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Abstract: Neurosurgeons receive extensive and lengthy training to equip themselves with various 
technical skills, and neurosurgery require a great deal of pre-, intra- and postoperative clinical data 
collection, decision making, care and recovery. The last decade has seen a significant increase in the 
importance of artificial intelligence (AI) in neurosurgery. AI can provide a great promise in 
neurosurgery by complementing neurosurgeons’ skills to provide the best possible interventional and 
noninterventional care for patients by enhancing diagnostic and prognostic outcomes in clinical 
treatment and help neurosurgeons with decision making during surgical interventions to improve 
patient outcomes. Furthermore, AI is playing a pivotal role in the production, processing and storage 
of clinical and experimental data. AI usage in neurosurgery can also reduce the costs associated with 
surgical care and provide high-quality healthcare to a broader population. Additionally, AI and 
neurosurgery can build a symbiotic relationship where AI helps to push the boundaries of 
neurosurgery, and neurosurgery can help AI to develop better and more robust algorithms. This 
review explores the role of AI in interventional and noninterventional aspects of neurosurgery during 
pre-, intra- and postoperative care, such as diagnosis, clinical decision making, surgical operation, 
prognosis, data acquisition, and research within the neurosurgical arena.
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Abbreviations: AI: artificial intelligence; BCI: brain-computer interface; CAD: computer-assisted 
diagnosis; CT: computerised tomography; DL: deep learning; ML: machine learning; MRI: magnetic 
resonance imaging; TBI: traumatic brain injury; TLE: temporal lobe epilepsy 

1. Introduction 

Neurosurgery is a demanding profession. Successful neurosurgeons require extensive training, 
stamina, a high degree of manual dexterity, excellent hand-eye coordination, intelligent decision 
making, leadership and organisational skills, compassion, communication skills and teamwork [1]. The 
boundaries and outcomes of surgeries are in part limited by the skills of the operating surgeons [2], 
rendering variabilities in the outcomes and experience of patients undergoing the same operation 
within different settings. While successful operations can benefit patients, errors can have undesired 
outcomes and, sometimes, harmful consequences. For instance, about a quarter of medical errors 
occurring in neurosurgery are technical errors related to the surgical procedures [3] that can be 
prevented, emphasising the importance of pragmatic steps to improve the successful outcome of 
neurosurgical interventions and reducing associated errors to deliver the best possible care for patients. 
Recent advances in technology have bridged the gap between humans and machines and have enabled 
computers to mimic, and even outperform, natural human intelligence to create what is called 
“artificial intelligence” (AI). 

Since Kwoh and colleagues used the first robotic procedure in the modern era for computerised 
tomography (CT)-guided stereotactic brain surgery in 1988 [4], neurosurgeons have always been at the 
forefront of using cutting-edge technologies to deliver the best possible care for their patients.  
Noninvasive visualisation techniques such as CT scanning, magnetic resonance imaging (MRI) 
combined with image guiding, stereotactic surgery, and electrical stimulation have been essential 
components of neurosurgery within and out of operating rooms [5,6]. Multiple technologically 
advanced methods such as self-positioning microscopes and endoscopes or automatic imaging 
guidance procedures have been used to improve patient outcomes and to reduce the procedural errors 
associated with neurosurgery [7–9]. As the overall life expectancy and the global population levels are 
rising [10–12], the demand for healthcare increases; however, the capacity of healthcare systems cannot 
address the surge in demand by solely relying on the human capital. The “crisis in human resources” is 
one of the most significant challenges of the healthcare sector in the recent era [13]. Furthermore, the 
ease of access to various healthcare services have caused a huge surge in the production and storage of 
clinical data such as imaging, genomics, and health monitoring [14]. For example, 80% of about 15 
million global cancer diagnoses require surgery [15], which, in turn, each requires pre-, intra-, and 
postoperative clinical data collection, processing, interpretation and storage by human. 

More than 13.8 million patients undergo a neurosurgical procedure globally every year [16]. 
Although it is estimated that there has been a global growth in the number of neurosurgeons to 
about 50,000 neurosurgeons currently [17], more than 5 million individuals in low- and middle-
income countries with treatable neurosurgical conditions remain untreated annually [16], creating a 
huge gap between essential neurosurgery required and current neurosurgeries performed. 
Approximately 23,000 neurosurgeons are required to address global deficiencies in neurosurgery, 
particularly in low- and middle-income countries [16]. However, training neurosurgeons is 
competitive, lengthy, expensive and requires highly committed mentors and advanced surgical 
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equipment [18–21]. These statistics are concerning and require sustainable and thorough solutions 
to address global health concerns. 

Machines, algorithms and AI do not face mental and physical fatigue and can function 24/7, 
therefore, have a higher safety standard compared to humans. Additionally, machines have a greater 
capacity to learn and identify patterns that are not obvious to humans [22], thereby demonstrating 
hidden connections which are hard to discern [23]. Interpretation of clinical data, especially 
radiological images, can be subjective and qualitative [24,25] causing heterogeneity of diagnoses 
among physicians and, in some cases, poor prognosis. AI can benefit neurosurgeons by reducing 
errors in the surgical arena, reducing costs associated with diagnosis, treatment and prognosis, 
expanding access to high-quality medical care as well as providing patients with increased autonomy 
in their own decision-making processes. 

The use of technology, especially AI and robotics, in medicine and surgical interventions has 
been increasing over the past decade [26–28]. A search in the database PubMed showed a sustained 
increasing trend in the number of publications involving neurosurgery and artificial intelligence over 
the past decade (Figure 1). 

 

Figure 1. Absolute and the cumulative number of publications involved neurosurgery and 
artificial intelligence in their title or abstract over the past decade. The representative data 
was gathered from the database PubMed using neurosurgery OR neurological surgery OR 
brain surgery AND artificial intelligence OR machine learning OR deep learning search 
function in the title or abstract from 2010–2020. 

While AI can benefit multiple parties such as surgeons, healthcare workers, the overall 
healthcare system and patients [29], in this review, I mainly focus on the benefits of AI on 
neurosurgeons while briefly mentioning the wider aspect of AI on the healthcare system. 
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2. Artificial intelligence and neurosurgery 

AI, machine learning (ML) and deep learning (DL) have the potential to transform neurosurgery. 
AI aims to simulate the behaviour of intelligent beings in computers, whereas ML as a subdomain of 
AI combines computer science and statistics to enable computers to learn patterns by direct studying of 
data through experience, autonomous of external programming [30,31] (Figure 2). Our brain changes 
as we grow, and so does ML as it trains. In its essence, ML is acting similar to medical students and 
resident doctors to learn rules from data and to apply general rules to various patients in each case with 
one chief difference- doing these on a huge scale with an enormous amount of data [22] (Figure 2). ML 
in medical sciences mainly uses supervised learning through training algorithms such as logistic 
regression, support vector machine and random forests [25]. 

 

Figure 2. An overview of the relationship between artificial intelligence, machine learning 
and deep learning. AI aims to mimic the intelligent behaviour of humans. ML as a branch 
of AI uses statistics and computer sciences to improve the performance of machines as the 
experience accumulates. DL uses multi-layered neural networks to learn computation. The 
figure was made using Biorender. 

AI can improve the accuracy of diagnosis and treatment in neurosurgery and provide 
neurosurgeons with effective and efficient tools in a timely manner during pre-, intra- and 
postoperative care. AI can spot subtle abnormalities and malformations from neuroradiological 
images and clinical data which are not discernible to trained eyes. Deep learning as a subset of ML is 
based on neural networks, which include multiple layers of learning algorithms [32] (Figure 3). 
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Figure 3.  An overview of multilayer perception in the context of the artificial neural 
network of deep learning model with multiple interconnected layers. The figure was 
made using Biorender. 

Patients can experience highly variable outcomes for the same neurosurgical treatments 
depending on various underlying reasons such as the experience of the operating surgeon, variations in 
the operating approach and a lack of clear national or international guidelines for common treatments, 
financial reasons, annual case volume, geographical location and the nature of the practice (academic, 
private, etc.) [33–37]. It is worth mentioning that other factors influencing the patient outcome in 
neurosurgical interventions can be patient-specific variations such as age, sex, comorbidities, alcohol 
and tobacco consumption, body mass index, psychological conditions, and etc. [37]. Considering all 
these variables to reach a decision for the best surgical intervention can be beyond the capacity of a 
human being. AI can reduce variations in patient outcome by reducing the heterogeneity of the care via 
providing guidelines to create consensus among neurosurgeons on surgical interventions, thereby 
improving prognosis and reducing costs. 

AI can improve the patient outcomes in neurosurgery in pre-, intra- and postoperative domains 
as well as neurosurgical research, training and expanding access to high-quality treatments (Figure 4). 
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Figure 4. An overview of the role of AI in neurosurgery. AI can help the neurosurgery in 
pre-operative work, intra-operative surgical procedures, postoperative follow-up, 
improving clinical research and expanding access to healthcare. The figure is providing 
an overview, and it is not an exhaustive list. The figure was made using Biorender. 

3. The role of AI in pre-, intra- and postoperative phases of neurosurgery 

In the pre-operative phase of neurosurgery, AI can assist surgeons in diagnosing the condition, 
selecting patients for the right treatment, and helping patients to make the right decisions [31]. In the 
intra-operative phase of neurosurgery, AI can enhance the performance of surgeons and reduce errors 
associated with neurosurgery. In postoperative care, AI can predict prognosis, identify potential 
postoperative complications and track data for better aftercare and recovery. As such, by making 
better predictions in the postoperative phase, pre-operative planning can be enhanced to improve 
patient care and reduce the associated costs. For example, ML can be used for classification, 
regression and clustering to analyse large data sets, identify risk factors and predict surgical 
complications such as cardiac complications, wound complications and mortality among patients 
following a cervical discectomy and posterior lumbar spine fusion [38–40]. Research in 
neurosurgery can benefit from AI by helping researchers to collect, analyse, process, and disseminate 
data. Since available financial means can be an obstacle for delivering the best possible treatment, AI 
can facilitate access to high-quality care in less developed areas through teleoperation. I am going to 
discuss each of these domains below. 

High-resolution and ubiquitous radiological imaging combined with electrophysiological data are 
methods of choice that have provided neurosurgeons with unprecedented and noninvasive intracranial 
access. Manual decision making in neurosurgical medicine requires neurosurgeons to study, retain, 



483 

AIMS Neuroscience  Volume 8, Issue 4, 477–495. 

analyse and interpret a large quantity of complicated and dynamic data. Neurosurgeons usually rely on 
their experience and clinical evidence to make a decision and provide a prognosis [41,42]. Regardless 
of how well-trained or experienced a neurosurgeon is, manual handling of such information can be, at 
its very least, challenging for the human capacity. Furthermore, the sheer volume of data combined 
with the urge to make a rapid and accurate diagnosis, the presence of atypical cases, and lack of access 
to trained radiologists can pose bottlenecks for the accurate and timely diagnosis of different conditions 
manually by trained physicians and be resource-, time-, and labour intensive. As such, errors and 
discrepancies can be as common as 3–5% in radiology [43]. In addition, time is of crucial importance 
in neurosurgical interventions, and reducing the door-to-needle times for emergency neurosurgical 
interventions has been a goal for many clinical settings [44]. 

Some challenges in neurosurgical care can be circumvented by computer-assisted diagnosis 
(CAD) and AI. By using a vast amount of anatomical, morphological and connectivity information, 
AI and CAD can significantly help neuroradiologists and neurosurgeons to make effective and 
efficient diagnoses, accelerating the triage and hence the workflow to initiate the treatment, 
reducing the human labour as well as the costs [45]. Multiple studies have demonstrated that door-
to-needle times play a crucial role in reducing mortality and improving the prognosis, and 
obtaining and interpreting radiological images, and the lack of access to neurologists are the major 
reasons causing delays in delivering emergency treatments for conditions such as stroke [46–48]. 
AI can be used to accelerate brain imaging acquisition and interpretation that can be crucial in 
assisting clinicians in improving the accuracy of their diagnosis [49,50]. Additionally, AI can be 
used independently for automatic classification of epilepsy type with 60% AI accuracy compared 
with 62% clinician accuracy [51], predicting tumour type with 86% AI accuracy [52], predicting 
glioma with 86% accuracy [53], diagnosing acute ischaemic events with 56% accuracy [54], and 
cerebral aneurysms with more than 90% accuracy [55]. 

In pre-operative planning, AI algorithms have been used for automatic tumour segmentation [41,56], 
epileptogenic zone localisation [51], selecting appropriate candidates for epileptic surgery [57], 
predicting symptomatic cerebral vasospasm after aneurysmal subarachnoid haemorrhage [58], and 
predicting tissue damage following acute ischaemic stroke [59]. For example, classification of epilepsy 
and tumour can be subjective [50,60], therefore causing differences in the decision-making of 
neurosurgeons. By providing a robust framework and outline, algorithms using AI can reduce the 
subjective interpretation of the data and thereby diagnose conditions requiring neurosurgical procedures. 

Effective and efficient identification of glioma tissue is a crucial step in pre-operative planning 
and can be dependent on the anatomical knowledge of neuroradiologists and neurosurgeons, and 
therefore, time-consuming and dependent on the operator variation [61–64]. While glioma resection 
can extend patients’ survival, it can have high postoperative risk because gliomas can be found in 
functional areas which control various functions such as sensory, motor, vision and language [65]. 
AI was successfully used for MRI-based segmentation of glioma and brainstem tumours and did 
similarly or outperformed physicians [41,56,66]. 

Classification is another task that can be performed by ML. For example, lumbar disk 
degeneration can be classified using MRI scans from healthy to severely abnormal disks [67]. ML can 
cluster patients suffering from osteoporotic vertebral fracture based on their pain progression [68], 
thereby helping their management. ML helped diagnosing paediatric posterior fossa tumours by 
categorising them into the primitive neuroectodermal tumour, astrocytoma, or ependymoma with 72% 
accuracy compared to 73% accuracy of neuroradiologists [69] and in other cases with better accuracy 
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than the neuroradiologists [64], as well as classifying intra-axial cerebral tumours including high- 
and low-grade gliomas, metastatic tumours and malignant lymphomas and sellar-suprasellar masses 
by significantly increasing the diagnostic classification of tumours by radiologists [50,70]. Other 
studies showed that ML and artificial neural network predicted the glioma according to the World 
Health Organization (WHO) grade better than radiologists [41,71–73]. Beyond tumour diagnosis, 
ML outperformed physicians with 82.2% to 62.2% accuracy in predicting the presence of abnormal 
features in CT scans of paediatric TBI patients [74]. 

AI outperformed physicians (95.8% compared to 66.7%) for lateralising the affected brain 
hemisphere in the most common pharmacoresistant and surgically remediable type of epilepsy in 
adults, temporal lobe epilepsy (TLE), using functional MRI data [75]. This can significantly increase 
the patient outcome as unclear localisation of the epileptogenic zone can be a significant barrier to 
allocating eligible patients to appropriate surgeries [76]. 

There are other examples where AI was used in the diagnosis and classification of neurosurgical 
diseases without radiological input [74,77]. For example, AI showed significantly higher accuracy in 
discriminating between single cells vs multiunit spike clusters from electroencephalography 
recordings of 12 epilepsy patients requiring implantation of chronic intracranial depth electrodes [77]. 
Since AI is capable of using multiple variables simultaneously, an attribute that is beyond the 
capacity of a human operator, it can consider multiple factors when planning the treatment. To this 
end, a study generated an artificial neural network with 11 clinical inputs to train the algorithm for 
predicting the survival of TBI patients [78]. ML had a better performance in accuracy and sensitivity 
and was more specific compared to neurosurgeons and neurosurgery residents [78]. 

AI can predict the progression of a disease. For example, MRI data from a large, 
multiinstitutional dataset was used to train deep learning algorithms to replace invasive tissue 
sampling and predict the progression of glioma noninvasively [79,80], demonstrating the potential of 
ML in enhancing capitalisation of the existing data. 

The current conventional workflow of intraoperative tissue biopsy where the tissue is being 
transported to a laboratory, it is processed, and specimen are prepared by highly skilled laboratory 
personnel before being interpreted by pathologists [81] is time-, labour-and resource-intensive and 
dates back more than a century old [82]. To provide an example of the use of AI in the intra-
operative phase of neurosurgery, Hollon et al. [81] have developed a label-free optical imaging 
workflow to automatically predict diagnosis in near real-time. Their tumour diagnosis methods can 
predict the diagnosis of tumours in under 150 seconds compared to conventional methods described 
earlier, which can take 30 minutes [83], with an overall accuracy of 95%, which slightly 
outperformed conventional histology workflow with an accuracy of 94% [81]. 

Since patients might require multiple visits to various geographical locations such as outpatient 
clinics, inpatient wards, pharmacies, emergency departments, intensive care units, and laboratories, 
telemedicine can reduce the unnecessary travel by both healthcare professionals and patients [84,85]. 
Telemedicine is positively valued by patients and healthcare providers and can improve patient 
outcomes during postoperative care, especially in geographically restricted areas [86–88]. 
Postoperative videoconferencing was welcomed by the majority of patients and was comparably as 
safe and as effective compared with in-person clinic visits among patients who had elective 
neurosurgery [87]. As such, telemedicine can be used for follow-up visits which would have required 
in-person clinic visits, remote diagnosis of postsurgery complications, as well as continued routine 
monitoring [89]. In comparison, the use of AI in postoperative care and follow-up of neurosurgery is 
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less agreeable among surgeons and surgical teams compared to other usages such as pre-operative 
planning and image interpretation [90]. 

These examples clearly demonstrate the power of AI, ML and DL in pre-, intra- and 
postoperative phases of neurosurgical diseases. Future work requires integration of AI and ML 
models to combine pre-, intra- and postoperative algorithms into a single model where the best pre-
operative planning, intra-operative surgical intervention, and postoperative follow-up work with 
associated risk, financial cost, and considerations can be suggested to surgeons. Such algorithms not 
only can benefit neurosurgeons in their decision-making but also facilitate the delivery of high-
quality healthcare to low resources settings and facilitate personalised surgical and postsurgical care. 

4. Expanding access to high-quality neurosurgical healthcare 

A number of efforts, such as increasing the capacity of neurosurgical training, can address the 
disparity associated between the demand and the availability of neurosurgical care discussed earlier 
in this review; however, such disparities in healthcare still exist. 

The COVID-19 pandemic demonstrated the vulnerability of the healthcare systems around the 
globe. Elective neurosurgeries were cancelled to free up staff and beds for the critical care of 
pulmonary COVID-19 patients, in addition to a reduced capacity in teaching and training 
neurosurgery [91]. One of the important lessons that can be learnt to strengthen the healthcare 
system is the development of telemedicine and teleoperating by incorporating AI in neurosurgery. 
Robotic surgery with the help of AI can be used to facilitate patient management and surgical 
operation during the time of increased demand on the healthcare systems such as pandemics [92]. 
However, the use of teleoperating and telesurgery should not remain restricted to exceptional 
circumstances, such as infectious diseases pandemic, and it can be extended to deliver high-quality 
surgical procedures to rural and less accessible areas, battlefields and difficult terrains. Delivery of 
surgical interventions for patients in situ can minimise the risk and cost associated with patient 
transfer to large medical centres and decentralising resources available. 

There is a clear global disparity in the availability of neurosurgical care, which can result in 
preventable disease, disability, and death. For instance, while around 7500 neurosurgeons in Japan 
take care of the neurosurgical needs of the population, it has been estimated that thirty-nine countries 
around the globe do not have a single practising neurosurgeon [17]. In some low- and middle-income 
countries, patients must travel in excess of 2 hours to receive emergency neurosurgical care, which 
itself has a lower quality of care compared to high-income countries [93]. Teleneurosurgery, with the 
help of AI, can address some of the existing disparities in accessing high-quality healthcare. 

Smartphone apps can provide patients with easy access to healthcare providers as well as 
helping people with behavioural changes to educate patients to improve their general health and 
well-being and help them monitor their health such as weight management, smoke cessation [84]. 
Such mobile phone apps can be used for postoperative neurosurgical follow-up. Indeed, AI can be 
further used to develop mobile phones app for the early detection of other diseases and conditions 
of the nervous system, such as stress, anxiety and depression, among specific and targeted 
populations [94] to provide a better prognosis for patients. 

Although doctors try to deliver the best possible treatment for their patients, access to high-
quality medical care can be restrained by economic means [95], resulting in disparities in access to 



486 

AIMS Neuroscience  Volume 8, Issue 4, 477–495. 

appropriate healthcare. AI, telemedicine, teleoperating and telesurgery can help ameliorate some of 
these disparities. 

5. Using AI to push the boundaries of neurosurgical research 

We live in an era that has been named the age of information [96]. One of the major challenges 
associated with the age of information is the processing and storage of such a vast amount of clinical 
data that was briefly discussed before. AI and artificial neuronal network (Figure 5) can be useful 
tools to helps us comprehend the complexity of the nervous system. With the arrival of more data 
processing power and accumulation of data, AI has become more successful in surgical research in 
the past decade. Technology is beginning to demystify the notion of “mind control”. Brain-computer 
interface (BCI) and AI can be combined to restore some of the sensory and motor functions of 
patients with paralysis, expand the motor ability of healthy people and facilitate the development 
of next-generation robots [97,98]. Currently, about 169,000 people live in the United States of 
America with traumatic spinal cord injury causing tetraplegia [99]. In these patients, the cortex still 
generates neuronal activity for limb movement, but the firing is not passed to the limbs due to spinal 
injuries. Signals can be acquired noninvasively from the scalp using electroencephalography (EEG) 
and processed to control robotic arms [97]. 

AI and ML can understand the firing of the cortex, and restore motor control by transmitting 
signals from the human motor cortex to muscles of a quadriplegic person with a C5/C6 cervical 
spinal cord injury, thereby providing a “neural bypass” [101]. A recent bidirectional BCI, which 
provides patients with tetraplegia with substantially improved control over the robotic arm by 
recording neural activity from the cortex and generating tactile sensation through intracortical 
stimulation of the somatosensory cortex [102], can have a substantial impact on the advancement of 
BCI and AI in neurosurgical treatment. Such combinations of AI and BCI had the advantage of 
providing a real-time adjustment for the desired task as the algorithms can learn from the past 
experience and help the users to an optimal outcome based on the previous task [103]. 

As AI becomes more prominent in neurosurgery, it can develop a mutual relationship where AI 
helps neurosurgery and vice versa. AI and ML have enabled data to speak for themselves and guide 
physicians to make better decisions [14,26]. Furthermore, AI can help building and testing 
hypotheses as well as analysing clinical and experimental data. This frees up clinical researchers’ 
valuable time from carrying out mundane analysis and help them focus on the bigger picture [26]. 
Furthermore, the accuracy of data analysis can be enhanced by minimising human error and bias [3]. 
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Figure 5. An overview of brain-computer interface (BCI) and AI working together to 
restore and enhance the sensory and motor functions of the central and peripheral 
nervous systems. AI can improve BCI by facilitating audio sensation, somatic sensation, 
visual sensation, and etc. Microelectrodes can pick up the signal from the brain and 
transfer them to AI for processing. AI can process the signal and extract meaningful 
features from them, for example, remove the background noise from the readings, 
identify the logic in the data and produce a coherent outcome [98,100]. Feedback from 
the outcome can then be sent to the cortex to adjust the function, thereby providing a 
real-time adjustment of the behaviour. The figure was made using Biorender. 

6. Challenges associated with using AI in neurosurgery 

Using AI in neurosurgery is not completely harmless. There can be negative primary and 
secondary consequences associated with over-reliance on AI in neurosurgery. At the primary level, 
hardware and software malfunctions can cause errors in the surgical procedures [6], as well as 
misinterpretations of clinical findings, laboratory reports, and image scans leading to mistakes in 
diagnosis. At the secondary level, over-reliance on AI for surgical interventions can discourage 
surgeons from learning skills required to master surgical techniques. Over-reliance on algorithms for 
the diagnosis and treatment of nervous system diseases can be problematic. For example, algorithms 
used in ML can overfit the data [22] to produce false positives or false negatives. However, such 
malfunctions and malperformance can be ameliorated by confirming the functionality of the 
algorithm using validation samples and independent data sets [22]. 
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One of the concerns associated with the use of AI in the medical field has been that it will 
replace clinicians. It is of paramount importance to bear in mind that the patient is at the centre of 
medicine and benefit to patient should be the most important criterion in deciding whether AI can 
benefit medicine or not, AI should not replace the human, but it should work cooperatively with 
surgeons to complement their skills and improve their performance to provide the best possible care. 
Recent qualitative studies have shown that while patients and their relatives welcome the use of AI in 
neurosurgery and find it acceptable, they were reluctant to be treated by fully autonomous 
neurosurgeries and would like to have neurosurgeons to ultimately remain in control [104]. Similarly, 
most neurosurgeons welcome the use of AI in neurosurgery [90], so there is a consensus among 
neurosurgeons and patients on the use of AI in neurosurgery. Multiple studies have shown that the 
combination of AI with clinicians improved clinical decision making compared to clinicians or AI 
alone [50,70,105,106]. As such, neurosurgeons will not be deskilled, but they can expand on their 
expertise to equip themselves with better techniques. 

Another problem with the use of AI, and especially BCI, is that it is still very limited, and many 
practical challenges need to be overcome before the widespread usage of AI in restorative 
neurosurgery. Multiple challenges exist with respect to implant technology, implant recipients and 
implantation methodologies [107]. Furthermore, generating and training algorithms requires a vast 
amount of data [31]. This can be further complicated, given that access to most of the patient data is 
restricted due to privacy concerns [26]. ML is based on data acquisition and availability and any 
algorithm is as good as the data used to train it. Therefore, successful acquisition and implementation 
of data are essential for developing and training ML algorithms. Therefore, noisy and complicated 
data can itself pose a challenge to develop optimal AI algorithm. 

Another challenge with the usage of AI in neurosurgery is the cost. However, while the initial 
training and operating of AI might have some costs, the long-term benefits of reducing surgeons’ 
workload, increasing the handling of data, and reducing error can outweigh the initial cost. 
Furthermore, ML can reduce the cost associated with unnecessary testing and defensive medicine. 
However, this requires a better definition for different diseases and conditions. 

Furthermore, the storage of a vast amount of data about our neuronal activity can provide 
abusers with a means to access information about conscious and subconscious behaviours, intentions, 
desires, and interests which can be used to manipulate human’s behaviour [108], indicating 
development of ethical regulations in the usage of AI in neurosurgery [109]. 

7. Conclusion and outlook 

AI is an interdisciplinary field in the interface of medicine, neuroscience, and engineering. 
Neurosurgery can harvest the power of AI to provide patients with the best outcome. AI has the 
capacity to improve surgeons’ skill set in the pre-, intra- and postoperative arena in neurosurgery. 
Humans and machines can work cooperatively to harness the recent technological advances in AI 
to enhance the quality of healthcare delivery through image acquisition, processing and 
interpretation, allocating patients to appropriate surgeries, improving intra-operative work, 
providing postoperative follow-up and facilitating access to high-quality healthcare. The use of AI 
can be further expanded for neuromuscular and neurodegenerative diseases to treat conditions such 
as Parkinson’s disease, which are currently treated by medication and deep brain stimulation [110], 
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as well as understanding different aspects of molecular cell biology such as subcellular trafficking 
of cargoes in single neurons [111,112]. 

The emergence of AI in neurosurgery requires careful regulation and monitoring to abide by 
ethical principles [109]. The use of AI in medical and surgical training should be incorporated 
early in undergraduate medical school to train the future generation of surgeons with the state of 
art technologies. Undergraduate medical students have an awareness of the potential of AI in 
medicine and are not concerned that AI will substitute human radiologists [113]. 

AI can be a gateway for personalised medicine in the future. Furthermore, as the acquisition 
of large clinical data is growing, precision medicine aims to establish quantitative models to 
predict the health outcome, prognosticate disease procedure, prevent diseases and minimise 
surgical complications [38]. Both personalised medicine and precision medicine can benefit from 
AI. Future widespread use of AI in neurosurgery requires further research, investment, and 
multidisciplinary collaborations. 
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