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Background: Understanding the dynamics of the COVID-19 pandemic and evaluating the efficacy of con- 

trol measures requires knowledge of the number of infections over time. This number, however, often 

differs from the number of confirmed cases because of a large fraction of asymptomatic infections and 

different testing strategies. 

Methods: This study uses death count statistics, age-dependent infection fatality risks, and stochastic 

modeling to estimate the prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infections among adults (aged 20 years or older) in 165 countries over time, from early 2020 until June 

25, 2021. The accuracy of the approach is confirmed through comparison with previous nationwide sero- 

prevalence surveys. 

Results: The estimates presented reveal that the fraction of infections that are detected vary widely over 

time and between countries, and hence confirmed cases alone often yield a false picture of the pandemic. 

As of June 25, 2021, the nationwide cumulative fraction of SARS-CoV-2 infections (cumulative infections 

relative to population size) was estimated as 98% (95% confidence interval [CI] 93–100%) for Peru, 83% 

(95% CI 61–94%) for Brazil, and 36% (95% CI 23–61%) for the United States. 

Conclusions: The time-resolved estimates presented expand the possibilities to study the factors that 

influenced and still influence the pandemic’s progression in 165 countries. 

© 2021 The Author. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Accurate estimates of the prevalence of severe acute respira- 

ory syndrome coronavirus 2 (SARS-CoV-2) in a population are 

eeded to evaluate disease control policies and test strategies, de- 

ermine the role of environmental factors, predict future disease 

pread, assess the risk of foreign travel, and determine vaccination 

eeds ( Nguimkeu and Tadadjeu, 2021; Pearce et al., 2020 ). Even if 

 retreat of the pandemic seems within reach in many countries, 

he efficacy of control measures in 2020 and 2021 and the envi- 

onmental, political, and societal factors that influenced the epi- 

emic’s progression in each country will undoubtedly be the topic 

f scholarly work for years to come. Because of the existence of 

 large fraction of asymptomatic cases as well as variation in re- 

orting, testing effort, and testing strategies (e.g., random versus 

ymptom triggered) ( Chow et al., 2020 ), reported case counts can- 

ot be directly converted to infection counts, and a comparison 

f confirmed case counts between countries is generally of lim- 
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ted informative value ( Lachmann et al., 2020 ). Large-scale sero- 

revalence surveys (e.g., using antibody tests) can yield informa- 

ion on the disease’s prevalence and cumulative number of infec- 

ions in a population, either directly or using dynamical modeling 

 Larremore et al., 2021 ). However, such surveys involve substan- 

ial financial and logistical challenges, and yield reliable prevalence 

stimates only near the periods covered by the surveys; preva- 

ence estimates based on seroprevalence surveys are thus largely 

estricted to short periods (e.g., Bogogiannidou et al., 2020; Le Vu 

t al., 2021; Merkely et al., 2020; Murhekar et al., 2021 ). 

In contrast to case reports, COVID-19-related death counts are 

enerally regarded as less sensitive to testing effort and testing 

trategy ( Flaxman et al., 2020; Lau et al., 2021; Lu et al., 2020;

augeri et al., 2020a ), and fortunately most countries have es- 

ablished nationwide continuous reporting mechanisms for COVID- 

9-related deaths. Hence, in principle, knowing the infection fa- 

ality risk (IFR; the probability of death following infection with 

ARS-CoV-2) should permit the conversion of death counts to in- 

ection counts ( Bohk-Ewald et al., 2020; Flaxman et al., 2020; Lu 

t al., 2020; Sánchez-Romero et al., 2021 ). The IFR of SARS-CoV- 

, however, depends strongly on the host’s age, and hence the ef- 
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ective IFR of the entire population depends on the population’s 

ge structure as well as the disease’s age distribution ( Dowd et al., 

020 ). Indeed, it was shown that the age dependency of the IFR, 

he age-dependency of SARS-CoV-2 prevalence, and the age struc- 

ure of the population are largely sufficient to explain variation in 

he effective IFR between countries ( Levin et al., 2020 ). This sug- 

ests that age-stratified death counts (or estimates thereof) should 

e used in conjunction with age-dependent IFRs to obtain an accu- 

ate estimate of infection counts. This approach has been success- 

ully used to estimate SARS-CoV-2 prevalence over time in Europe 

ntil May 4, 2020, on the basis of reported age-stratified death 

ounts ( Flaxman et al., 2020 ). In principle, one could also first de-

ermine the “effective” IFR (integrated over all ages) for the en- 

ire population and combine that effective IFR with total (non-age- 

tratified) death counts to estimate infection rates. This approach 

as taken by Sánchez-Romero et al. (2021) , who first estimated 

he effective IFR for various states in the United States on the ba- 

is of—among other factors—age-specific mortality data and then 

stimated the cumulative number of SARS-CoV-2 infections across 

he United States as of September 8, 2020. However, such an ef- 

ective IFR is specific to the population for which it was estimated, 

nd hence applying it to other countries—even if corrections are 

ade for the local population age structure, which is possible in 

he framework of Sánchez-Romero et al. (2021) —would fail to ac- 

ount for differences (or uncertainty) in the age distribution of in- 

ections or deaths. 

Unfortunately, age-stratified and time-resolved death statistics 

re not readily available for many countries with insufficiently 

omprehensive reporting, thus preventing the direct adoption of 

he above-mentioned approaches ( Flaxman et al., 2020; O’Driscoll 

t al., 2021 ). In cases where only total death counts (i.e., aggre- 

ated over all ages) are available, such as the ones disseminated 

y the World Health Organization, one needs to independently es- 

imate the age distribution of deaths (or infections) to convert to- 

al death counts to infection counts. Bohk-Ewald et al. (2020) dis- 

ggregated nationwide total death counts on the basis of a previ- 

usly determined global average age distribution of deaths to es- 

imate SARS-CoV-2 infections in 10 countries up to July 23, 2020. 

owever, using a global average age distribution of deaths ignores 

he fact that the age distribution of infections (and deaths) actually 

eeds to be adjusted for each country’s population age structure, 

ven if any given age group were to experience a similar exposure 

n each country. Furthermore, while the approaches used by Bohk- 

wald et al. (2020) and Sánchez-Romero et al. (2021) can account 

or the average time lag between infection and death, they can- 

ot account for its actual probability distribution and considerable 

pread around the mean ( Linton et al., 2020 ), which further com- 

licates the estimation of time-resolved infections from deaths. 

astly, all of the above-mentioned studies cover only an early por- 

ion of the pandemic ( Bohk-Ewald et al., 2020; Flaxman et al., 

020 ) or focus only on a single time point ( Sánchez-Romero et al.,

021 ), and focus on a small number of countries (1–11). 

This study addresses the above-mentioned challenges by lever- 

ging information on the age distribution of SARS-CoV-2 infections 

rom multiple countries with available age-stratified death reports 

o estimate the likely age-distribution of SARS-CoV-2 infections in 

ther countries, while accounting for each country’s population age 

tructure and for uncertainty due to additional unidentified factors. 

n the basis of these calibrations, national SARS-CoV-2 prevalences 

cumulative number of infections, weekly new infections, and ex- 

onential growth rate) are estimated over time, while each coun- 

ry’s population age structure, the likely age distribution of infec- 

ions, the age dependency of the IFR, and the variation in the time 

ag between infection and death are accounted for. The estimates 

re specific to adults aged 20 years or older, covering 165 coun- 

ries from early 2020 until June 25, 2021. The estimates are largely 
337 
onsistent with data from multiple previously published nation- 

ide seroprevalence surveys. Unless mentioned otherwise, in the 

ollowing, “infection,” “death,” and “vaccination” refer exclusively 

o SARS-CoV-2 infections, COVID-19-related deaths, and full vacci- 

ation against SARS-CoV-2, respectively. 

esults and discussion 

alibrating the age distribution of SARS-CoV-2 prevalence 

To calculate infection counts solely from total (i.e., non-age- 

tratified) death counts, while accounting for the age dependency 

f the IFR and each country’s population age structure, indepen- 

ent estimates of the ratios of infection risks between age groups 

i.e., the risk of infection in any one age group relative to any other 

ge group) are needed. To determine the general distribution of 

ge-specific infection risk ratios, this study analyzed weekly age- 

tratified COVID-19-related death reports from 15 countries around 

he world using a probabilistic model of Poisson-distributed time- 

elayed death counts (see “Methods” for details). Briefly, for any 

iven country c, any given week w, and any given age group g, 

he number of new infections during that week ( I c,w,g ) is assumed 

o be approximately equal to αc,g I c,w,r N c,g /N c,r , where r represents 

ome fixed reference age group, N c,g is the population size of age 

roup g, and αc,g is the relative risk of infection of an individual in 

ge group g compared with an individual in age group r. The ex- 

ected number of deaths in each age group 4 weeks later (roughly 

he average time lag between infection and death; Linton et al., 

020 ), denoted D c,w +4 ,g , was assumed to be I c,w,g R g , where R g is

he IFR for that age group. While R g could, in principle, also dif- 

er between countries, to date insufficient information is available 

or calibrating R g separately for each country (but see the discus- 

ion of caveats below). Age-specific IFRs were calculated before- 

and by averaging multiple IFR estimates reported in the litera- 

ure ( Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; 

astor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 

020 ). This calibration thus accounts for the age structure of each 

ountry, the age distribution of the disease in each country, and 

he age-dependency of the IFR. A critical assumption of the model 

s that, in any given country, nationwide age-specific infection risks 

ovary linearly between age groups over time (i.e., an increase of 

isease prevalence in one age group coincides with a proportional 

ncrease of prevalence in any other age group). This assumption is 

otivated by the observation that weekly nationwide death counts 

enerally covary strongly linearly between age groups ( Fig. 1 A and 

upplemental Figs. S1 and S2); the adequacy of this model is also 

onfirmed in retrospect (see below). For each country, the infec- 

ion risk ratios αc,g (for all g � = r) and the weekly infections in the

eference age group I c,w,r (one per week) were fitted to the age- 

tratified weekly death counts by a maximum-likelihood approach 

nd under the assumption that weekly death counts follow a Pois- 

on distribution. This stochastic model explained the data gener- 

lly well, with observed weekly death counts almost always falling 

ithin the 95% confidence interval of the model’s predictions (Sup- 

lemental Fig. S3). This supports the initial assumption that infec- 

ion risks covary approximately linearly between age groups over 

ime and suggests that country-specific but time-independent in- 

ection risk ratios are largely sufficient to describe the age distri- 

ution of SARS-CoV-2 infections in a country and over time. For 

ny given age group g, the fitted infection risk ratios αc,g differed 

etween countries but were generally of the same order of magni- 

ude ( Fig. 1 B). On the basis of this observation, and as explained in

he next section, it thus seems possible to approximately estimate 

he number of infections in any other country on the basis of total 

eath counts, the population’s age structure, and the pool of infec- 
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Fig. 1. Infection and death rates covary linearly between age groups. (A) Weekly reported COVID-19-related death counts in the United States in the age group from 70 

to 74 years (horizontal axis) and the age group from 50 to 54 years (vertical axis). Each point corresponds to a different week (defined here as a 7-day period). The linear 

regression line is shown for reference. For additional age groups and countries, see Supplemental Fig. S1. The strong colinearity of death rates between age groups suggests 

that infection risks also covary linearly between age groups. (B) Relative infection risks (relative to the age group from 70 to 74 years) for different countries estimated 

on the basis of death-stratified COVID-19-related death counts. Each column represents a different age group, and in each column each point represents a distinct country. 

Horizontal bars represent medians and boxes span 50% percentiles of the data. 
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ion risk ratios αc,g fitted above (accounting for the uncertainty in 

he latter due to unknown additional factors). 

stimating infection counts over time 

On the basis of the pool of fitted infection risk ratios, the same 

ge-dependent IFRs as used above, the probability distribution of 

ime lags between infection, disease onset, and death ( Linton et al., 

020 ), and total (non-age-stratified) COVID-19-related death count 

eports disseminated by the World Health Organization, the weekly 

nfection counts were estimated over time in each of 165 coun- 

ries that met certain data quality criteria (details are provided in 

Methods”). Briefly, for any given country c, any given week w, and 

ny given set of relative infection risks α1 , α2 , . . . , the total num- 

er of deaths during that week ( D c,w 

) was assumed to be Poisson

istributed with expectation given by 

 { D c,w 

} = 

L max ∑ 

k = L min 

I c,w −k,r δk 

∑ 

g 

R g αg 
N c,g 

N c,r 
, (1) 

here, as before, R g is the IFR for age group g, N c,g is the pop- 

lation size of age group g, δk is the probability that a fatal in- 

ection will result in death after k weeks, L min and L max are the 

inimum and maximum considered time lags (in weeks) between 

nfection and death, and I c,w,r is the (a priori unknown) number 

f new infections in the reference age group r during week w . For 

he second sum in Eq. (1) , only age groups of 20 years or older

ere considered (in 5-year intervals) because estimates of the in- 

ection risk ratios αg were unreliable for younger ages (because 

f low death counts) and because deaths among people younger 

han 20 years were numerically negligible compared with the total 

umber of deaths reported. The expected number of deaths in any 

iven week depends on the number of infections in multiple pre- 

ious weeks because of the variability of the time lag between in- 

ection and death (typically 2–6 weeks; Linton et al., 2020 ). Hence, 

he time series of observed weekly death counts ( D c, 1 , D c, 2 , . . . )

esults from a convolution (“blurring”) of the weekly infections 

ounts ( I c, 1 ,r , I c, 2 ,r , . . . ), making the estimation of the latter based

n the former a classical deconvolution problem, similar to those 

nown from electronic signal processing, financial time series anal- 

sis, or medical imaging ( Mendel, 1990; Wiener, 1964 ). Put sim- 

ly, deconvolution can be interpreted as an algebraic inversion of 

he operation of convolution, similar to inverting the matrix of a 

inear transformation. In contrast to estimation approaches based 

n fitting dynamical models (e.g., susceptible-infectious-recovered 
338 
r susceptible-exposed-infectious-recovered models) ( Baccini et al., 

021; Chow et al., 2020; Maugeri et al., 2020a; 2020b ), which as- 

ume a particular dynamical model for the epidemic’s growth and 

ften require a priori knowledge of several model parameters to 

nsure identifiability, time series deconvolution methods typically 

o not assume any particular dynamical model. Dynamics-agnostic 

econvolution methods, including the ones used here, can thus 

e applied to more complex epidemiological scenarios with no a 

riori knowledge of the possible dynamics. A major challenge in 

econvolution is to avoid overfitting, which can introduce spuri- 

us fluctuations in the estimated infection counts. Here, for every 

ountry c, the unknown I c,w,r were estimated by use of a deconvo- 

ution operation based on maximum likelihood. To avoid the risk 

f overfitting, infection counts were first estimated on a lower- 

esolution time grid, and then linearly interpolated onto a weekly 

rid (see “Methods” for details). The total number of new infec- 

ions among people aged 20 years or older during week w was 

stimated as I c,w 

= I c,w,r 
∑ 

g αg N c,g /N c,r . Cumulative (i.e., past and 

urrent) infection counts were calculated as incremental sums of 

he weekly infection count estimates. The epidemic’s exponential 

rowth rate over time was subsequently calculated from the esti- 

ated weekly infection counts on the basis of a Poisson distribu- 

ion model and using a sliding-window approach. 

Depending on the particular choice of infection risk ratios, the 

bove approach yielded different estimates for the weekly nation- 

ide infection counts, the cumulative infection counts, and the ex- 

onential growth rates over time. Uncertainty in the true infection 

isk ratios in any particular country stemming from non-modeled 

dditional factors was accounted for by random sampling from the 

ull distribution of fitted infection risk ratios (i.e., obtained from 

he various calibration countries) multiple times, and calculation of 

onfidence intervals of the predictions based on the obtained dis- 

ribution of estimates. Estimated weekly and cumulative infection 

ractions (i.e., relative to population size) and exponential growth 

ates over time are shown for a selection of countries in Fig. 2 and

upplemental Figs. S4, S5, S6, S7, and S8. A comprehensive report 

f estimates for all 165 countries is provided as Supplemental File 

. Global color maps of the latest estimates for all 165 countries 

re shown in Fig. 3 . 

To assess the accuracy of the approach described above, the es- 

imated cumulative infection fractions were compared with sero- 

revalence estimates from 22 previously published nationwide 

eroprevalence surveys across 14 countries (Supplemental Table 

1) ( Alharbi et al., 2021; Anand et al., 2020; Bogogiannidou et al., 
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Fig. 2. Estimated nationwide infection rates (adults aged 20 years or older). (A–E) Estimated nationwide weekly number of severe acute respiratory syndrome coron- 

avirus 2 (SARS-CoV-2) infections over time for Canada, the United States, Mexico, the United Kingdom, and Peru compared with weekly reported cases (blue curves). Black 

curves show prediction medians, and dark and light shades show the 50th and 95th percentiles of the predictions, respectively. Reported cases are shown 1 week earlier 

than actually reported (corresponding roughly to the average incubation time; Linton et al., 2020 ) for easier comparison with infection counts. (F–J) Estimated nationwide 

weekly fraction of new infections and fraction of reported cases (relative to population size) for the same countries as in A–E. (K–O) Estimated nationwide cumulative frac- 

tion of infections (cumulative infections divided by population size) for the same countries as in A–E. Circles show empirical nationwide prevalence estimates from published 

seroprevalence surveys for comparison (horizontal error bars denote survey date ranges, and vertical error bars denote 95% confidence intervals as reported by the original 

publications; details are provided in Supplemental Table S1). (P–T) Estimated exponential growth rate based on weekly infection counts for the same countries as in A–E. 

Horizontal axes are shown for reference. Each column shows estimates for a different country. All model estimates refer to adults aged 20 years or older, while reported 

cases (blue curves) refer to the entire population. Analogous plots for all 165 countries investigated are provided in Supplemental File 6. 

Fig. 3. Worldwide overview of latest estimates (adults aged 20 years or older). Global map of the latest estimated nationwide (A) cumulative (past and current) number 

of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, (B) cumulative fraction of infections, (infections relative to population size), (C) weekly fraction 

of new infections (relative to population size), and (D) current exponential growth rate. Dates of the estimations are given in the lower-right corner of each figure. Countries 

for which an estimation was not performed (e.g., because of insufficient data) are shown in gray. Analogous world maps for older dates are available in Supplemental File 6. 

339 
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020; Espenhain et al., 2021; Hallal et al., 2020; Le Vu et al., 2021;

erkely et al., 2020; Murhekar et al., 2020; 2021; Nah et al., 2021; 

oljak et al., 2021; Pollán et al., 2020; Reicher et al., 2021; Snoeck 

t al., 2020; Ward et al., 2020 ). Only surveys attempting to esti- 

ate nationwide seroprevalence in the general population (in par- 

icular, either using geographically or demographically stratified 

ampling or adjusting for sample demographics) were included. 

greement between model estimates and seroprevalence estimates 

as generally good: 16 of the 22 seroprevalence estimates (ac- 

ounting for the associated 95% confidence interval and the pe- 

iod of the underlying survey) overlapped with the model’s 95% 

onfidence intervals, with three nonoverlaps observed for Brazil, 

ne for Spain, one for the United Kingdom, and one for France 

Supplemental Fig. S4). When point estimates were compared (i.e., 

ot accounting for confidence intervals), the relative differences 

model estimate minus seroprevalence, divided by seroprevalence) 

ere mostly in the 25–50% range, although particularly high rela- 

ive differences were found for Brazil (170–180%), one time point 

n France (464%), and one time point in Greece (348%) (overview 

n Supplemental Table S1). Apart from the possibility of erroneous 

odel predictions (discussed extensively below), it should be kept 

n mind that seroprevalence surveys themselves yield only esti- 

ates of the cumulative fraction of infected individuals with an 

ssociated uncertainty interval, and that this uncertainty interval 

eed not always account for all sources of error. In particular, 

he deviations of the model from seroprevalence-based estimates 

ay partly be because antibody concentrations in infected indi- 

iduals (especially asymptomatic ones) can drop over time, ren- 

ering many of them seronegative ( Bolotin et al., 2021; La Marca 

t al., 2020; Long et al., 2020 ). Thus, previously infected individ- 

als may not all be recognized as such. This would be consis- 

ent with the fact that in all cases of major disagreement between 

odel predictions and seroprevalence estimates the former were 

reater than the latter. Furthermore, sensitivity and specificity es- 

imates for antibody tests performed in the laboratory or claimed 

y manufactures need not always apply in a community setting 

 La Marca et al., 2020 ), thus introducing biases in seroprevalence 

stimates despite nominal adjustments for sensitivity and speci- 

city. 

ase counts alone can yield wrong impressions 

Estimates of SARS-CoV-2 prevalence in a population can yield 

nsight into the epidemic’s scale and growth dynamics that may 

ot have been possible from reported cases alone. One reason is 

hat the fraction of infections that is detected and reported dif- 

ers greatly between countries and often varies greatly over time. 

ndeed, according to the present estimates, in most countries, re- 

orted case counts initially severely underestimated the actual 

umber of infections and often did not properly reflect the pro- 

ression of the epidemic, while in many countries more recent 

ase reports capture a much larger fraction of infections and more 

losely reflect the epidemic’s dynamics ( Figs. 2 A–E and Supple- 

ental Fig. S5). For example, in the United States, France, Sweden, 

elgium, Spain, the United Kingdom, and many other European 

ountries, reported cases reflected only a small fraction of infec- 

ions occurring in spring 2020, while most subsequent infections 

ere successfully detected. Nevertheless, in many countries, even 

ecent reported case counts poorly reflect the actual dynamics of 

he epidemic. For example, recent reported cases in Afghanistan, 

ngola, Brazil, Ecuador, Egypt, Guatemala, and Iran severely under- 

stimate the disease’s rapid ongoing growth, with nearly all infec- 

ions remaining undetected or unreported ( Fig. 4 ). Future investi- 

ations, enabled by the infection count estimates presented here, 

ight be able to identify the main factors (e.g., political, finan- 

ial, and organizational) driving the discrepancies between infec- 
340 
ions and reported cases, and might be able to suggest concrete 

teps to eliminate these discrepancies or correct for them. 

The above observations imply that comparisons of the epi- 

emic’s extent and progression between countries should prefer- 

bly be done on the basis of infection or death counts, rather than 

eported cases alone ( Flaxman et al., 2020; Sánchez-Romero et al., 

021 ). For example, as of June 25, 2021, the cumulative per-capita 

umber of cases reported for the Czech Republic (16%) and Slove- 

ia (12%) was much higher than for Paraguay (5.8%), Peru (6.3%), 

r Brazil (8.6%), while the median predicted cumulative infection 

ractions for the Czech Republic (52%) and Slovenia (38%) were 

uch lower than for Paraguay (86%), Peru (98%; Fig. 2 O), and Brazil 

83%) (Supplemental Figs. S6 and S7). Similarly, as of June 25, 2021, 

he cumulative per-capita number of cases reported for the United 

tates (10%) was much higher than for neighboring Mexico (2%), 

hile the median predicted cumulative infection fraction for the 

nited States (36%; Fig. 2 L) was much lower than for Mexico (77%; 

ig. 2 M). These examples highlight the value of considering actual 

nfection counts relative to population size when comparing the 

xtent of the epidemic and its relationship to public policy be- 

ween countries. Future investigations, enabled by the prevalence 

stimates presented here, may be able to identify concrete politi- 

al, environmental, and socioeconomic factors influencing the epi- 

emic’s growth. 

aveats 

The predictions presented here are subject to some impor- 

ant caveats. First, erroneous reporting of total COVID-19-related 

eaths will have a direct impact on the estimated infection counts. 

his caveat is particularly important for countries with less de- 

eloped medical or reporting infrastructure ( Bastos et al., 2021; 

eyissa et al., 2021; Galvêas et al., 2021; Lloyd-Sherlock et al., 

021; Natashekara, 2021; Veiga e Silva et al., 2020 ), as well as for 

ountries where reports may be censored or modified for politi- 

al reasons ( Kilani, 2021; Kobak, 2021 ). A general underreporting 

f total COVID-19-related deaths, as has been suspected, for exam- 

le, for Brazil ( Bastos et al., 2021; Veiga e Silva et al., 2020 ), Italy

 Ciminelli and Garcia-Mandicó, 2020 ), Turkey ( Kisa and Kisa, 2020 ), 

ndia ( Chatterjee, 2020 ), and Nigeria ( Ohia et al., 2020 ), would lead

o a roughly proportional underestimation of infections. Similarly, 

nconsistencies between countries and over time in the classifica- 

ion of the causes of death also have the potential to alter model 

redictions ( Feyissa et al., 2021; França et al., 2020; Leon et al., 

020; Singh, 2021 ). For example, it was pointed out that the United 

tates and Russia tend to use rather different criteria for identi- 

ying COVID-19 as the underlying cause of death, while Kyrgyzs- 

an and Kazakhstan modified their criteria several months into 

he pandemic ( Singh, 2021 ). Underreporting of COVID-19-related 

eaths may also explain why in some rare instances the number of 

eported positive cases substantially exceeds the estimated num- 

er of infections (e.g., for Singapore; Supplemental File 6). Com- 

arisons of results between countries should thus be done with 

are. In countries where COVID-19-related deaths are suspected of 

eing grossly misreported, excess death rates may provide an alter- 

ative means for obtaining accurate COVID-19-related death counts 

n future analyses ( Azofeifa et al., 2021; Beaney et al., 2020; Kobak, 

021 ). 

Second, systematic errors in the age-stratified death counts 

sed for model calibration (obtained from the COVerAGE-DB 

atabase; Riffe et al., 2021 ) could impact model predictions. For 

xample, a potentially more frequent erroneous attribution to al- 

ernative plausible causes of death (e.g., other respiratory disor- 

ers) in older patients could lead to a relative underreporting of 

OVID-19-related deaths in older age groups. Such an age bias 

ould lead to an underestimation of the infection risk ratios αc,g 
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Fig. 4. Case counts can suggest drastically different dynamics than infection counts. Nationwide predicted weekly number of new infections (black curves and shades) 

among adults aged 20 years or older and weekly reported cases (blue curves) for all ages over time in Afghanistan, Angola, Brazil, Colombia, Ecuador, Egypt, Guatemala, and 

Iran. Black curves show prediction medians, and dark and bright shades show 50% and 95% confidence intervals, respectively. For easier comparison, case counts are shifted 

backward by 1 week (corresponding roughly to the average incubation time; Linton et al., 2020 ). 
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n older age groups, essentially shifting the estimated age distri- 

ution of infections towards younger age groups. If such erroneous 

alibrations are subsequently used to estimate infections from to- 

al death count data, this would lead to an overestimation of in- 

ections because the IFR is lower at younger ages (recall that the 

umber of infections is approximately equal to the number of 

eaths divided by the IFR). Furthermore, while COVerAGE-DB is 

 rich and robust dataset, its age group harmonizations could, in 

rinciple, cause distortions in the age distribution of death counts. 

o assess whether these distortions are strong enough to sub- 

tantially influence the model calibrations, in this study calibra- 

ions were repeated with an independent dataset of national age- 

tratified death counts, available for a subset of countries, from the 

rench National Institute for Demographic Studies (INED). Across 

he two countries covered by both the INED and COVerAGE-DB and 

atisfying the same data criteria as in the earlier analyses, the in- 

ection risk ratios calibrated with the INED data were generally 

imilar to those calibrated with the COVerAGE-DB data (Supple- 

ental Fig. S9). 

Third, even if all data were error-free, the infection risk ratios 

re calibrated on the basis of available age-stratified death statis- 

ics from a limited number of countries, and may not apply to all 

ther countries (e.g., because of strong cultural differences). Un- 

ertainty associated with this extrapolation is accounted for by 

onsidering infection risk ratios calibrated to multiple alternative 

ountries from multiple continents (see “Methods”). 

Fourth, governmental policies implemented at various time 

oints could, in principle, change the infection risk ratios between 

ge groups over time; for example, the opening and closing of 

chools and universities, or allowing or prohibiting visits to nursing 

omes. To assess the extent of this possible caveat, here the weekly 

eath counts in each age group were compared with the total (age- 

ntegrated) weekly death counts over time (Supplemental Figs. S10 

nd S2). Age-specific and total death counts correlated strongly lin- 

arly over time in nearly all age groups and countries (Pearson 

orrelation coefficient 0.5 or greater in almost all cases), suggest- 

ng that in any given country the proportion of infections per age 

roup did not substantially vary over the course of the epidemic. 

urthermore, the predictions of the fitted models (which assume 

ime-independent infection risk ratios) were generally highly con- 
341 
istent with the age-stratified death counts (Supplemental Fig. S3), 

gain suggesting that time-independent (but country-dependent 

nd age-dependent) infection risk ratios provide a largely adequate 

odel for the age distribution of infections. 

Fifth, age-specific IFRs were obtained from studies in only a 

ew countries (mostly Western) and often based on a small subset 

f closely monitored cases (e.g., from the Diamond Princess cruise 

hip). These IFR estimates may not be accurate for all countries, 

specially countries with a very different medical infrastructure, 

ifferent sex ratios in the population, or a different prevalence of 

reexisting health conditions (e.g., diabetes), all of which can af- 

ect the IFR. That said, estimated trends over time within any given 

ountry, in particular exponential growth rates (e.g., Figs. 2 P–T), 

re unlikely to be substantially affected by such biases if the bi- 

ses remain relatively constant over time. For example, the expo- 

ential growth rates estimated here remained unchanged when al- 

ernative IFRs from the literature ( Levin et al., 2020; Linden et al., 

020; O’Driscoll et al., 2021; Pastor-Barriuso et al., 2020; Rinaldi 

nd Paradisi, 2020; Salje et al., 2020 ) were considered. To never- 

heless examine the robustness of estimated SARS-CoV-2 preva- 

ences against variations in the IFR, the above analyses were re- 

eated with consideration for each age group of a set of multiple 

FRs—that is, random sampling from the set of previously reported 

FRs ( Levin et al., 2020; Linden et al., 2020; O’Driscoll et al., 2021; 

astor-Barriuso et al., 2020; Rinaldi and Paradisi, 2020; Salje et al., 

020 )—rather than consideration of their mean. Median model pre- 

ictions remained nearly unchanged; however, the uncertainty (i.e., 

onfidence intervals) of the estimates increased (examples in Sup- 

lemental Fig. S11). 

Sixth, in countries where a large fraction of the population is 

ow vaccinated, attention should be given to the limitations and 

nterpretation of the model’s predictions for the recent periods of 

he pandemic. Indeed, while existing vaccines substantially reduce 

he probability of infection and death, none of them is 100% effec- 

ive ( Bermingham et al., 2021; Calzetta et al., 2021; Soiza et al., 

021 ). Because the IFR may differ between vaccinated and un- 

accinated individuals, conversion from death counts to infection 

ounts using IFRs originally determined for unvaccinated people 

ould lead to erroneous infection estimates. This error is relatively 

mall if vaccinated people represent only a small fraction of new 
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nfections, which, given that vaccination substantially reduces the 

isk of infection, is probably the case in the many countries where 

ost of the population is unvaccinated (as of June 25, 2021, 138 

f 145 considered countries with available vaccination data; Sup- 

lemental File 6). To further assess the implications of vaccination 

n infection estimates, consider the following back-of-the-envelope 

alculation. Let U be the ratio of vaccinated to unvaccinated in- 

ividuals, let Q be the risk of COVID-19-related death for a vac- 

inated individual relative to an unvaccinated one, and let ˜ D and 

 denote the number of deaths among vaccinated and unvacci- 

ated individuals, respectively (country and week indices are omit- 

ed here for notational simplicity). We have ˜ D /D ≈ QU, and hence 

he fraction of deaths attributed to vaccinated individuals is given 

y 

˜ D 

˜ D + D 

≈ QU 

QU + 1 

. (2) 

s of June 25, 2021, in nearly all countries most of the popula- 

ion had not been fully vaccinated (hence U < 1 ), exceptions being 

he Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland, and Chile 

where U ranged between 1 and 2.2 on June 25, 2021). Field esti- 

ates for vaccine effectiveness against death generally range from 

6.7% in Israel ( Haas et al., 2021 ) to 98% in an Italian province

 Flacco et al., 2021 ) and 98.7% in the United States ( Vahidy et al.,

021 ) among fully vaccinated individuals, corresponding to Q in 

he range from 0.013 to 0.033. Hence, in nearly all countries (ex- 

ept the Seychelles, Malta, Israel, Bahrain, Mongolia, Iceland, and 

hile) vaccinated individuals likely account for less than 3.2% of 

he reported deaths in recent months (up until June 25, 2021), and 

ven less at earlier stages of the pandemic, where U � 1 . The in-

ection count estimates presented can thus be interpreted as ap- 

roximately corresponding to the unvaccinated part of the popu- 

ation (e.g., an estimate of 10 0 0 infections essentially means that 

mong the unvaccinated population there were about 10 0 0 infec- 

ions), which in turn likely accounts for the vast majority of infec- 

ions in most countries (as discussed above). 

onclusions 

This study presented estimates of the nationwide prevalence 

nd growth rate of SARS-CoV-2 infections over time in 165 coun- 

ries around the world based on official COVID-19-related death 

eports, age-specific IFRs, each country’s population age struc- 

ure, and the probability distribution of time lags between infec- 

ion and death. The complete report for all 165 countries is pro- 

ided as Supplemental File 6. These estimates are also provided as 

achine-readable tables (Supplemental Files 1–5) for convenient 

ownstream analyses; occasionally updated estimates are avail- 

ble at http://www.loucalab.com/archive/COVID19prevalence . De- 

pite a variety of assumptions and caveats, the estimates pre- 

ented are largely consistent with data from nationwide general- 

opulation seroprevalence surveys. The findings presented suggest 

hat while in many countries the detection of infections has greatly 

mproved, there are also numerous examples where even recent 

eported case counts do not properly reflect the epidemic’s dy- 

amics. In particular, comparisons between countries based on 

nfection counts can yield conclusions very different from those 

btained from comparisons based merely on reported cases. The 

resent work thus enables more precise assessments of the dis- 

ase’s past and ongoing progression, evaluation and improvement 

f public interventions and testing strategies, and estimation of 

orldwide vaccination needs. 
342 
ethods details 

ge-specific IFRs 

Age-specific IFRs were calculated on the basis of 

he following literature: Pastor-Barriuso et al. (2020) , 

evin et al. (2020) , Salje et al. (2020) , Rinaldi and Paradisi (2020) ,

’Driscoll et al. (2021) , and Linden et al. (2020) . For each age

roup considered, the average IFR across all of the aforemen- 

ioned published IFRs was used, after linear interpolation where 

ecessary (Supplemental Table S2). 

alibrating age-specific infection risk ratios 

The age-specific infection risk ratios were calibrated as fol- 

ows. Age-specific population sizes for each country (status 

019) were downloaded from the United Nations website ( https: 

/population.un.org/wpp/Download/Standard/CSV ) on October 23, 

020 ( DESA, 2019 ). Time series of nationwide cumulative COVID- 

9-related death counts grouped by 5-year age intervals were 

ownloaded on April 27, 2021, from COVerAGE-DB ( https://osf.io/ 

tnfh ), which is a database that gathers and curates official death 

ount statistics from multiple official sources ( Riffe et al., 2021 ). 

he last 7 days covered in the database were ignored to avoid 

otential biases caused by delays in death reporting. For each 

ountry included in COVerAGE-DB, and separately for each age 

roup, it was ensured that cumulative death counts are nonde- 

reasing (monotonic) over time by linear reinterpolation of death 

ounts at problematic time points. To avoid inaccurate calibrations 

ue to grossly problematic time series, any country for which the 

trongest violation in monotonicity (the largest decrease of cumu- 

ative deaths between any two time points for any age group con- 

idered) was greater than 1% of the maximum reported total cu- 

ulative deaths in that country (e.g., Canada) was omitted. For 

imilar reasons, countries for which an interpolation was needed 

either because of missing data or because of a violation of mono- 

onicity) in any considered age group over a time span greater than 

 weeks (e.g., Iceland) were also omitted. 

The remaining monotonized time series of cumulative deaths 

ere linearly interpolated onto a regular weekly time grid (i.e., in 

hich adjacent time points are 7 days apart); no extrapolation was 

erformed (i.e., only dates between the first and last available data 

oints were included). The weekly number of deaths in each age 

roup was calculated as the difference in cumulative deaths be- 

ween consecutive time points on the weekly grid. While some of 

he input time series are available at a daily resolution, a weekly 

iscretization was chosen here (a) to reduce time series noise and 

b) to “average out” the hard-to-model systematic variations in 

he epidemic’s dynamics between different days of the week (e.g., 

eekends vs. workdays). To ensure high accuracy of the calibrated 

nfection risk ratios, only countries for which COVerAGE-DB cov- 

red at least 20 weeks with at least 100 reported deaths each were 

ubsequently considered. 

For each considered country c, the “reference” age group r was 

et to the age group that had the highest cumulative number of 

eaths. Designation of a reference group is done mostly for no- 

ational simplicity and consistency, so that age-specific prevalence 

atios can all be defined relative to a common reference. For each 

ther age group g, the infection risk ratio αc,g (i.e., the probability 

f an individual in group g being infected relative to the probabil- 

ty of an individual in group r being infected) was estimated by 

se of a probabilistic model. According to this model, the number 

f deaths in group g during week w (denoted D c,w,g ) was Poisson 

istributed with expectation 

 c,w,r · αc,g · N c,g 

N c,r 
· R g 

R r 
, (3) 

http://www.loucalab.com/archive/COVID19prevalence
https://population.un.org/wpp/Download/Standard/CSV
https://osf.io/7tnfh
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here N c,g is the population size of age group g in country c, and 

 g is the IFR for age group g. Under this model, the maximum- 

ikelihood estimate for αc,g (i.e., given the weekly death count time 

eries) is given by 

ˆ c,g = 

∑ 

w 

D c,w,g 

∑ 

w 

D c,w,r 

N c,r 

N c,g 
· R r 

R g 
. (4) 

o avoid errors due to sampling noise, only weeks with at least 

00 reported deaths were considered in the sums in Eq. (4) . This 

hreshold was chosen as a reasonable compromise between data 

uality (requiring more deaths per week implies less sampling 

oise) and data quantity (requiring fewer deaths per week in- 

reases the number of weeks available for calibration). Further in- 

reasing this threshold to 200 deaths per week generally had neg- 

igible effects on the results (see examples in Supplemental Fig. 

12). Note that αc,g might alternatively be estimated as the slope 

f the least-squares linear regression: 

 c,w,g ∼ αc,g D c,w,r · N c,g 

N c,r 
· R c,g 

R c,r 
. (5) 

stimates obtained via linear regression were nearly identical to 

hose obtained with use of the aforementioned Poissonian model, 

uggesting that the estimates are not very sensitive to the precise 

ssumed distribution. 

To evaluate the model’s adequacy (explained below), this study 

lso estimated the weekly number of infections in the reference 

ge group, I c,w,r , via maximum likelihood based on a probabilistic 

odel in which D c,w,g was Poisson distributed with expectation 

 { D c,w,g } = R g I c,w −4 ,r ̂  αc,g 
N c,g 

N c,r 
. (6) 

nder this model, the maximum-likelihood estimate for I c,w −4 ,r is 

iven by 

ˆ 
 c,w −4 ,r = 

N c,r 

∑ 

g 

D c,w,g 

∑ 

g 

ˆ αc,g R g N c,g 

. (7) 

o evaluate the adequacy of the above stochastic model in explain- 

ng the original death count data, multiple hypothetical weekly 

eath counts were simulated for each age group, and the distribu- 

ion of simulated death counts was compared with the distribution 

f true death counts. Specifically, for each country c, week w, and 

ge group g, 100 random death counts ( ̃  D c,w,g ) were drawn from a 

oisson distribution with expectation 

 { ̃  D c,w,g } = R g ̂  I c,w −4 ,r ̂  αc,g 
N c,g 

N c,r 
. (8) 

edian simulated death counts and 50% and 95% equal-tailed con- 

dence intervals, along with the original death counts, are shown 

or various countries and age groups in Supplemental Fig. S3, from 

hich it can be seen that the model’s simulated time series are 

argely consistent with the original data. 

In the subsequent analyses, only infection risk ratios αc,g for 

hich the corresponding linear curve ( Eq. 5 ) achieved a coeffi- 

ient of determination ( R 2 ) greater than 0.5 were used (shown 

n Fig. 1 ) to avoid less accurately estimated infection risk ratios 

typically obtained from countries with low death rates). Infec- 

ion risk ratios meeting this quality threshold cover 15 countries: 

rgentina, Bangladesh, Brazil, Colombia, the Czech Republic, Ger- 

any, the United Kingdom, Hungary, India, Mexico, Paraguay, Peru, 

he Philippines, Ukraine, and the United States. 
343 
stimating infection counts from total death counts 

Time series of total (non-age-stratified) nationwide cumula- 

ive reported death and case counts were downloaded from the 

ebsite of the World Health Organization ( https://covid19.who.int/ 

able ) on July 20, 2021. The last 7 days covered in the database 

ere ignored to avoid potential biases caused by delays in case and 

eath reporting ( Lipsitch et al., 2015 ). Cumulative death and case 

ounts were made nondecreasing and interpolated onto a weekly 

ime grid as described above. Only countries that reported at least 

ne death per week for at least 10 weeks were included in the 

nalysis below. In addition, any country for which the strongest 

iolation in monotonicity was greater than 1% of the maximum re- 

orted total cumulative deaths in that country, or for which an 

nterpolation was needed (e.g., because of missing data) over a 

ime span greater than 5 weeks (as done above for the COVerAGE- 

B data), was omitted. For each country c, each week w, and 

ny particular choice of age-specific infection risk ratios α1 , α2 , . . . 

uniquely covering all ages 20 years and older), the number of in- 

ections was estimated as follows. Let N be the number of consec- 

tive weeks for which total deaths are reported. Let r denote some 

xed reference age group relative to which infection risk ratios are 

efined (i.e., such that αr = 1 ); here, ages 70–74 years were used 

s a reference. Let δk denote the probability that a fatal infection 

ill lead to death after k weeks, where k = L min , . . . , L max , where

 min is the minimum and L max is the maximum time lag consid- 

red. Let L := L max − L min + 1 . Let I c,w,r be the (a priori unknown)

umber of new infections occurring during week w in the refer- 

nce age group. The number of COVID-19-related deaths during 

eek w in age group g, denoted D c,w,g , was assumed to be Pois- 

on distributed with expectation given by 

 { D c,w,g } = 

L max ∑ 

k = L min 

I c,w −k,r δk R g αg 
N c,g 

N c,r 
. (9) 

he total number of deaths in week w, D c,w 

, is thus Poisson- 

istributed with expectation 

 { D c,w 

} = 

L max ∑ 

k = L min 

I c,w −k,r δk 

∑ 

g 

R g αg 
N c,g 

N c,r 
. (10) 

s explained earlier, only age groups 20 years and older were in- 

luded because infection risk ratios could not be reliably estimated 

or younger ages and because the contribution of younger ages 

o total death counts can be considered numerically negligible. 

he δk were calculated through 1,0 0 0,0 0 0 Monte Carlo simulations 

ased on the log-normal distribution models fitted by Linton et al. 

2020 , Table 2) for the time lags between infection and disease on- 

et and the time lags between disease onset and death, and un- 

er the assumption that the two time lags are independently dis- 

ributed (see Supplemental Table S3). The minimum and maximum 

ime lags considered were L min = 2 weeks and L max = 6 weeks be-

ause this range covers the bulk (approximately 90%) of cases and 

ecause further increasing L max or decreasing L min increases the 

idth of the convolution kernel, thus increasing the risk of intro- 

ucing spurious fluctuations in the estimated I c,w,r . The considered 

L min 
, . . . , δL max 

were normalized to have sum 1 to maintain consis- 

ency with the total IFR (i.e., summed over all time lags). 

Given the above model, the goal is to estimate the unknown 

eekly infection counts in the reference group, I c,w,r , from the 

ecorded weekly death counts, D c,w 

. This is a classical deconvolu- 

ion problem because each D c,w 

results from the additive effects of 

nfections from multiple preceding weeks ( Mendel, 1990; Wiener, 

964 ). Eq. (10) can be written abstractly in matrix form: 

 { D } = K · I , (11) 

here K is a convolution matrix of size N × (N + L − 1) , 

https://covid19.who.int/table
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δL max 
δL max −1 . . . δL min 

0 0 . . . 0 

0 δL max 
. . . δL min +1 δL min 

0 . . . 0 

0 0 . . . δL min +2 δL min +1 δL min 
. . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 . . . 0 0 0 . . . δL min

D is a column vector of size N listing the reported weekly death 

ounts D c, 1 , . . . , D c,N , and I is a column vector of size N + L − 1 list-

ng the unknown weekly infection counts I c, 1 −L max ,r , . . . , I c,N−L min ,r 
. 

or notational simplicity, the country index c is omitted from I , D , 

nd K , but keep in mind that I , D , and K refer to a specific coun-

ry. It is straightforward to show that, under the above model, the 

og-likelihood of the observed weekly death counts ( D ) is given by 

n L = 

N ∑ 

w =1 

[ D w 

ln (K I ) w 

− (K I ) w 

− ln (D w 

!) ] . (13) 

n principle, one could estimate the unknown vector I via max- 

mum likelihood. Indeed, the above log-likelihood is maximized 

hen the following condition is met: 

N ∑ 

 =1 

K w v = 

N ∑ 

w =1 

D w 

K w v 

(K I ) w 

(14) 

or all v ∈ { 1 , . . . , N + L − 1 } . A sufficient condition for Eq. (14) is

hat K I = D ; in other words, any vector ˆ I satisfying K ̂

 I = D is

 maximum-likelihood estimate. Such an estimate can be ob- 

ained using the Moore-Penrose pseudoinverse of K , denoted K 

+ 

 Moore, 1920; Penrose, 1955 ). Because K has linearly indepen- 

ent rows, its pseudoinverse is K 

+ = K 

T (KK 

T ) −1 , and hence set-

ing ˆ I := K 

+ D would satisfy K ̂

 I = D . However, because of known

ssues with inverting convolution matrices, such a naive estima- 

ion tends to introduce spurious fluctuations in the estimated I . 

ne approach is to reduce the temporal resolution of the esti- 

ated I , which effectively reduces the number of estimated free 

arameters ( Louca et al., 2019 ). Hence, instead of estimating I c,w,r 

eparately for each week, a coarser time grid was considered that 

as 4 times fewer time points than the original weekly time grid 

i.e., such that the infection count I c,w,r is freely estimated only ev- 

ry fourth week), while assuming linear variation between these 

ime points. This approach is a variant of constrained deconvolu- 

ion using spline functions, pioneered by Verotta (1993) and re- 

iewed by Madden et al. (1996) , using linear splines and maximiz- 

ng the likelihood function (thus accounting for the Poisson model 

escribed above) rather than minimizing the sum of squared resid- 

als (which assumes normally distributed data). For example, for 

n original weekly time series spanning 100 weeks, first the I c,w,r 

re estimated at about 100 / 4 discrete time points, each 4 weeks 

part, and then linear interpolation is used to obtain the remaining 

 c,w,r . Denoting by J the column vector listing the infection counts 

n this coarser time grid ( I c, 1 −L max ,r , I c, 1 −L max +4 ,r , . . . ), and by G the

atrix mapping J to I via linear interpolation (i.e., I = G J ), one thus

btains the following log-likelihood in terms of J : 

n L = 

N ∑ 

w =1 

[ D w 

ln (KG J ) w 

− (KG J ) w 

− ln (D w 

!) ] . (15) 

he corresponding maximum-likelihood estimate ˆ J can no longer 

e obtained simply by solving the equation KG ̂

 J = D because 

his linear problem is overdetermined (i.e., it is unlikely that a 
 

 can be found such that KG ̂

 J = D is exactly satisfied). However, 

n optimally approximate solution (in the least-squares sense), ˜ J , 

an be obtained by setting ˜ J := (KG ) + D . To determine the exact 

aximum-likelihood estimate ˆ J —that is, the J maximizing ln L in 

q. (15) —numerical optimization was used, as implemented in the 
344 
 

g 

R g αg 
N c,g 

N c,r 
, (12) 

 function nloptr::nloptr , while the aforementioned approxi- 

ation ̃

 J was used as a starting point. Subsequently setting ˆ I := G ̂J 

ielded an estimate for the weekly infections counts I c,w,r . The cor- 

esponding total number of weekly infections, ˆ I c,w 

, can be calcu- 

ated from the estimates ˆ I c,w,r as follows: 

ˆ 
 c,w 

= 

ˆ I c,w,r 

∑ 

g 

αg 
N c,g 

N c,r 
. (16) 

he corresponding cumulative number of total infections up until 

ny given week can be obtained by summing the weekly infection 

ounts. 

Exponential growth rates over time were estimated from the 

eekly infection counts by a sliding-window approach, as follows. 

n every sliding window (spanning 5 consecutive weeks), an expo- 

ential function of the form I(t) = Ae tλ was fitted, where t denotes 

he time in days and A and λ are unknown parameters (in particu- 

ar, λ is the exponential growth rate in that window). The param- 

ters A and λ were fitted via maximum likelihood, assuming that 

he total number of weekly infections, I c,w 

, was Poisson distributed 

ith expectation Ae t w λ. Under this model, the log-likelihood of the 

ata (more precisely, of the previously estimated weekly infection 

ounts) is 

n L = 

∑ 

w 

[
ˆ I c,w 

ln A + ̂

 I c,w 

λt w 

− Ae λt w − ln ( ̂ I c,w 

!) 
]
, (17) 

here w refers to iteration over all weeks in the specific sliding 

indow. The maximum-likelihood estimates of A and λ are ob- 

ained by solving ∂ ln L/∂λ = 0 and ∂ ln L/∂A = 0 , which quickly 

eads to the necessary condition 

∑ 

w 

e 
ˆ λt w 

∑ 

g 

t w 

e 
ˆ λt w 

·
∑ 

w 

t w ̂

 I c,w 

= 

∑ 

w 

ˆ I c,w 

. (18) 

q. (18) was solved numerically by the bisection method to obtain 

he maximum-likelihood estimate ˆ λ. 

To assess estimation uncertainties stemming from sampling 

tochasticity and uncertainties in the infection risk ratios, the 

bove estimations were repeated 100 times with use of alternative 

nfection risk ratios (for each age group drawn randomly from the 

et of infection risk ratios previously fitted to various countries) 

nd with replacement of the reported weekly death counts D c,w 

ith values drawn from a Poisson distribution with mean D c,w 

. 

ence, rather than point estimates, all predictions are reported in 

he form of medians and equal-tailed confidence intervals. Tables 

f all estimates for all countries considered up until June 25, 2021, 

re provided in Supplemental Files 1–5; a visual report is provided 

s Supplemental File 6. 

ssessing the robustness of COVerAGE-DB-based calibrations 

To examine whether the age harmonizations of COVerAGE- 

B death counts had a major impact on the calibrated infec- 

ion risk ratios ( αc,g ), the calibrations were also repeated with 

n independent dataset of national age-stratified death counts 

btained from the French INED at https://dc-covid.site.ined.fr/en/ 

ata/pooled-datafiles (accessed July 20, 2021). Only countries also 

ncluded in the calibrations described above and meeting the same 

https://dc-covid.site.ined.fr/en/data/pooled-datafiles
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ata size and quality criteria were considered (the United States 

nd Ukraine). Age groups g not intersecting with at least one fi- 

ite age interval in the INED database were also omitted from the 

omparison. Supplemental Fig. S9 shows the COVerAGE-DB-based 

nd INED-based calibrated infection risk ratios across all countries 

nd age groups considered; as can be seen, the two sets largely 

gree ( R 2 = 0 . 92 ), suggesting that COVerAGE-DB’s age harmoniza- 

ions did not substantially compromise the model calibrations. 

accination data 

Data on nationwide completed vaccinations per coun- 

ry over time were obtained from the GitHub reposi- 

ory of the Johns Hopkins Centers for Civic Impact at 

ttps://github.com/govex/COVID-19/blob/master/data _ tables/ 

accine _ data/global _ data/time _ series _ covid19 _ vaccine _ global.csv 

accessed July 20, 2021). Cumulative vaccination counts were 

onotonized and interpolated onto a weekly time grid as de- 

cribed above for the death count data. 

eclarations 

thics approval and consent to participate 

Not applicable. 

onsent for publication 

Not applicable. 

vailability of data and materials 

All data used in this article are publicly available at the loca- 

ions described in the “Methods” section. SARS-CoV-2 prevalences 

ver time, as predicted in this study, are available in Supplemen- 

al Files 1–5. A comprehensive visual report for all 165 countries is 

rovided as Supplemental File 6. 

ompeting interests 

The author declares that he has no competing interests. 

unding 

The author was supported by a US National Science Foundation 

APID grant. 

uthor’s contributions 

The entire manuscript was prepared by the author. 

cknowledgments 

Not applicable. 

upplementary materials 

Supplementary data associated with this article can be found, 

n the online version, at doi: 10.1016/j.ijid.2021.08.067 . 

eferences 

lharbi NK , Alghnam S , Algaissi A , Albalawi H , Alenazi MW , Albargawi AM , et al .

Nationwide seroprevalence of SARS-cov-2 in saudi arabia. J Infect Public Health 
2021;14:832–8 . 

nand S , Montez-Rath M , Han J , Bozeman J , Kerschmann R , Beyer P , et al . Preva-
lence of SARS-cov-2 antibodies in a large nationwide sample of patients on dial- 

ysis in the USA: a cross-sectional study. Lancet 2020;396:1335–44 . 
345 
zofeifa A , Valencia D , Rodriguez CJ , Cruz M , Hayes D , Montañez Báez E , et al . Esti-
mating and characterizing COVID-19 deaths, puerto rico, march–july 2020. Pub- 

lic Health Rep 2021;136:354–60 . 
accini M , Cereda G , Viscardi C . The first wave of the SARS-cov-2 epidemic in tus-

cany (italy): a SI2r2d compartmental model with uncertainty evaluation. PLoS 
ONE 2021;16:e0250029 . 

astos SB , Morato MM , Cajueiro DO , Normey-Rico JE . The COVID-19 (SARS-cov-2)
uncertainty tripod in brazil: assessments on model-based predictions with large 

under-reporting. Alex Eng J 2021;60:4363–80 . 

eaney T , Clarke JM , Jain V , Golestaneh AK , Lyons G , Salman D , et al . Excess mor-
tality: the gold standard in measuring the impact of COVID-19 worldwide? J R 

Soc Med 2020;113:329–34 . 
ermingham CR, Morgan J, Ayoubkhani D, Glickman M, Islam N, Sheikh A, 

et al. Estimating the effectiveness of first dose of COVID-19 vaccine 
against mortality in england: a quasi-experimental study. medRxiv 2021. 

doi: 10.1101/2021.07.12.21260385 . 

ogogiannidou Z , Vontas A , Dadouli K , Kyritsi MA , Soteriades S , Nikoulis DJ , et al .
Repeated leftover serosurvey of SARS-cov-2 igg antibodies, greece, march and 

april 2020. Eurosurveillance 2020;25:2001369 . 
ohk-Ewald C , Dudel C , Myrskylä M . A demographic scaling model for esti- 

mating the total number of COVID-19 infections. Int J Epidemiol 2020;49: 
1963–1971 . 

olotin S , Tran V , Osman S , Brown KA , Buchan SA , Joh E , et al . SARS-cov-2 sero-

prevalence survey estimates are affected by anti-nucleocapsid antibody decline. 
J Infect Dis 2021;223:1334–8 . 

alzetta L , Ritondo BL , Coppola A , Matera MG , Di Daniele N , Rogliani P . Factors in-
fluencing the efficacy of COVID-19 vaccines: a quantitative synthesis of phase III 

trials. Vaccines 2021;9:341 . 
hatterjee P . Is india missing COVID-19 deaths? Lancet 2020;396:657 . 

how CC, Chang JC, Gerkin RC, Vattikuti S. Global prediction of unre- 

ported SARS-cov2 infection from observed COVID-19 cases. medRxiv 2020. 
doi: 10.1101/2020.04.29.20083485 . 

iminelli G , Garcia-Mandicó S . Covid-19 in italy: an analysis of death registry data. 
J Public Health 2020;42:723–30 . 

ESA U.. World population prospects 2019 revision, online edition. Technical report; 
United Nations, Department of Economic and Social Affairs, Population Division; 

2019. Https://population.un.org/wpp/. 

owd JB , Andriano L , Brazel DM , Rotondi V , Block P , Ding X , et al . Demographic
science aids in understanding the spread and fatality rates of COVID-19. Proc 

Natl Acad Sci U S A 2020;117:9696–8 . 
spenhain L, Tribler S, Jørgensen CS, Holm Hansen C, Wolff Sönksen U, Ethel- 

berg S. Prevalence of SARS-cov-2 antibodies in denmark 2020: results from 

nationwide, population-based sero-epidemiological surveys. medRxiv 2021. 

doi: 10.1101/2021.04.07.21254703 . 

eyissa GT , Tolu LB , Ezeh A . Covid-19 death reporting inconsistencies and working
lessons for low- and middle-income countries: opinion. Front Med 2021;8:150 . 

lacco ME , Soldato G , Acuti Martellucci C , Carota R , Di Luzio R , Caponetti A , et al .
Interim estimates of COVID-19 vaccine effectiveness in a mass vaccination set- 

ting: data from an italian province. Vaccines 2021;9:628 . 
laxman S , Mishra S , Gandy A , Unwin HJT , Mellan TA , Coupland H , et al . Estimating

the effects of non-pharmaceutical interventions on COVID-19 in europe. Nature 
2020;584:257–61 . 

rança EB , Ishitani LH , Teixeira RA , DMXd A , Corrêa PRL , Marinho F , et al . Deaths

due to COVID-19 in brazil: how many are there and which are being identified?
Rev Bras Epidemiol 2020;23:E20 0 053 . 

alvêas D , Barros F , Fuzo CA . A forensic analysis of SARS-cov-2 cases and
COVID-19 mortality misreporting in the brazilian population. Public Health 

2021;196:114–16 . 
aas EJ , Angulo FJ , McLaughlin JM , Anis E , Singer SR , Khan F , et al . Impact and

effectiveness of mRNA BNT162b2 vaccine against SARS-cov-2 infections and 

COVID-19 cases, hospitalisations, and deaths following a nationwide vaccina- 
tion campaign in israel: an observational study using national surveillance data. 

Lancet 2021;397:1819–29 . 
allal P, Hartwig F, Horta B, Victora GD, Silveira M, Struchiner C, et al. 

Remarkable variability in SARS-cov-2 antibodies across brazilian regions: 
nationwide serological household survey in 27 states. medRxiv 2020. 

doi: 10.1101/2020.05.30.20117531 . 

ilani A . An interpretation of reported COVID-19 cases in post-soviet states. J Public 
Health 2021;43:e409–10 . 

isa S , Kisa A . Under-reporting of COVID-19 cases in turkey. Int J Health Plann Man-
age 2020;35:1009–13 . 

obak D . Excess mortality reveals COVID’s true toll in russia. Significance 
2021;18:16–19 . 

a Marca A , Capuzzo M , Paglia T , Roli L , Trenti T , Nelson SM . Testing for SARS-cov-2

(COVID-19): a systematic review and clinical guide to molecular and serological 
in-vitro diagnostic assays. Reprod Biomed Online 2020;41:483–99 . 

achmann A, Jagodnik KM, Giorgi FM, Ray F. Correcting under-reported COVID- 
19 case numbers: estimating the true scale of the pandemic. medRxiv 2020. 

doi: 10.1101/2020.03.14.20036178 . 
arremore DB , Fosdick BK , Bubar KM , Zhang S , Kissler SM , Metcalf CJE , et al . Esti-

mating SARS-cov-2 seroprevalence and epidemiological parameters with uncer- 

tainty from serological surveys. eLife 2021;10:e64206 . 
au H , Khosrawipour T , Kocbach P , Ichii H , Bania J , Khosrawipour V . Evaluating the

massive underreporting and undertesting of COVID-19 cases in multiple global 
epicenters. Pulmonology 2021;27:110–15 . 

https://github.com/govex/COVID-19/blob/master/data_tables/vaccine_data/global_data/time_series_covid19_vaccine_global.csv
https://doi.org/10.1016/j.ijid.2021.08.067
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0001
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0002
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0003
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0004
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0005
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0006
https://doi.org/10.1101/2021.07.12.21260385
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0008
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0009
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0010
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0011
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0012
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0012
https://doi.org/10.1101/2020.04.29.20083485
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0014
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0014
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0014
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0016
https://doi.org/10.1101/2021.04.07.21254703
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0018
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0019
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0020
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0021
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0022
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0023
https://doi.org/10.1101/2020.05.30.20117531
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0025
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0026
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0026
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0026
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0027
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0027
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0028
https://doi.org/10.1101/2020.03.14.20036178
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0030
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0031


S. Louca International Journal of Infectious Diseases 111 (2021) 336–346 

L  

L  

L

L  

L  

L  

L  

L  

L  

L  

M  

M  

M

M

M  

M  

M  

M  

N  

N  

N  

O  

O  

P  

 

P  

P

P  

P  

R  

R  

R

S  

S  

S

S

S  

V  

V  

 

V

W  

W

e Vu S , Jones G , Anna F , Rose T , Richard JB , Bernard-Stoecklin S , et al . Prevalence
of SARS-cov-2 antibodies in france: results from nationwide serological surveil- 

lance. Nat Commun 2021;12:3025 . 
eon DA , Shkolnikov VM , Smeeth L , Magnus P , Pechholdová M , Jarvis CI . COVID-19:

a need for real-time monitoring of weekly excess deaths. Lancet 2020;395:e81 . 
evin A.T., Hanage W.P., Owusu-Boaitey N., Cochran K.B., Walsh S.P., Meyerowitz- 

Katz G.. Assessing the age specificity of infection fatality rates for COVID-19: 
meta-analysis & public policy implications. 2020. Working paper 27597. Na- 

tional Bureau of Economic Research. 

inden M , Dehning J , Mohr SB , Mohring J , Meyer-Hermann M , Pigeot I , et al . The
foreshadow of a second wave: an analysis of current COVID-19 fatalities in ger- 

many. arXiv 2020 . Https://arxiv.org/abs/2010.05850 
inton NM , Kobayashi T , Yang Y , Hayashi K , Akhmetzhanov AR , Sm J , et al . Incuba-

tion period and other epidemiological characteristics of 2019 novel coronavirus 
infections with right truncation: a statistical analysis of publicly available case 

data. J Clin Med 2020;9:538 . 

ipsitch M , Donnelly CA , Fraser C , Blake IM , Cori A , Dorigatti I , et al . Potential biases
in estimating absolute and relative case-fatality risks during outbreaks. PLoS 

Negl Trop Dis 2015;9:e0 0 03846 . 
loyd-Sherlock P , Sempe L , McKee M , Guntupalli A . Problems of data availability and

quality for COVID-19 and older people in low- and middle-income countries. 
Gerontologist 2021;61:141–4 . 

ong QX , Tang XJ , Shi QL , Li Q , Deng HJ , Yuan J , et al . Clinical and immunological

assessment of asymptomatic SARS-cov-2 infections. Nat Med 2020;26:1200–4 . 
ouca S , Astor YM , Doebeli M , Taylor GT , Scranton MI . Microbial metabolite fluxes

in a model marine anoxic ecosystem. Geobiology 2019;17:628–42 . 
u FS, Nguyen AT, Link NB, Davis JT, Chinazzi M, Xiong X, et al. Estimating the cu-

mulative incidence of COVID-19 in the united states using four complementary 
approaches. medRxiv 2020. doi: 10.1101/2020.04.18.20070821 . 

adden FN , Godfrey KR , Chappell MJ , Hovorka R , Bates RA . A comparison of six

deconvolution techniques. J Pharmacokinet Biopharm 1996;24:283–99 . 
augeri A , Barchitta M , Battiato S , Agodi A . Estimation of unreported novel coron-

avirus (SARS-cov-2) infections from reported deaths: A susceptible–exposed–in- 
fectious–recovered–dead model. J Clin Med 2020a;9:1350 . 

augeri A , Barchitta M , Battiato S , Agodi A . Modeling the novel coronavirus (SARS–
cov-2) outbreak in sicily, italy. Int J Environ Res Public Health 2020b;17:4964 . 

endel JM . Maximum-likelihood deconvolution. New York: Springer; 1990 . 

erkely B , Szabó AJ , Kosztin A , Berényi E , Sebestyén A , C L , et al . Novel coronavirus
epidemic in the hungarian population, a cross-sectional nationwide survey to 

support the exit policy in hungary. GeroScience 2020;42:1063–74 . 
oore EH . On the reciprocal of the general algebraic matrix. Bull Am Math Soc

1920;26:394–5 . 
urhekar M , Bhatnagar T , Selvaraju S , Rade K , Saravanakumar V , Vivian Thangaraj J ,

et al . Prevalence of SARS-cov-2 infection in india: Findings from the national 

serosurvey, may-june 2020. Indian J Med Res 2020;152:48–60 . 
urhekar MV , Bhatnagar T , Selvaraju S , Saravanakumar V , Thangaraj JWV , Shah N ,

et al . SARS-cov-2 antibody seroprevalence in india, august–september, 2020: 
findings from the second nationwide household serosurvey. Lancet Glob Health 

2021;9:e257–66 . 
ah EH , Cho S , Park H , Hwang I , Cho HI . Nationwide seroprevalence of antibodies to

SARS-cov-2 in asymptomatic population in south korea: a cross-sectional study. 
BMJ Open 2021;11:e049837 . 

atashekara K . COVID-19 cases in india and kerala: a benford’s law analysis. J Public

Health 2021 . Fdab199 
guimkeu P , Tadadjeu S . Why is the number of COVID-19 cases lower than expected

in sub-saharan africa? a cross-sectional analysis of the role of demographic and 
geographic factors. World Dev 2021;138:105251 . 
346 
’Driscoll M , Ribeiro Dos Santos G , Wang L , Cummings DAT , Azman AS , Paireau J ,
et al . Age-specific mortality and immunity patterns of SARS-cov-2. Nature 

2021;590:140–5 . 
hia C , Bakarey AS , Ahmad T . Covid-19 and nigeria: putting the realities in context.

Int J Infect Dis 2020;95:279–81 . 
astor-Barriuso R , Pérez-Gómez B , Hernán MA , Pérez-Olmeda M , Yotti R , Oteo-Igle-

sias J , et al . Infection fatality risk for SARS-cov-2 in community dwelling popu-
lation of spain: nationwide seroepidemiological study. BMJ 2020;371:m4509 . 

earce N , Vandenbroucke JP , VanderWeele TJ , Greenland S . Accurate statistics on

COVID-19 are essential for policy guidance and decisions. Am J Public Health 
2020;110:949–51 . 

enrose R . A generalized inverse for matrices. Proc Camb Philos Soc 
1955;51:406–13 . 

oljak M , Oštrbenk Valen ̌cak A , Štrumbelj E , Maver Vodi ̌car P , Vehovar V , Resman
Rus K , et al . Seroprevalence of severe acute respiratory syndrome coronavirus 

2 in slovenia: results of two rounds of a nationwide population study on a 

probability-based sample, challenges and lessons learned. Clin Microbiol Infect 
2021;27 . 1039.e1–1039.e7 

ollán M , Pérez-Gómez B , Pastor-Barriuso R , Oteo J , Hernán MA , Pérez-Olmeda M ,
et al . Prevalence of SARS-cov-2 in spain (ENE-COVID): a nationwide, popula- 

tion-based seroepidemiological study. Lancet 2020;396:535–44 . 
eicher S , Ratzon R , Ben-Sahar S , Hermoni-Alon S , Mossinson D , Shenhar Y , et al .

Nationwide seroprevalence of antibodies against SARS-cov-2 in israel. Eur J Epi- 

demiol 2021;36:727–34 . 
iffe T , Acosta E , team tCD . Data resource profile: COVerAGE-DB: a global de-

mographic database of COVID-19 cases and deaths. Int J Epidemiol 2021;50 . 
390–390f 

inaldi G, Paradisi M. An empirical estimate of the infection fatal- 
ity rate of COVID-19 from the first italian outbreak. medRxiv 2020. 

doi: 10.1101/2020.04.18.20070912 . 

alje H , Tran Kiem C , Lefrancq N , Courtejoie N , Bosetti P , Paireau J , et al . Estimating
the burden of SARS-cov-2 in france. Science 2020;369:208–11 . 

ánchez-Romero M , di Lego V , Prskawetz A , L Queiroz B . An indirect method to
monitor the fraction of people ever infected with COVID-19: an application to 

the united states. PLoS ONE 2021;16:e0245845 . 
ingh B . International comparisons of COVID-19 deaths in the presence of co- 

morbidities require uniform mortality coding guidelines. Int J Epidemiol 

2021;50:373–7 . 
noeck CJ, Vaillant M, Abdelrahman T, Satagopam VP, Turner JD, Beaumont K, et al. 

Prevalence of SARS-cov-2 infection in the luxembourgish population: the CON- 
VINCE study. medRxiv 2020. doi: 10.1101/2020.05.11.20092916 . 

oiza RL , Scicluna C , Thomson EC . Efficacy and safety of COVID-19 vaccines in older
people. Age Ageing 2021;50:279–83 . 

ahidy FS, Pischel L, Tano ME, Pan AP, Boom ML, Sostman HD, et al. Real world

effectiveness of COVID-19 mRNA vaccines against hospitalizations and deaths in 
the united states. medRxiv 2021. doi: 10.1101/2021.04.21.21255873 . 

eiga e Silva L , de Andrade Abi Harb MDP , Teixeira Barbosa dos Santos AM , de Mat-
tos Teixeira CA , Macedo Gomes VH , Silva Cardoso EH , et al . Covid-19 mortality

underreporting in brazil: Analysis of data from government internet portals. J 
Med Internet Res 2020;22:e21413 . 

erotta D . Two constrained deconvolution methods using spline functions. J Phar- 
macokinet Biopharm 1993;21:609–36 . 

ard H , Atchison CJ , Whitaker M , Ainslie KEC , Elliott J , Okell LC , et al . Antibody

prevalence for SARS-cov-2 in england following first peak of the pandemic: RE- 
ACT2 study in 10 0,0 0 0 adults. medRxiv 2020 . 10.1101/2020.08.12.20173690 

iener N . Extrapolation. Ãnterpolation, and smoothing of stationary time series. 
Cambridge: MIT Press; 1964 . 

http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0032
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0033
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0035
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0036
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0037
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0038
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0038
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0038
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0038
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0038
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0039
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0040
https://doi.org/10.1101/2020.04.18.20070821
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0042
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0043
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0043
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0043
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0043
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0043
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0044
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0044
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0044
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0044
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0044
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0045
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0045
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0046
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0047
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0047
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0048
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0049
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0050
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0051
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0051
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0051
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0052
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0052
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0052
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0053
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0054
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0054
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0054
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0054
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0055
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0056
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0056
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0056
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0056
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0056
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0057
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0057
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0058
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0059
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0060
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0061
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0061
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0061
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0061
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0061
https://doi.org/10.1101/2020.04.18.20070912
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0063
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0064
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0064
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0064
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0064
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0064
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0066
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0066
https://doi.org/10.1101/2020.05.11.20092916
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0068
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0068
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0068
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0068
https://doi.org/10.1101/2021.04.21.21255873
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0065
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0070
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0070
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0071
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0072
http://refhub.elsevier.com/S1201-9712(21)00701-3/sbref0072

