP T §8935F3858285¢8 S558559L8°¢
TE855668585888LLLETEISIISSIEEFPLESSSESRER
NN S N S S S S R
® 00 000 (4 1og (1 0O ©®  Drecrr
@ & ® & ® & ©I0 - IFNAR2
(6] - IFNG
0
(17) (17) L IENGRT | 2
[
@ 0000 s | B
[ x
(25) (23] - IL6R ®
?
®0 iroee | §
(7] ® 0 o 06 - JAK2 5
D (3] @ (50 @F src
® @

afatinib dimaleate [Epidermal growth factor receptor erbB1 inhibitor]
amivantamab [Epidermal growth factor receptor inhibitor]

brigatinib [Epidermal growth factor receptor erbB1 inhibitor]
dacomitinib [Epidermal growth factor receptor erbB1 inhibitor]

1 erlotinib hydrochloride [Epidermal growth factor receptor erbB1 inhibitor]
gefitinib [Epidermal growth factor receptor erbB1 inhibitor]
necitumumab [Epidermal growth factor receptor erbB1 inhibitor]
osimertinib [Epidermal growth factor receptor erbB1 inhibitor]
osimertinib mesylate [Epidermal growth factor receptor erbB1 inhibitor]
baricitinib [Tyrosine-protein kinase JAK2 inhibitor]

tofacitinib citrate [Janus Kinase (JAK) inhibitor]

upadacitinib [Janus Kinase (JAK) inhibitor]

bosutinib [Tyrosine-protein kinase SRC inhibitor]

cetuximab [Epidermal growth factor receptor erbB1 inhibitor]
cetuximab [Epidermal growth factor receptor erbB1 inhibitor]
panitumumab [Epidermal growth factor receptor erbB1 inhibitor]
emapalumab [Interferon gamma inhibitor]

fedratinib hydrochloride [Tyrosine-protein kinase JAK2 inhibitor]
ruxolitinib phosphate [Tyrosine-protein kinase JAK2 inhibitor]
guselkumab [Interleukin-23 inhibitor]

risankizumab [Interleukin-23 inhibitor]

guselkumab [Interleukin-23 inhibitor]

risankizumab [Interleukin-23 inhibitor]

tildrakizumab [Interleukin-23 inhibitor]

ustekinumab [Interleukin-12 inhibitor]

ustekinumab [Interleukin-23 inhibitor]

guselkumab [Interleukin-23 inhibitor]

tildrakizumab [Interleukin-23 inhibitor]

ustekinumab [Interleukin-12 inhibitor]

ustekinumab [Interleukin-23 inhibitor]

guselkumab [Interleukin-23 inhibitor]

ustekinumab [Interleukin-12 inhibitor]

ustekinumab [Interleukin-23 inhibitor]

Index Approved drugs [mechanisms of action]
12 interferon alfa-2b [Interferon alpha/beta receptor agonist]
13 interferon alfa-2b [Interferon alpha/beta receptor agonist]

peginterferon alfa-2a [Interferon alpha/beta receptor agonist]

interferon alfa-2b [Interferon alpha/beta receptor agonist]

14 peginterferon alfa-2a [Interferon alpha/beta receptor agonist]
peginterferon alfa-2b [Interferon alpha/beta receptor agonist]

15 interferon alfa-2b [Interferon alpha/beta receptor agonist]
peginterferon alfa-2b [Interferon alpha/beta receptor agonist]

interferon beta-1a [Interferon alpha/beta receptor agonist]

16 interferon beta-1b [Interferon alpha/beta receptor agonist]
peginterferon beta-1a [Interferon alpha/beta receptor agonist]

17 interferon gamma-1b [Interferon gamma receptor agonist]
18 lapatinib ditosylate [Epidermal growth factor receptor erbB1 inhibitor]
neratinib maleate [Epidermal growth factor receptor erbB1 inhibitor]

19 lifitegrast [Integrin alpha-L/beta-2 (LFA-1) antagonist]
20 peginterferon alfa-2b [Interferon alpha/beta receptor agonist]
21 ruxolitinib phosphate [Tyrosine-protein kinase JAK2 inhibitor]
2 sarilumab [Interleukin-6 receptor alpha subunit antagonist]
tocilizumab [Interleukin-6 receptor alpha subunit inhibitor]

23 satralizumab [IL6Ralpha/GP130 antagonist]
24 tirbanibulin [Tyrosine-protein kinase SRC inhibitor]
25 tocilizumab [Interleukin-6 receptor alpha subunit inhibitor]
26 tofacitinib citrate [Janus Kinase (JAK) inhibitor]
27 tofacitinib citrate [Janus Kinase (JAK) inhibitor]
upadacitinib [Janus Kinase (JAK) inhibitor]

28 ustekinumab [Interleukin-12 inhibitor]
ustekinumab [Interleukin-23 inhibitor]

29 vandetanib [Epidermal growth factor receptor inhibitor]
30 vandetanib [Tyrosine-protein kinase SRC inhibitor]

Figure 4. Crosstalk-based drug repurposing using the ‘cTCrosstalk’. Available under the tab ‘Output: crosstalk-based drug repurposing’ is a heatmap-like
illustration, with crosstalk genes on the y-axis, disease indications on the x-axis, and red dots indexed in numbers. The index numbers are referenced in a
table where the information on approved drugs and mechanisms of action is detailed.

which can be either interactively explored in a new browser
window or downloaded for the exploration afterwards. The
‘Show/Hide Info’ toggle button contains the help informa-
tion on use, including the details on input, output, mecha-
nism and other useful information, while the ‘Example /0’
button showcases the example input/output.

Combinatory facility: ¢TCrosstalk — prioritising targets at
the crosstalk level

As an extension to the ¢T'Gene, the ¢TCrosstalk continues
to prioritise target pathways, identify crosstalk mediating
molecular pathways, and perform crosstalk-based drug re-
purposing (Figures 1C, 3 and 4). The user-request interface
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is identical to the ‘cTGene’ (illustrated in Figure 2A), except
for additional specifications that control the desired num-
ber of crosstalk genes and the significance of the identified
crosstalk (Figure 3A). Using the same example described
in the previous section, the ¢7T'Crosstalk not only prioritises
target genes, but also outputs target pathways that are pri-
oritised based on enrichment analysis of the top 1% (by de-
fault) prioritised target genes using KEGG (32). As illus-
trated in a dot plot (Figure 3B), the top prioritised pathway
is the JAK-STAT signalling, which aligns with current in-
terests targeting this pathway in inflammatory and autoim-
mune diseases (40), particularly for treating inflammatory
bowel disease (41). The member genes of this top pathway
can be retrieved under the tab ‘Output: target pathways’.

The underlying PIER approach is unique in its ability to
identify a concise and manageable list of pathway crosstalk
genes, the endpoint list of genetic target prioritisation [see
the review (24)]. The list also provides opportunities for
drug repurposing [see the review (42)]. Accordingly, under
the tab ‘Output: targets at the crosstalk level’, the output
crosstalk is visualised, with genes/nodes colour-coded by
priority rating and labelled in the form of ‘rating®rank’
(Figure 3C). The significance (P-value) of observing the
identified crosstalk by chance is 5.7 x 1079, as estimated
by a degree-preserving node permutation test (5). Interest-
ingly, the crosstalk hub nodes (EGFR, IFNAR2, IFNGRI,
IL22RA2, IL23R, IL6R, JAK2 and TYK?) are all key play-
ers of the JAK-STAT signalling, further supporting the po-
tential of therapeutic intervention targeting this pathway.

Under the tab ‘Output: crosstalk-based drug repurpos-
ing’, a heatmap-like illustration shows the output from drug
repurposing analysis based on crosstalk genes (Figure 4).
This showcase identifies 10 genes (EGFR, IFNAR2, IFNG,
IFNGRI, ILI2B, IL6R, ITGB2, JAK2, SRC and TYK?2)
of licensed medications (approved drugs already in clinical
use). The information on current approved therapeutics is
sourced from the ChEMBL database (version 30 in March
2022) (43), including drugs, disease indications, and non-
promiscuous targets that explain the efficacy of drugs in dis-
ease with well-defined mechanisms of action. Together with
the information on mechanisms of action detailed in an in-
teractive table beneath, the users can explore drug candi-
dates to seek repurposing opportunities.

DISCUSSION

In a new era of human disease genetics research and drug
development, the focus has been rapidly shifted towards
translational use of genetic findings to reduce drug attrition
rate along the drug discovery pipeline. Integrative prioriti-
sation for genetic targets is the key to this shift, as high-
lighted by an carly successful example (14). Genetic ev-
idence arising from human disease genomics can inform
drug target discovery, for which web-based implementation
is much needed (which is also challenging). The PiER, spe-
cially designed for genetic target prioritisation and imple-
mented ab initio and real-time, contributes significantly to
accelerating early-stage target discovery and drug repurpos-
ing. In addition to target prioritisation at the gene level,
target identification at the crosstalk level provides the users
with actionable numbers of target candidates and clinically

approved drugs that can be taken forward for exploring
drug repurposing opportunities.

The PiER is largely limited by available functional ge-
nomic datasets that are the key in linking non-coding vari-
ants to core genes responsible for genetic associations. Since
functional genomic datasets in support are mostly immune-
related, the PiER is particularly useful to prioritise ge-
netic targets for diseases with the immune component. Pre-
caution should be taken when applying to disease areas
where ¢/pQTL and PCHi-C datasets are not directly rel-
evant. Accordingly, my first aim in future developments
is to expand the supporting data required for the PiER;
this includes functional genomic datasets involving a di-
verse range of cell types (11,44), particularly expanding to
the data for non-immune disorders. The second aim is to
incorporate target tractability, another important compo-
nent for target discovery that is not currently supported
by the PIER. Tractability is to assess the possibility of be-
ing targeted by small molecules, antibodies, or proteolysis-
targeting chimeras (35,45). In the long term, the PiER
serves as an interactive platform that promotes collabora-
tive efforts to rapidly advance computational translational
medicine that leverages human disease genetics and ge-
nomics for target discovery and drug repurposing.
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