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Introduction
Population growth, drastic climate change, water supply, avail-
ability of workable land, and biodiversity losses have caused 
major changes to the global food security.1,2 Abiotic stress fac-
tors such as drought, salinity, floods, heat, cold, heavy metal pol-
lution, toxic compounds, and biotic stress affect plant growth 
and yield.3,4 Drought pressures have become the most critical 
and critical constraints, and negatively affect agricultural output 
and ultimately endangering food security.5 Drought affects 
agricultural output while exacerbating neglect, soil depletion, 
and environmental damage. Consequently, water scarcity has 
been identified as a significant worldwide ecological problem.6 
This abiotic stress leads to substantial physiological, metabolic, 
and molecular changes in plants, thus decreasing agricultural 
yields.7 With current technologies, researchers have made tre-
mendous progress in recent years to unravel the genetic, bio-
chemical, and signaling mechanisms associated with plant stress 
responses.8-10 The complex process that distinguishes resistance 
and vulnerability within crop species is not well known.11 
Drought stress affects a variety of morphological biochemical 
parameters, including a decrease in the leaf area, a total reduc-
tion in chlorophyll content, leaf wilting, lengthening of the 
roots, and the formation of reactive oxygen species (ROS).4,12,13 
Under stress, several osmotic pressure decomposes amass in 
plant cells, such as proline, glycine betaine (GB), soluble sugars, 
and spermines, to sustain cell penetration ability.14 Catalase 
(CAT), superoxide dismutase (SOD), glutathione reductase 

(GR), and ascorbate peroxidase (APX) are examples of oxida-
tion-protective enzymes, known to be altered in drought-
stressed plants.15 Drought stress, on the contrary, alters the 
expression of a large number of genes, including those involved 
in the transmission of stress signals; hundreds of functional pro-
teins are also transcribed and controlled, which play a crucial 
role in drought-tolerant gene expression patterns.16 As a result, 
to maintain or raise global food production, sustainable agricul-
tural biotechnology must be developed to ameliorate abiotic 
stress. Various techniques, including genetic engineering and 
traditional plant breeding methods, have been used worldwide 
to improve crop drought tolerance.17,18

CRISPR/Cas9 is a gene-editing technology that enables 
precise changes to DNA in living organisms. It targets specific 
DNA sequences using RNA and Cas9 protein. This technol-
ogy can correct genetic mutations, treat diseases, develop new 
therapies, and understand biological processes. It holds 
immense potential in medicine, agriculture, and biotechnology. 
CRISPR/Cas9 is a precise and effective technique that enables 
researchers to specifically alter an organism’s DNA. To make 
alterations, such as gene deletion, gene insertion, or gene edit-
ing, the Cas9 enzyme is guided by a guide RNA molecule to a 
specific site in the genome.19

The genes involved in plant-microbe interactions can be 
altered using GE techniques like CRISPR/Cas9 to lessen the 
impact of plant growth-promoting microorganism (PGPM) 
on plants. For instance, by focusing on particular genes that 
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recognize and react to particular phytohormones or osmolytes, 
researchers may be able to change how sensitive or responsive 
the plant is to these substances.20

Genome editing can also be used to change genes that are 
involved in the absorption or metabolism of exogenous sub-
stances, such as pesticides or herbicides, lessening the effect 
these substances have on plants. It may be able to improve tol-
erance or resistance by carefully modifying the genes responsi-
ble for the plant’s reaction to these chemicals.21

In addition, plants with improved resistance to hazardous 
bacteria or diseases can be created using GE technology. 
Researchers may be able to improve the plant’s capacity to 
identify and react to microbial invaders by focusing on specific 
genes involved in plant defense systems, which might lessen 
the impacts of PGPM.22 It is important to note that the appli-
cation of GE technologies in agriculture is still an active area of 
research and development. While these technologies hold 
immense promise, their use is subject to regulatory frameworks 
and ethical considerations. Ongoing studies are being con-
ducted to further explore the potential benefits and implica-
tions of GE in reducing the effects of PGPM on plants.23 It is 
significant to emphasize that research and development on the 
use of GE technologies in agriculture is currently ongoing.24 
Although these technologies have great potential, their usage is 
constrained by legal and moral standards. Research is ongoing 
to examine the possible advantages and consequences of GE in 
minimizing the impacts of PGPM on plants.25 An introduc-
tory approach is to use drought-tolerant biological inoculations 
or plant growth-promoting rhizobacteria (PGPR) as an option 
for agricultural production in water-scarce areas. Various 
research suggested by researchers validates the idea that PGPR 
can help plants tolerate nonbiological stressors by altering their 
genetic responses.26 Plant growth-promoting rhizobacteria 
promise to change the physiological response to water shortage 
and enhance their drought resistance.27 Multidisciplinary solu-
tions are needed to take full advantage of the potential of 
microorganisms in agricultural production systems. Data-
driven poly-omic science improves our knowledge of microbe 
structure, dynamics, and composition and their physical func-
tion in a variety of designs and ecosystems, like root-to-root, 
where microbial interactions at the community level guide 
plant reactions to multiple pressures.28,29 However, given the 
complexity of plant-microbial interaction and its dependence 
on environmental variables, optimizing the relationship of 
plant microbes to increase drought tolerance in agricultural 
facilities is still a challenge. Developing drought-resistant plant 
genotypes, seed processing, genetic changes, plant-growing 
microorganisms, plant fertilizers, and appropriate dissolved 
substances are management approaches to promote drought 
tolerance in various agricultural facilities. Therefore, it is essen-
tial to have a thorough understanding of the possible improve-
ment that can be attributed to plant-associated microbiomes 
on the production of agricultural plants as a mitigating tech-
nique for drought stress circumstances.

Drought Stress Effect on Plant Development
Drought is a period without rainfall, resulting in a considerable 
decrease in soil and relative humidity and a rise in atmospheric 
temperature.30,31 A mismatch between water input and soil 
steam flow can result in drought conditions. Plant health is 
directly and indirectly affected by drought stress. The penetra-
tion and ion balance of plant cells are affected by reducing the 
water availability of the roots and the loss of liquid during 
evapotranspiration, which leads to changes in the plant condi-
tion.32 It also affects crop growth in various ways, like slowing 
down seed germination, which negatively impacts on crop 
yield. Drought is the primary principal abiotic stress that influ-
ences morphological, biochemical, physiological, and molecu-
lar reactions by affecting the activity of proteins in drought 
stress; drought stress can damage the morphology, biochemis-
try, and physiology of wheat plants.33 Drought substantially 
influences leaf size, plant height, and crop development owing 
to silk division, reduced cell growth, and elongation of photo-
synthesis because the decline in leaf growth and leaves’ reduces 
the early stages of photosynthesis, thereby reducing the loss of 
food production. According to published studies, all essential 
activities, under drought stress, several processes, such as pure 
photosynthesis, the generation of photosynthetic pigments, 
electron transfer rates, the quantum efficiency of photosystem 
II, also known as PSII, is a crucial part of plants, algae, and 
some bacteria’s photosynthetic machinery. It consists of pro-
teins, pigments, and cofactors that absorb light energy and 
convert it into chemical energy. The main pigment is chloro-
phyll a, which maximizes photosynthesis efficiency. The energy 
is then excited in a reaction center, facilitating the synthesis of 
ATP and the reduction of NADP+ to NADPH. Photosystem 
II also plays a role in water splitting through photolysis, releas-
ing oxygen and contributing to the oxygen-rich atmosphere. 
Understanding this system is vital for bioenergy research, plant 
biology, and environmental studies (II optical systems (PSII), 
protein synthesis, lipids, and energy metabolism, are sup-
pressed.34,35 Drought prevents plant growth by disrupting the 
plant’s water balance, membrane permeability, mineral nutri-
tion, and enzyme activity, which substantially influence plant 
growth.36

Drought pressure indirectly increases the production of 
ROS, which causes oxidative damage to the macromolecules.37 
Reactive oxygen species production leads to lipid oxidation, 
which causes damage to the membrane, enzyme inactivation, 
and structural and functional degradation of proteins. Protein 
oxidation and oxidative stress may result in the loss of enzyme 
activity and the creation of protease anticonvergent clumps. 
Therefore, plants often use various techniques to reduce ROS-
mediated damage, such as the production of low molecular 
weight enzymes and zinc-free antioxidants. Other enzymes in 
the ascorbate-glutathione cycle, such as monodehydroascor-
bate reductase (MDHAR), dehydroascorbate reductase 
(DHAR), and GR, function to prevent dangerous oxygen 
derivatives from forming.38
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Various Techniques to the Amelioration of Drought 
Stress on Plants
Drought-resistant approaches have been demonstrated in a 
variety of studies, including (1) plant breeding and marker-
assisted selection39; (2) exogenously administered substances 
and osmolytes, such as polyols, glycine, betaine, proline, or other 
amino acids (sorbitol, pinitol, myoinositol, and mannitol), 
among others improve osmotic adjustment40; (3) hormones 
produced by plants are (salicylic acid [SA], auxins, gibberellic 
acids [GAs], cytokinins [CKs], brassinosteroids [BRs], jas-
monic acid [ JA], and abscisic acid [ABA])41; and (4) antioxi-
dant function (glutathione, polyamines, ascorbate, and 
enzymes)42. In the following subsections, we shall further dwell 
on some of the strategies to ameliorate drought stress.

Impact of phytohormones

Phytohormones play a crucial role in controlling plant responses 
to different types of drought. Plant hormones such as SA, JA, 
auxin, indole-3-acetic acid (IAA), ethylene (ET), CKs, BRs, and 
GAs are also needed for plants responsiveness to abiotic stresses.43 
The balance of auxin and CK, which regulates root growth and 
determines RSA, is a potent regulator of the plant organogene-
sis.44 The endogenous ratio of auxin to CK in plants may be influ-
enced by auxin and CK synthesis by rhizospheric bacteria and 
microbial metabolites that interact with these hormonal pathways. 
Low IAA levels may promote parent root elongation, while high 
IAA levels stimulate lateral root formation, root hair synthesis, 
and parent root growth.45 Likewise, rice endophyte Phomopsis liq-
uidambari B3 inoculation dramatically increased auxin, CK, and 
ET levels in rice at varied nitrogen levels.46 Azospirillum brasilense 
also contains nitrite reductase activity and creates nitric oxide dur-
ing root colonization, which mediate auxin signaling pathway to 
control the growth of LR.47 Plant growth has been boosted by 
inoculating them with CK-producing rhizospheric bacteria.48 
Abscisic acid and GA, or substances that govern the concentration 
of these phytohormones in plants, are produced by rhizospheric 
bacteria, according to many studies.49,50 Rice root elongation is 
influenced by GAs, notably GA3, which affects local auxin pro-
duction and the polar auxin transport.48 Indole butyric acid (IBA) 
therapy has been shown to help mung bean seedlings overcome 
root development inhibition.51 Surprisingly, rhizobacteria reduce 
drought-induced yield loss in plants by increasing auxin levels.52,53 
Drought resistance is conferred by overexpression of sweet potato 
auxin response factor (ARF)5 in Arabidopsis through altering 
carotenoid biosynthesis, which is a precursor of IAA.54 The co-
expression of GA REQUIRING-5 (GA5) and DREB1A in 
Arabidopsis significantly increased drought tolerance without 
compromising growth or yield.55

Drought triggers the production of the phytohormone ABA. 
Plant roots create ABA, which is then transferred to the leaves 
and used to regulate the stomatal aperture, SA and JA, in addi-
tion to ABA, are essential in the drought stress response. In 
addition, during drought, genes producing JA and SA are 

downregulated in the sweet sorghum.56 Salicylic acid is a non-
enzymatic antioxidant that helps remove ROS from the body. 
Salicylic acid-related gushing signals influence microorganisms’ 
whole-body resistance in the root and microbial selection medi-
ated by host plants.56 Sunflower (Helianthus annus) phytoreme-
diation and drought tolerance improve when PGPR and SA are 
used in combined form.57,58 Methyl jasmonate (MeJA) function 
in enhancing drought stress tolerance has been explored in 5 
different wheat growers, and it was discovered that MeJA effi-
ciently mitigates the negative effects of drought stress.59,60 In 
stressed plants, glutathione is engaged in a variety of physiologi-
cal tasks, including the elimination of toxic ROS and metal 
detoxification. Drought-induced oxidative stress can be reduced 
by combining seed and foliar treatments with MeJA 
(20 M) + SA (2 mM), which controlled ABA and osmolytes 
levels as well as antioxidant enzyme activity.61

Impact of nanoparticles in the mitigation of 
drought stress

Due to the large surface area, varied pore size, and amorphous 
nature, nanoparticles (NPs) are very reactive. The contents of 
NPs are discharged from the organelles of plants.62 Antioxidant 
enzymes, which include CAT, SOD, peroxidase, APX, and oth-
ers, are regulated by them. Drought, heat, cold, salt stress, and 
heavy metal toxicity may all be reduced by silicon-based nano-
particles (SNPs).63 Stress alleviation strategies include (1) plant 
antioxidant defense mechanisms are activated; (2) coprecipita-
tion of Si with dangerous metal ions; (3) immobilization of haz-
ardous metal ions in the growth medium; and (4) absorption 
and compartmentation of metal ions inside plants. Linh et al64 
discovered that metal-based (copper, iron, cobalt, and zinc 
oxide) NPs may improve soybean drought tolerance by increas-
ing relative water content, biomass reduction rate, and drought 
tolerance index. Seed germination (%) and total germinate rate 
are improved by zinc oxide NPs have suggested the efficacy of 
ZnO NPs in using seed reservoirs for seedling development and 
drought stress tolerance.65 Researchers employed chitosan NPs 
to change biochemistry and gene expression in Catharanthus 
roseus (L) to increase drought stress resistance.66-68

Exogenously administered chemicals in the 
alleviation of drought stress

To address global issues in agricultural activities, research must 
focus on the enhancement and application of exogenous hor-
mones, and the establishment of crop management systems to 
promote the efficiency of water usage.93,94 Reactive oxygen spe-
cies is a vital deliverable that can lead to oxidation signal conduc-
tion, systemic acquired resistance (SAR), and systemic acquired 
adaptation (SAA) corresponding to exculfactors. Under pressure, 
oxidation signal conduction causes a series of protective responses 
and yield management. Plant ROS (superoxide and hydrogen 
peroxide) oxidizing enzymes interact and are found in various 
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Table 1. The involvement of osmolytes and phytohormones, and the interactions with some other chemicals in reducing drought stress in various 
plants.

ChEMICAlS AND 
MIxTURES OF 
SUBSTANCES

ChEMICAlS 
USED AND ThEIR 
DOSAgES

SpECIES OF 
plANTS

USEFUl RESOURCE pROCEDURES OF IMpACT REFERENCES

MeJA + SA MeJA (20 μM) and 
SA (2 mM)

Maize (Zea mays L) Seed and foliar 
application

Drought-induced oxidative 
stress was prevented by 
regulating the levels of ABA 
and osmolytes, as well as 
the activity of antioxidant 
enzymes.

Tayyab et al61

gA Wheat Foliar application glyoxalase I (gly I) and 
glyoxalase II (gly II) activities 
were stimulated to protect 
wheat seedlings from 
drought stress.

Al Mahmud  
et al69

gA and ABA Tobacco Stress tolerance, ROS 
scavenging, and carbon-
nitrogen balance are all 
improved with this 
supplement.

Jakab et al70

BRs 0.01 μM Brassica napus, 
Arabidopsis, and 
rice

Seed application CO2 assimilation and 
improved leaf water 
economy

Kagale et al71 
and Farooq  
et al72

MeJA 250 mg l−1 Citrus Chlorophyll, sugar, and 
proline levels increased, 
whereas h2O2 and O2 levels 
decreased dramatically.

xiong et al73

JA + ABA JA (100 μM) and 
ABA (100 μM)

Soybean Managing trypsin inhibitors 
and alleviating the negative 
impacts of drought stress

hassanein  
et al74

Spermidine (Spd) 0.5 mmol/l White clover 
(Trifolium repens L)

Foliar application Increased activity of 
antioxidant enzymes and 
promotion of the ascorbate-
glutathione cycle

li et al75

proline Rice Foliar application Antioxidant enzyme activity 
and gB concentration were 
increased, while lipid 
peroxidation was reduced.

hanif et al76

proline + SA 10 mM proline and 
0.5 mM SA

Barley Foliar application plant biomass, chlorophyll 
concentration, relative water 
content, antioxidant enzyme 
activity, and lipid 
peroxidation and hydrogen 
peroxide levels are all 
increased, while lipid 
peroxidation and hydrogen 
peroxide levels are reduced 
(h2O2).

Abdelaal et al77

proline + ABA ABA (10 μM) and 
10 mM proline

Wheat Foliar application Drought and salinity stress 
tolerance has improved.

Kaur and 
Asthir78

Trehalose (0 and 30 mM) Brassica, Maize Foliar application Drought stress resistance 
was generated by increasing 
photosynthetic and water.

Ali and Ashraf79

 Relation properties, as well 
as antioxidant enzyme 
activity.

 

 40 mM trehalose Wheat Foliar application Wheat’s physiological state 
is improved.

Ahmed et al80

 (0, 10, 20, and 
30 mM)

Sunflower Foliar application Drought tolerance has been 
induced.

Kosar et al81

(Continued)
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plant tissues. Glutathione has a combined effect on methylgly-
oxal detoxification and antioxidative enzyme production in 
water-stressed mung bean plants.95 Through similar research, 
glutathione-mediated drought stress resistance was connected to 
enhanced ionic homeostasis and decreased oxidative stress in rice 
(Oryza sativa L).96 Silicon is a valuable ingredient that helps 
mitigate the negative impacts of drought. Fortified fertilizers 
have lately sparked attention due to their various functions, 
including boosting plant growth, photosynthetic machinery, and 
preserving cellular ion homeostasis under stress.97 Various silicon 
exporters have indeed been identified in the monocot and dicot 
plants.98 Diamond et al99 found that integrating Si and 
Arbuscular mycorrhizal fungus (AMF) increased strawberry 
plant biomass by increasing water content, water consumption 
performance, antioxidant enzyme activity, photosynthetic rate, 
and notably zinc nutritional intake. Exogenous silicon treatment 

reduces oxidative damage caused by abiotic stressors in Brassica 
napus L100 and wheat plants97 by enhancing antioxidant enzyme 
activity. Selenium supplementation can cause an accumulation of 
solutes in grown plants in water-stressed conditions, lowering 
oxidative stress. In addition, selenium therapy can promote plant 
growth and antioxidant formation as they age and maintain a 
healthy water balance, enabling them to withstand drought 
stress.101 Osmolytes come in a wide variety of sizes and shapes. 
Because of their cellular defense mechanisms against dehydra-
tion loss, osmoprotectants are also called osmolytes.

Microbiome-induced resistance to drought stress

The plant microbiome is made up of bacteria found in the 
rhizosphere, endosphere, and phyllosphere, as well as other 
plant-related components, which include nectar and 

ChEMICAlS AND 
MIxTURES OF 
SUBSTANCES

ChEMICAlS 
USED AND ThEIR 
DOSAgES

SpECIES OF 
plANTS

USEFUl RESOURCE pROCEDURES OF IMpACT REFERENCES

Mannitol 30 mM Blackgram (Vigna 
mungo L)

Foliar application Osmotic adjustment and 
scavenge the stress-induced 
oxygen radicals

Dubey et al82

Mannitol + thiourea M (15 and 30 mM) 
or T (3.5 and 
7.0 mM)

Maize (Zea mays L) Foliar application Scavenge the stress induces 
oxygen radicals and osmotic 
adjustment.

Kaya et al83

gABA + proline gABA and proline 
(0, 0.25, 0.5, 0.75, 
and 1 mol/l)

Tobacco Under drought stress, gABA 
functions as an effective 
osmolyte to minimize the 
generation of ROS.

liu et al84

D-Ononitol Arabidopsis prevent water loss in plants Ahn et al85

D-pinitol Arabidopsis prevent water loss in plants Ahn et al86

gB 0, 50, 100, and 
200 mM

Phoebe 
hunanensis

Foliar application Improves cell membrane 
permeability and inhibits the 
buildup of membrane lipid 
peroxidase

Yang et al87

 Maize, barley Maintaining photosynthetic 
efficiency, protecting the 
thylakoid membrane, and 
adjusting the osmotic 
pressure

Ashraf et al88

 Flax (Linum 
usitatissimum)

Foliar application Enhanced antioxidative 
enzyme activity and 
increased osmolyte buildup

gupta et al89

 (0, 50 and 
100 mM)

Wheat Foliar application Under drought stress, 
increasing plant biomass, 
transpiration rate, and 
nitrogen and phosphorus 
concentration in roots

Shahbaz et al90

gB + SA gB (100 mM) and 
SA (0.724 mM)

Sunflower Foliar application Drought boosted the 
concentration of free leaf 
proline and oil.

hussain et al91

gB + SA + zinc 11.5 g/l 
gB + 140 mg/l 
SA + 4 g/l Zn

Maize Foliar application proline and sugar buildup, as 
well as antioxidative enzyme 
activity, have all improved.

Shemi et al92

Abbreviations: ABA, abscisic acid; JA, jasmonic acid; ROS, reactive oxygen species; MeJA, methyl jasmonate; SA, salicylic acid; gA, gibberellic acid; BRs, 
brassinosteroids; gABA, γ-amino butyric acid.

Table 1. (Continued)
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pollen.13,102 Plants produce a range of chemical compounds in 
their root exudate, which improves plant absorption, stimulates 
the development, and increases yield.103,104

Drought-tolerant microbiome plant recruitment may have 
developed through generations of recurring drought responses, 
resulting in positive and stable plant-microbe relationships that 
benefit both the microbe and the host plant.105,106 Drought-
stressed PGPMs can be studied to discover which microbial fea-
tures are advantageous to plants. Bacteria that promote plant 
growth (PG) have been discovered to increase nutrient bioavail-
ability in soils for root absorption,18,107 especially in areas where 
there has been a protracted period of drought.108 Plant growth-
promoting rhizobacteria have been intensively examined in vari-
ous crops, including soybeans, for their ability to mitigate the 
negative impacts of drought stress,4,109,110 wheat,111,112 chick-
pea,12,113 maize,114,115 rice,116 and mung bean.117,118

Drought resistance is provided through several PGP abili-
ties, the well-studied of which is the enzyme 1-aminocyclopro-
pane-1-carboxylate deaminase.

In Vigna mungo L and Pisum sativum, ACCd-producing 
bacteria were shown to be beneficial in decreasing the negative 
impacts of drought stress,119,120 maize,4,121 soybean,4 and 
Capsicum annuum.122 Plant endophytes that dwell in the spaces 
between cells have been discovered to help plants cope with 
drought stress by generating a range of mechanisms that enable 
them to grow even when stressed.123,124 Even though drought 
has a considerable impact on plant-associated microbial com-
munities, drought-tolerant microbiota has a significant benefi-
cial impact on the phenological development of stressed 
plants.125,126 As a consequence, endophytes are considered 
among the most effective and widely accessible bioinput to 
increase plant drought tolerance.4

Plants that are drought-stressed undergo various physiolog-
ical, metabolic, and molecular changes, all of which are medi-
ated or regulated by microbiota.

To deal with abiotic stress, endophytic microorganisms can 
serve as a source of several “protective” substances such as anti-
oxidants, polysaccharides, and proline.127

Stress tolerance seems to be conferred by microbial endo-
phytes through the activation and modulation of stress-respon-
sive genes, the production of metabolites that mitigate stress, 
and the production of ROS waste pickers.128

Etesami and Maheshwari125 found that enzymatic activity 
of SOD, CAT, and peroxidase was all higher in plants infected 
with beneficial microorganisms (ie, Bacillus cereus, B subtilis, 
and Serratia sp). Several enzymes have been reported to be 
responsible for the reduction in adverse effects of drought on 
plants, thus indicating that the species of bacteria might be 
used as tools to assist plants in dealing with drought stress and 
growing more effectively.129,130

Endophytic bacteria that produce melatonin, on the con-
trary, result in prolonged impacts on plant endogenous mela-
tonin quantity when they invade parts of the plant. Endophytes 

have been shown to affect tissue osmoregulation, stomatal con-
ductance regulation, and cell-wall elasticity maintenance, all of 
which help plants withstand drought.4

Using proteomic and metabolomic approaches, P indica 
colonization of moisture-stressed barley roots increased the 
formation of proteins that protect photorespiration, energy 
management, primary metabolism, transporters, and autophagy, 
and during drought.131 P indica increased the accumulation of 
proteins that protect photorespiration, energy management, 
primary metabolism, transporters, and autophagy.131 The mod-
ifications in the host’s amino acid metabolism might explain 
the favorable impact of P indica invasion on autophagy in 
drought-stressed plants.131

A long-term answer to the challenge of food security under 
abiotic stress settings is to integrate microbiota with agricultural 
practices. Notwithstanding, using these microbes in the field 
necessitates addressing a variety of issues, such as agronomic 
systems, microbe establishment, microbial inoculant invasion of 
soil and plant, and biosynthesis of bioactive metabolites primary 
and secondary metabolites involved in plant growth regulation, 
all of which have been done under a variety of soil types, cli-
matic condition, and genotype conditions.29,132,133

Late embryogenesis abundant proteins. Late embryogenesis 
abundant (LEA) proteins have traditionally been detected in 
seeds, but they may also be found in the plant’s other reproduc-
tive tissues. Abscisic acid or ecological stress cues such as 
drought, low temperature, and salt, among others, activate the 
gene. They may act as water-holding molecules in ion seques-
tration and help in the stability of membranes and proteins, 
according to certain hypotheses.134 Late embryogenesis abun-
dant proteins have been examined in diverse plants by several 
researchers,135 barley,135,136 rice,137 and wheat,138 to determine 
their role in drought stress tolerance.

Heat shock proteins. Plants in the field are subjected to a variety 
of biotic and abiotic stressors.139 Plants react to these challenges 
by maintaining transcriptional and translational control over 
several metabolic processes.140 It requires a team of molecular 
chaperones, like heat shock proteins (HSPs), to unravel the 
genetically diverse biological stress pathways.141 Although 
HSPs are commonly overexpressed in plants reacting to abiotic 
stress, their functional involvement in stress tolerance has 
received little attention. Arabidopsis thaliana is an example of a 
plant,142 soybean,143,144 and rice.145,146 The function of these 
HSPs has been investigated. Two nuclear/cytosolic HSPs iden-
tified in soybeans, GmDjp1 and DNA, have been connected to 
the abiotic 144 and biotic143 stresses Heat shock protein90s, also 
known as glucose-regulated protein 94 (GRP94), are ER pro-
teins that are essential for drought stress tolerance in drought-
tolerant plants. Overexpression of SoyBiPD (soybean BiPs), 
another ER-resident HSP70s known as BiPs, enhanced drought 
stress resistance in tobacco (luminal-binding proteins).
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Profiling impact of the unculturable microbiome in drought stress 
tolerance. Droughts are predicted to be more prolonged, fre-
quent, and severe in the future than they have been in the past. 
It requires the development of innovative and fast-accessible 
technologies for enhancing and restoring drought resistance in 
crops. Plants and other land animals should cope with the 
drought created by diurnal and seasonal water changes.147,148 
Plants are built to fight, endure, and avoid drying circumstances 
by changing their root architecture and development, altering 
their physiology, and closing their stomata on their above-
ground segments.149 Owing a better knowledge of the complex 
mechanism and feedback between plants and their microbial 
partners before and after drought would undoubtedly pave the 
way for better drought resistance in agricultural production by 
using the rhizosphere microbiome. Several studies have 
revealed that during drought, the microbiome of the plant root 
alters in favor of a few chosen microbial taxa, displacing the 
bulk of other microbial lineages.150,151

The increase in the number of genes involved in the break-
down of complex plant polysaccharides, indicating the devel-
opment of oligotrophic bacteria, is mainly responsible for this 
change in microbial communities.105 One reason for Gram-
positive bacteria’s development in dry environments is that 
they are metabolically more active and hardier than Gram-
negative bacteria.105 Furthermore, research has shown that this 
abundance is linked to the length and severity of the drought 
and that it is thought to vanish whether water is reintroduced 
to the root system promptly.108

Recent advances in omic biology, such as metagenomics, 
proteomics, and metabolomics, have allowed scientists to group 
genomes, proteomes, and metabolomes from different environ-
ments to understand better soil and plant-microbial dynamics, 
structure, and function communities, including secondary 
metabolite biosynthesis and genes.99,152 This research would 
benefit genes, glucose and secondary metabolites, transport, 
and metabolic pathways linked to bacterial enrichment under 
drought. In addition, the information obtained will help in the 
discovery of genetic features associated with these bacterial 
populations. The usefulness of multiomic approaches in under-
standing microbial features under drought has been proven in 
many recent studies153 Researchers investigated the dynamics 
of iron metabolism in a drought-induced rhizosphere microbi-
ome using metagenome-guided comparative genomics.9,154 
They discovered a link between drought, iron metabolism, and 
the plant root microbiome.154 Michaletti et al155 looked at 
some of the critical metabolites that may be used to construct 
models that show the association between yield-related param-
eters and different metabolic pathways while analyzing the 
proteome and metabolomics of spring wheat leaf tissues. 
Researchers studied soybean’s metabolomic and transcriptome 
profiles treated with melatonin throughout the grain filling 
stage under drought stress conditions via modifying secondary 
metabolite formation pathways.156

Utilization of genome editing technologies and tools

The utilization of GE technologies and tools has revolution-
ized the field of genetics and has had a profound impact on 
various areas of research and applications.157 Genome editing 
refers to the precise modification of an organism’s DNA, allow-
ing scientists to make targeted changes to specific genes or 
genetic sequences.158 One of the most widely used GE tech-
nologies is CRISPR-Cas9. CRISPR-Cas9 is a versatile and 
efficient tool that uses a guide RNA molecule to direct the 
Cas9 enzyme to a specific DNA sequence, where it can make 
precise cuts or introduce desired changes. This technology has 
greatly simplified the process of GE and has made it more 
accessible to researchers across different disciplines. The utili-
zation of GE technologies has opened up new possibilities in 
agriculture. Researchers are using these tools to develop crops 
with improved traits, such as increased yield, enhanced nutri-
tional content, and resistance to pests, diseases, and environ-
mental stresses.159 Genome editing has the potential to 
accelerate the breeding process and reduce the time required to 
develop new crop varieties.160 Genome editing technologies are 
also being used in basic research to study gene function and 
understand the underlying mechanisms of various biological 
processes.161 By selectively modifying genes in model organ-
isms, scientists can gain insights into the roles of specific genes 
and their contributions to development, disease, and other bio-
logical phenomena.162 However, it is important to note that the 
utilization of GE technologies also raises ethical and societal 
considerations. The potential for off-target effects and unin-
tended consequences of GE must be carefully evaluated and 
addressed.163 There is an ongoing need for responsible and 
transparent governance to ensure that these technologies are 
used ethically and for the benefit of society.164 It is challenging 
to decipher the processes behind the harm caused by drought 
stress for the development of drought-tolerant plant. As a 
result, introducing the desired drought stress-resistant traits 
into many crops will be simpler by using transgenic or GE 
technologies. CRISPR has emerged as a cutting-edge method 
for GE in plants, allowing them to generate desirable traits and 
boost crop output under abiotic stress situations (Figure 1).

CRISPR/Cas9 has been found in a range of crops lately, 
including bread wheat,165,166 potato,167 and model plants 
including Arabidopsis thaliana168 and rice.169 Increased expres-
sion of a variety of transcription factors (TFs) and genes 
involved in drought stress signaling aids plants in accumulating 
various metabolites, signaling molecules, and osmolytes, 
increasing drought stress tolerance. Plant dryness is caused by 
sensitive (S) gene expression, which causes hormonal imbal-
ance, increases the formation of ROS, and decreases antioxi-
dant activity. The expression of TF genes may also be through 
GE. The AREB1 TF gene’s promoter activity was enhanced in 
Arabidopsis using a modified Cas9 (dCas9) linked with the his-
tone acetylation transferase domain. Through the positive reg-
ulation of drought-tolerant genes, the genome-edited lines 
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demonstrated increased transcription of the AREB1 gene and 
acquired drought tolerance.170 Plant genetic engineering has 
been transformed because of CRISPR technology’s efficiency, 
resilience, and ease of engineering. The current status of this 
technology can revolutionize agriculture for improved crop 
production, increase crop resistance to biotic and abiotic chal-
lenges, and increase climate change resilience. Drought, heat, 
and salt are all abiotic stress elements that considerably impact 
crop output across the globe. Various complicated signaling 
networks regulate plant responses to stress stimuli. CRISPR 
technology’s enhanced tools, such as base and prime editing, 
have considerably increased GE possibilities in agricultural 
plants without the requirement for DSBs.171 The CRISPR-
Cas technology has opened up new possibilities in wheat 
research for improving grain quality. The TaGASR7 gene, 
linked to grain length, is part of the Snakin/GASA gene fam-
ily.172 A CRISPR/Cas9 system that targeted TaGASR7 via the 
shoot apical meristem produced 11 mutant plants with desired 
alleles, and 3 plants passed the mutation down to the next 
cycle.173 The TaGW2 gene, which encodes RING-type E3 
ubiquitin ligase and is believed to be a negative regulator of 
wheat grain size and 1000-grain weight, was targeted using the 
CRISPR/Cas9 method. All 3 copies of the TaGW2 gene were 
mutated in the T1 knockout plant.174,175 Compared with wild-
type plants, mutants exhibited dramatically enhanced attrib-
utes such as 1000-grain weight, grain area, grain breadth, and 
grain length. Wheat grains with a lower immunogenic response 
were obtained using CRISPR/Cas9 technology.172 The 
ARGOS family genes, specifically the Auxin-Regulated Gene 
Involved under Organ Size 8 (ARGOS8), block the ET 

signaling pathway in drought circumstances resulting in 
increased yield and drought stress tolerance. In maize, on the 
contrary, endogenous expression of the ARGOS8 mRNA is 
very variable and low, according to the research.176 
Understanding gene function and the mutation necessary to 
bring about the desired change would be a key hurdle for suc-
cessfully using CRISPR for crop improvement. It is worth not-
ing that the targets and features generated using CRISPR are 
from functional research on model plants. CRISPR success 
must, however, be expanded to field crops to solve the issues of 
boosting food supply in the face of climate change. Similarly, in 
each plant species, genetic transformation processes are con-
fined to a few genotypes referred to as “models” These plants 
often exhibit poor agronomic performance, like low yield, and 
are sensitive to several biotic and abiotic stressors. Introducing 
the CRISPR platform to field crops would save years of breed-
ing time, but the barrier will remain a significant barrier to fully 
achieving the CRISPR promise.177 Overall, these GE methods 
will open up new avenues for nucleotide-specific alterations. 
They may be actively researched in the future to enhance 
drought tolerance in crops, making them a powerful weapon 
for maintaining global food security.

Conclusions
Conclusively, the plant-associated microbiome has demon-
strated potential qualities in reducing the stress caused by 
drought on agricultural plants. Improved drought resistance in 
plants may be a result of its capacity to increase water intake 
and retention, create stress protectants, and strengthen defense 
mechanisms against oxidative stress. It is crucial to remember 
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that the microbiome’s efficacy might vary based on a number 
of circumstances. To fully use the potential of the plant-asso-
ciated microbiome for sustainable agriculture and drought 
control, further study and knowledge of the individual micro-
organisms and their interactions with various plant species 
and environmental circumstances are required. Many strate-
gies are needed to address the adverse effects of drought stress 
on agricultural plants, including PGPR and endophytes, seed 
lining with exogenous chemicals, growth hormones, biostimu-
lants, and genetic modification. Using an omic approach that 
includes genomics, metabolomics, proteomics, and transcrip-
tomics can help us better understand critical drought-tolerant 
genes and decipher complex signaling steps and gene struc-
tures associated with drought tolerance in many plants. 
Drought-tolerant products can be developed with the help of 
revolutionary methods like CRISPR/Cas9 GE tools, mini-
mizing the global risk of food insecurity. Furthermore, learn-
ing more about the mechanisms through which soil 
microorganisms impact plant drought tolerance and recovery, 
as well as their interest and use in field situations, has a lot to 
say about increasing drought resistance in agricultural produc-
tion systems. Novel treatments that incorporate physiological, 
molecular, and genetic methodologies would be advantageous 
to combat stress-related diseases.
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