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Introduction

Aspergillus producing AF from contaminated ani-
mal feed, a secondary metabolite, is a global problem 
with high economic impacts on animal and human 
health. Contaminations occur before harvest, and 
during the storage and distribution of seeds. In sub-
Saharan Africa, the global agricultural loss associated 
with AF contamination was estimated at 40% of the 
global production, corresponding to $450 million 
(Gbashi et al. 2018). Aflatoxins refer to a family of over 
18 related compounds, principally B1, B2, G1, and 
G2 (Ibrahim 2019), produced primarily by the closely 
related fungi, Aspergillus flavus and Aspergillus parasiti-
cus (Rao et al. 2020). Aflatoxins are polyketide-derived 
secondary metabolites. AflR encodes a protein contain-
ing a  zinc-finger binding domain that interacts with 
target sequence DNA (Lee et al. 2006). AflS encodes 

a costimulatory regulatory protein that enhances the 
transcription activity (Liao et al. 2020). 

A. flavus and A. parasiticus are dominant species 
found in crops (Kim et al. 2017) that share morphologi-
cal similarities and closely cluster in phylogeny (Godet 
and Munaut 2010). Thus, the distinction between these 
species is difficult because microscopic identifica-
tion requires experts in filamentous fungi taxonomy 
(El Khoury et al. 2011). In addition, the morphologi-
cal methods of identification are inaccurate because of 
close inter-species similarities. In contrast, molecular 
techniques save labor time and their sensitivity and 
specificity, provide distinct species closeness and dis-
tance estimations without sophisticated culture and 
further confirmation steps (Ahmad et al. 2010).

Recently, several molecular approaches have been 
used to differentiate among many Aspergillus species, 
including random amplified polymorphic DNA (RAPD) 
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A b s t r a c t
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(Yin et al. 2009; Daghriri et al. 2018), amplified fragment 
length polymorphism (AFLP), with specific diagnostic 
PCR primers, polymorphic microsatellite marker anal-
ysis, microsatellite length polymorphism (Healy et al. 
2004), and DNA sequencing (Nicholson et al. 1998).

The commonly used molecular approaches often tar-
get the analysis of the coding sequences for rRNA that 
contain both conserved and variable regions (Paterson 
2006). Fungal rDNA operons have been shown to con-
tain variability regions within genera (Levy et al. 2001). 
However, PCR-RFLP has been used to identify varia-
tions in DNA sequences, and it was shown to recognize 
closely related organisms using inter-phylogenetic rela-
tions (Zarrin and Erfaninejad 2016). This technique has 
been proven to be fast, sensitive, and reliable in deter-
mining the genetic variability among A. section Flavi 
species (Bagyalakshmi et al. 2007; Mohankumar et al. 
2010; Lavkor 2020). Currently, there is a limited under-
standing of molecular variability among populations of 
A. flavus isolated from feed sources. Characterization 
of A. flavus requires an expert polyphasic approach to 
fully confirm its taxonomic status and develop an effec-
tive control strategy (Singh et al. 2018; Frisvad et al. 
2019; Martinez-Miranda et al. 2019). Using molecu-
lar biology methods combined with morphology has 
revealed the diversity and genetic variability within the 
A. flavus species (Okoth et al. 2018).

In the present study, we used the PCR-RFLP target-
ing the aflR-aflS(J) intergenic spacer (IGS) of the AF 
biosynthesis cluster to complement the findings of the 
morphological characterization. The main objectives 
were to establish and assess the genetic relationships 
and variability patterns of A. flavus strains isolated from 
feeds in the southwestern Saharan region of Algeria 
using PCR and sequence analysis of the IGS region, 
followed by phylogenetic analysis.

Experimental

Materials and Methods

Fungal isolates and morphological identifica-
tion. Thirty fungal isolates were obtained from various 
animal feeds. Out of these, twenty were identified as 
Aspergillus, and 15 out of 20 were identified as A. sec-
tion Flavi. Samples were collected in the livestock feed 
manufacturing unit’s storage facilities in Southwestern 
Algeria. As described earlier, the strains were isolated 
using Potato Dextrose Agar (PDA) (Pitt and Hocking 
2009). Strains identification included macroscopic 
(colony color and morphology) and microscopic (head 
seriation, conidia morphology, and size) characteristics. 
The identification was performed according to the cri-
teria defined for the taxonomic keys and guidelines for 

the Aspergillus genus (Pitt and Hocking 2009). All iso-
lates were cultured on Aspergillus flavus/parasiticus agar 
(AFPA) (bacteriological peptone 10 g; yeast extract 20 g; 
ferric ammonium citrate 0.5 g; bacteriological agar 
15 g; dichloran 2 mg (0.2% in ethanol, 1.0 ml); distilled 
water 1 l). One hundred microliters of spore suspension 
were inoculated in the center of 60 mm petri dishes and 
then incubated at 25°C for 48 h in the absence of light 
(Abriba et al. 2013; Hossain et al. 2018) as a particular 
growth condition for rapid identification of Aspergillus 
belonging to A. section Flavi (Pitt et al. 1983). At 48 h of 
culture on AFPA, the colonies of A. flavus and A. para-
siticus strains appear with an orange color in the bottom 
of the culture, whereas the other species of Aspergillus 
section Flavi do not (Bothast and Fennell 1974; Hamsa 
and Ayres 1977; Pitt et al. 1983).

Molecular identification of fungal strains. Since 
the isolation and characterization by culture fail to dif-
ferentiate between A. parasiticus and A. flavus, we used 
the molecular tools to perform this analysis.

Culture preparation. Fungal mycelia were produced 
by inoculating the fungal conidia with a glass Pasteur 
pipette in 250 ml Erlenmeyer flasks containing 150 ml 
Potato Dextrose Broth (PDB) and incubated for 48 hours 
at 25°C under orbital agitation at 150 rpm. Mycelia were 
harvested following filtration on 0.45 µm pore size filters 
and then snapped frozen into liquid nitrogen. Frozen 
mycelia were grounded into a fine powder using a mor-
tar and pestle and then stored at –80°C until use.

DNA extraction. One hundred mg of powdered, 
frozen mycelia were transferred into a 1.5 ml micro-
centrifuge tube, thawed, and resuspended into 800 µl of 
DNA extraction buffer (100 mM TRIS-HCl (pH 7.4), 
20 mM EDTA (pH  8.0), 1.4 mM NaCl, 2% sodium 
dodecyl sulfate) as described by (Lee et al. 2006). Sub-
sequently, 10 µl of Proteinase K (20 mg/ml) was added, 
and the solution was incubated for 20 min at 60°C. The 
cell lysate was supplemented with 800 µl of phenol-
chloroform-isoamyl alcohol (25/24/1, v/v/v) and then 
mixed by inversion until an emulsion was obtained. Fol-
lowing centrifugation for 5 min at 13,000 rpm at 20°C, 
the upper (aqueous) phase was transferred into a new 
microfuge tube. Four hundred microliters of chloro-
form/isoamyl alcohol (24:1) were added and mixed by 
inversion, and then the mixture was centrifuged for 
10 min at 13,000 rpm at 4°C. The upper aqueous phase 
was transferred into a new microfuge tube and sup-
plemented with 0.7 ml of cold 2-propanol for instant 
DNA precipitation. The precipitate was centrifuged 
for 10 min at 4°C, 13,000 rpm, and then the superna-
tant was discarded. The pellet was rinsed with 500 µl 
of 70% ethanol to remove residual salts. Following the 
last centrifugation at 13,000 rpm for 5 min at 4°C, 
ethanol was discarded, and the DNA pellet air dried. 
DNA pellet was then resuspended into 50 µl of sterile 
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ultrapure water. To remove the contaminant RNA, 5 µl 
of RNase (20 mg/ml) was added, incubated for 15 min 
at 37°C, and then heat-inactivated for 20 min at 70°C. 
The quality of DNA was checked following DNA sepa-
ration by electrophoresis in a 0.8% agarose gel in TAE 
(40 mM Tris, 20 mM sodium acetate, and 1 mM EDTA, 
pH = 8.6) buffer and a high molecular weight marker. 
DNA concentration was measured at the optical den-
sity (OD) of 260 nm and the purity at 240 and 280 nm 
wavelengths using a UV spectrophotometer.

Primers. The non-coding intergenic sequences 
(IGS) that separate the aflR and aflS(J) genes of fun-
gal ribosomal DNA operon were used as a target for 
PCR amplification to detect A. flavus and A. parasiti-
cus. Sequences of the primers used were as follows: 
IGS-F, 5’-AAGGAATTCAGGAATTCTCAATTG-3’ and 
IGS-R, 5’-GTCCACCGGCAAATCGCCG-TGCG-3’ 
(Ehrlich et al. 2003; 2007; El Khoury et al. 2011).

PCR amplification. PCR was performed using 
200 ng of a fungal DNA template (5 µl), 1 µl of each of the 
IGS-R and IGS-F (20 pM) primers (Eurofins Genom-
ics, France), 25 µl of Econo Taq Plus Green 2 × Master 
Mix (Euromedex, France), and 18 µl of sterile H2O. The 
Master Mix contained: 0.1 U/µl of Econo Taq DNA pol-
ymerase – reaction buffer (pH 9.0), 400 µM each (dATP, 
dGTP, dCTP, and dTTP); 3 mM MgCl2 and blue and 
yellow tracking dyes. Microtubes containing the PCR 
mix were transferred into a thermocycler and submitted 
to 34 cycles of amplification following an initial dena-
turation of DNA at 94°C for 5 min. Each cycle consisted 
of a denaturation step at 95°C for 1 min, an annealing 
step at 46°C for 1 min, and an extension step at 56°C 
for 1.5 min, with a final extension at 60°C for 10 min 
added to the last cycle. After amplification, the PCR 
products were stored at 4°C until used. PCR products 
were analyzed by electrophoresis separation on a 1.5 % 
agarose gel, and PCR-specific bands visualized by UV 
trans-illumination. The size of the amplicons was esti-
mated using a 1 kb DNA ladder. The PCR products were 
purified using the clean-up Nucleospin kit (Machery 
Nagel, France), using the manufacturer’s instructions. 

Restriction enzyme digestion of PCR-IGS ampli-
cons: PCR-IGS-RFLP. PCR-RFLP using Bgl II restric-
tion endonuclease to digest the IGS product was shown 
to distinguish between A. parasiticus and A. flavus 
(El Khoury et al. 2011). Here we used this technique 
to examine whether the strains identified as A. section 
Flavi could be identified as A. parasiticus and/or A. fla-
vus. The PCR-IGS amplicons were digested with the 
restriction endonuclease BglII (Promega, France). The 
reactions were performed using a total of 0.5 µg of puri-
fied PCR product in 10 µl, 2 μl of 10 × Bgl II incubation 
buffer, 1 µl of Bgl II (10 U/µl), and 7 µl ultrapure H2O 
in a total volume of 20 µl. The mixture was incubated 
at 37°C for 2 h, and then separated by electrophoresis 

FZM1	 Aspergillus flavus strain A9 chromosome 3 (97.48%)
FAK45	 Aspergillus flavus strain A9 chromosome 3 (98.12%)
FSZ47	 Aspergillus flavus strain SU-16 chromosome 3 (99.37%)
FDY50	 Aspergillus flavus strain SU-16 chromosome 3 (99.67%)

Table I
Aspergillus flavus isolates identity based on the BLAST NCBI data.

Strain Identity (%)

in a 2% agarose gel. Restriction bands were revealed 
using a  UV trans-illumination and a Gel-doc Image 
Lab system (Bio-Rad, France).

Sequencing, sequence alignment, and phyloge-
netic analysis. A total of 1 µg of purified PCR product 
of each amplicon was shipped to Eurofins Genom-
ics (Germany) for sequencing using IGS‑F primer. 
Sequence data were sent as electronic files to the lab 
for examination and use for bioinformatic analyses.

DNA BLAST analysis of obtained sequences was 
done online using the NCBI/NIH website to identify 
the closest sequences that match our new sequences. 
Multiple sequence alignment was performed using 
Clustal Omega software (The EMBL-EBI search and 
sequence analysis tools APIs in 2019). Sequences were 
submitted to GenBank on the NCBI website (http://
www.ncbi.nlm.nih.gov) under the reported accession 
numbers (Table I). Available sequences of aflR-aflS(J) 

intergenic region of reference strains were obtained 
from the GenBank database. The phylogenetic trees of 
isolates and their close relatives based on aflR-aflS(J) 
intergenic region were derived from sequence align-
ment using Clustal Omega.

Results and Discussion

The flavus group of Aspergillus was reported to be 
a significant cause of yearly economic losses reaching over 
25% (Klingelhöfer et al. 2018), because of contamination 
of agriculture and feed components. This type of afla-
toxin-producing fungi are opportunistic pathogens that 
contaminate corn, wheat, peanuts, and other food crops 
in many places of the world and causes severe diseases 
when ingested. Out of 30 fungal isolates, 20 were identi-
fied as Aspergillus, and 15 out of the 20 were character-
ized as A. section Flavi. Macroscopic and microscopic 
examinations of these 15 strains showed yellow-green 
colonies after growth on PDA, with spherical and rough 
spores/smooth to finely rough and globose conidia.

AFPA was used to identify both A. parasiticus and 
A. flavus (Hossain et al. 2018). Four colonies with yel-
low to green color with a white border surrounding 
the yellow to the greenish surface and an intense yel-
low-orange reverse color were selected as A. flavus and 
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A. parasiticus (Fig. 1). This orange color is due to the 
reaction of ferric citrate with aspergillic acid, forming 
a colored complex. The eleven remaining colonies pro-
duced creamy reverse color on AFPA, characteristic of 
Aspergillus oryzae species (Pitt et al. 1983; Rodrigues 
et al. 2009; Frisvad et al. 2019).

 In previous studies, AFPA alone was used to iden-
tify A. flavus and A. parasiticus (Abriba et al. 2013; 
Fakruddin et al. 2015; Hossain et al. 2018; Krulj et al. 
2020). However, based only on the phenotypic charac-
teristics, it was impossible to distinguish between the 
two closely related species A. flavus and A. parasiti- 
cus because of overlapping morphological features 
(Rodrigues et al. 2009). Thus, molecular tools are nec-
essary to differentiate these two species further. In the 
present study, we performed a molecular genetic char-
acterization of the isolates selected to examine whether 
the four isolates could be A. parasiticus or A. flavus.

DNA samples from the four isolates were used as 
templates for PCR amplification using IGS-specific 
primers. These primers were highly specific for aflR-
aflS(J) IGS fragments. DNA samples from all four fun-
gal strains produced the expected 674 bp IGS amplicon 
with no additional or non-specific bands (Fig. 2). How-
ever, this 674 bp product was identical for both A. flavus 
and A. parasiticus. Therefore, we needed to examine the 
PCR product by RFLP further.

Previous studies indicated that PCR-IGS-RFLP 
using restriction enzymes that cleave the PCR prod-
ucts into sub-fragments are valuable tools for detect-
ing and differentiating between A. flavus and A. para
siticus (El Khoury et al. 2011; Nikolic et al. 2018; Lavkor 
2020). Therefore, we used the restriction endonuclease 
BglII to digest the four PCR products. Results shown in 

Fig. 3 clearly show that digestion of all the PCR products 
with BglII resulted in an identical profile yielding three 
fragments of 362, 210, and 102 bp. This typical profile 
demonstrated that all species were A. flavus. In contrast, 
BglII digestion should produce a profile with only two 
fragments of 311 bp and 362 bp with an IGS amplicon 
of A. parasiticus (El Khoury et al. 2011). Our analysis 
failed to detect this last profile among the four analyzed.

Fig. 1. Phenotypic characterization of A. flavus isolates grown on A. flavus/parasiticus agar (AFPA) medium.
Colony color: white-green colony diameter 18 mm, colony reverse color: yellowish orange after seven days of incubation at 25°C.

Fig. 2.  PCR amplification of intergenic sequences of the four iso-
lates. IGS-F and IGS-R primers were used for PCR amplification 
of the intergenic sequences in total DNA isolated from the four 
fungal isolates as described in Material and Methods. A  total of 
5 µl of each PCR product was separated in a 1.5% agarose gel by 
electrophoresis. Lane 1 kb ladder (L) DNA marker, Aspergillus 
flavus isolates are indicated on the top of each lane. The sizes of 
selected DNA fragments are indicated on the sides of the panels.
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Our findings were similar to those reported by 
(Kana et al. 2013), which indicate that all A. flavi iso-
lates recovered from all the commodities (feedstuffs and 
animal feed) were A. flavus. In contrast, other studies 
(Stanković et al. 2015; Nikolic et al. 2018) found the 
presence of A. parasiticus on wheat kernels and corn. 
This difference may result from the geographic isola-
tion and the local atmosphere conditions (temperature, 
humidity), which might cause shifts in mycobiota dis-
tribution and composition of cereals observed among 
different regions.

Accurate identification and differentiation between 
this aflatoxigenic species are of great importance in 
determining toxicological risks due to the difference 
in the toxic profile of each species in the section Flavi. 
(Martínez-Culebras and Ramón 2007). It is well known 
that A. parasiticus produces only “B” and “G” type tox-
ins, whereas A. flavus produces “B” type toxins but also 
cyclopiazonic acid, versicolorin, and sterigmatocystin 
(Wilson et al. 2002; Bailly et al. 2018). Metabolite analy-
sis is a multistep process that requires long term culture 
and mycotoxin production (14 d) followed by extrac-
tion and purification for chromatographical analysis. In 
addition, this method requires multiple and expensive 
instruments to perform all these processes. In contrast, 
PCR-RFLP is a rapid and sensitive method requiring 
minimal investment and was shown to be a reliable 
method for taxonomic studies of Aspergillus species 
(Martínez-Culebras and Ramón 2007).

The Aspergillus genome is organized into eight 
chromosomes where the genes encoding aflatoxins are 
located in the 54th cluster, 80 kb from the telomere 
of chromosome 3 (Georgianna and Payne 2009). They 

include regulatory genes aflR, aflS(J), and several struc- 
tural genes (Yu et al. 2004; Paterson 2006; Price et al. 
2006). The aflR and aflS(J) genes are separated by 
a 737-bp intergenic region (Yu 2012). Sequence vari-
ability within this intergenic fragment has been used 
to establish the phylogenetic organization of A. flavus 
genotypes (Al-Wadai et al. 2013).

To confirm the PCR-RFLP data, suggesting that all 
our four isolates were A. flavus, we sequenced their 
amplicons using the IGS-F primer. The sequences 
were deposited in NCBI/Genbank under the following 
accession numbers (Table I). Sequence data were used 
for blast analysis against the Genbank DNA sequence 
database and to produce multiple sequence alignments 
(Fig. 4). The highest homology of the sequences of the 
isolates with those of sequences of the GenBank refer-
ence strains was used to define the isolates. All four 
isolates were identified as A. flavus with a similarity 
percentage ranging from 97.48% to 99.67% to A. fla-
vus RefSeq from NCBI (Table II and III). In addition, 
sequence analysis confirmed the presence of the two 
restriction sites for BglII in the amplicon that yielded 
the three fragments (362, 210, and 102 bp). Thus, the 
aflR-aflS(J) IGS-RFLP assay with BglII is sufficient to 
detect A. flavus without sequencing. Therefore, this 
assay can be used for epidemiological studies to detect 
the prevalence of A. flavus.

Furthermore, this sequence analysis showed varia-
tion among the A. flavus isolates. This variation included 
single and multiple substitutions, insertions, inver-
sions, and deletions. Sequence comparison of FSZ47 
and FDY50 isolates with that of the reference strain 
SU 16 showed the highest sequence similarity (99,37%, 

Fig. 3.  PCR and RFLP analyses of fungal amplicons. A total of 5 µl of PCR products of each of the isolates (FZM1, FAK45, FSZ47 and 
FDY50) was digested with Bgl II restriction endonuclease as described in Materials and Methods. Nondigested (ND) and digested (D) 
products were loaded and separated by electrophoresis in a 2% agarose gel. A 100 bp DNA ladder (L) was used as molecular weight 
marker, the positions of 100, 500 and 1,000 bp fragments are indicated. Positions of the 362, 210 and 102 bp fragments generated by BglII 

digestion are indicated.
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Fig. 4.  Nucleotide sequence alignment of the four isolates with four reference strains. The names of the four isolates are in green.
Nucleotide sequence alignment was performed using Clustal software (–) represent similarity, (.) represent deletion.

Nucleotide changes are shown in bold font.
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and 99.67%, respectively). Since the reference strains 
A9, K54A, and Tox4 are 100% similar in the studied 
segment, their similarity with FZM1 and FAK45 iso-
lates was found to be 97.48% and 98.12% respectively. 
Therefore, the highest divergence compared to the 
existing reference strains was seen for the sequences of 
the FZM1 isolate. A total of 13 positions of divergence 
involving single nucleotide polymorphisms (SNPs) as 
well as double and multiple nucleotide polymorphisms 
(MNPs) were observed (Fig. 4). In contrast, only minor 
variations were seen in FDY50 isolate corresponding to 
SNPs at the positions 3, 5 and 28 of the sequence. On 
the opposite side, the isolate FAK45 showed the high-
est genetic similarity with A. flavus reference strains 
A9, K54A, and Tox4 with only minor variations at the 

positions 50 and 103. Most of the observed polymor-
phisms were nucleotide substitutions, with only 10% 
being insertions and inversions, as shown in Table IV. 
Nucleotide deletions and SNPs in AF coding genes are 
often associated with the inability of A. flavus to produce 
aflatoxins. Deletion strains of A. flavus were reported 
in many studies (Chang et al. 2005; Donner et al. 2010; 
Adhikari et al. 2016; Hua et al. 2018).

However, not all AF non-producing strains have 
deletions in the AF biosynthesis gene cluster. The strain 
NRRL 30797 known as a biocontrol agent has a few 
substitutions in the aflatoxin biosynthesis gene cluster 
(Chang et al. 2012). This genetic variability may compli-
cate the diagnosis and, therefore, the control of A. flavus 
infection and aflatoxin contamination of food and feed. 
Detecting particular strains of A. flavus, such as NRRL 
30797, requires sequencing or a special PCR-RFLP 
capable of detecting the single substitutions. In the 
present study, the IGS region has been used as a target 
for PCR and sequencing for phylogenetic analysis. The 
selection of this region was motivated by the sequence 
variability between different species but only minor 
variations within isolates of the same species. The phy-
logenetic tree of isolates and their close relatives based 
on the aflR-aflS(J) intergenic region was constructed 
using Clustal Omega (Okoth et al. 2018) to illustrate 

103, 385, 478	 C with T (substitution)
161	 Insertion of G
380, 477, 508	 T with C (substitution)
475	 C with G (inversion)	 FZM1: Aspergillus flavus strain FZM1 aflR-aflS(J) 
479–481	 Insertion of ACA	 intergenic region, partial sequence

482	 A with G (substitution)
483	 G with T (substitution)
544	 A with T (inversion) 
50	 T with C (substitution)	 FAK45: Aspergillus flavus strain FAK45 aflR-aflS(J)
103	 C with T (substitution)	 intergenic region, partial sequence

3	 C with T (substitution)	 FDY50: Aspergillus flavus strain aflR-aflS(J)
5, 28	 G with A (substitution)	 intergenic region, partial sequence

Table IV
Nucleotide variations in aflR-aflS(J) intergenic region sequences of Aspergillus flavus isolates.

Nucleotide
position Nucleotide variation Isolate

CP051037.1	 A. flavus strain A9 chromosome 3
CP051085.1	 A. flavus strain K54A chromosome 3
CP051045.1	 A. flavus strain Tox4 chromosome 3
CP047251.1	 A. flavus strain SU-16 chromosome 3

Table III
Genbank accession numbers

of the Aspergillus flavus reference strains.

Accession
number Strain

FZM1	 OL944584.1	 A. flavus strain FZM1 aflR-aflJ intergenic region, partial sequence
FAK45	 OL944586.1	 A. flavus strain FAK45 aflR-aflJ intergenic region, partial sequence
FSZ47	 OL944587.1	 A. flavus strain FSZ47 aflR-aflJ intergenic region, partial sequence
FDY50	 OL944588.1	 A. flavus strain FDY50 aflR-aflJ intergenic region, partial sequence

Table II
Genbank accession numbers of the Aspergillus flavus isolates.

Isolate Accession
number Strain
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the relationships of isolates among A. flavus species. 
The phylogenetic tree obtained clearly shows that the 
A. flavus strains clustered into three major clades. In 
addition, several sub-clades indicate a wide variation 
among A. flavus species (Fig. 5). FSZ47 and FDY50 
isolates were clustered in one clade and were found 
to be closely related to A. flavus strain SU 16 forming 
a mixed cluster. In contrast, FAK45 and FZM1 isolates 
were found to form distinct sub-clades. Variations exist 
among A. flavus isolates; those with SNPs share a closer 
relationship clustered with A. flavus strain SU16; while 
the isolate FAK45 clustered with a distinct sub-clade. 
These data agree with the previous finding reported 
by different groups (Krimitzas et al. 2013; Chiba et al. 
2014). Recently, new direct detection methods of A. fla-
vus through AF-B1 and Zearalenone by Raman spec-
trometry (Yang et al. 2021) or AF-B1 alone using a ort-
able Raman spectrometer combined with colloidal Au 
nanoparticles (Wang et al. 2022) were reported. This 
latter rapid technique provides quantitative measure-
ment of AF-B1 in grain crops.

Conclusions

The four diagnosis methods (phenotyping, PCR, 
PCR-RFLP, and amplicon sequencing) have shown 
different sensitivity levels of fungal characterization. 
Phenotypic tools were limited to A. section Flavi iden-
tification; PCR alone failed to distinguish A. parasiti-
cus from A. flavus; PCR-RFLP in this study was able to 
detect A. flavus only. However, it failed to distinguish 
between different strains of A. flavus. Sequencing and 
sequence analysis was able to distinguish between the 
A. flavus strains. These data established the selection 
criteria of the methods to use depending on the seg-
regation level of fungal strains. New methods based 
on Raman spectrometry to measure AF-B1 alone or in 
combination with other fungal components might pro-
vide additional help for the detection of the pathogenic 
A. flavus in grain crops. 
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