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Mesenchymal stem cells (MSC) isolated from different tissue sources exhibit multiple
biological effects and have shown promising therapeutic effects in a broad range
of diseases. In order to fulfill their clinical applications in context of precision
medicine, however, more detailed molecular characterization of diverse subgroups
and standardized scalable production of certain functional subgroups would be highly
desired. Thus far, the generation of induced pluripotent stem cell (iPSC)-derived MSC
(iMSC) seems to provide the unique opportunity to solve most obstacles that currently
exist to prevent the broad application of MSC as an advanced medicinal product. The
features of iMSC include their single cell clone origins, and defined and controllable
cultural conditions for their derivation and proliferation. Still, comprehensive research
of the molecular and functional heterogeneity of iMSC, just like MSC from any other
tissue types, would be required. Furthered on previous efforts on iMSC differentiation
and expansion platform and transcriptomic studies, advantages of single cell multi-
omics analysis and other up-to-dated technologies would be taken in order to elucidate
the molecular origin and regulation of heterogeneity and to obtain iMSC subgroups
homogeneous enough for particular clinical conditions. In this perspective, the current
obstacles in MSC applications, the advantages of iMSC over MSC and their implications
for biological research and clinical applications will be discussed.

Keywords: mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), iPSC-derived MSCs (iMSCs),
heterogeneity, functional subpopulations, single cell transcriptomics, CRISPR/Cas9 screening
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GRAPHICAL ABSTRACT | Induced pluripotent stem cell-derived mesenchymal stem cells (iMSC) and primary MSC comparison: to show the advantages and
applications of iMSC.

INTRODUCTION

Mesenchymal stem cells (MSC) derived from organ tissues
naturally possess high heterogeneity, which not only provides the
basis for their multifunctional and complex activities, but also
brings a hurdle to the reproducibility of MSC experiments and
causes more variations and difficulties in the standardization and
normalization to evaluate the safety and efficacy of MSC therapies
(Yang et al., 2017; Chen et al., 2019; Zakrzewski et al., 2019;
Wang et al., 2020).

Human induced pluripotent stem cells (iPSC) based on
cell reprogramming technology have significantly improved
the understanding of pluripotency maintenance and also
provided infinite donor-related sources of specific individualized
stem cells (Crow, 2019; McGrath et al., 2019; Chen et al.,
2020). Importantly, iPSC-derived MSC (iMSC) still have
these advantages. Compared with tissue-derived MSC, iMSC
closely resemble their primary counterparts in morphology,
immunophenotype, and three-lineage differentiation capacity
while showing stronger regeneration ability in animal disease
models (Ozay et al., 2019; Chang et al., 2020; Fernandez-Rebollo
et al., 2020). Moreover, iPSC can be passed down indefinitely so
that the sources of iMSC can be endless and iMSC induced from
a single iPSC cell or clone are theoretically more homogeneous
(Saetersmoen et al., 2019; Bloor et al., 2020).

Based on these characteristics, iPSC can provide stable and
reliable sources of iMSC suitable for personalized treatment
of the patients, and can also be utilized in infinitely scalable
preparation and production. The qualities of the final products

are sustainable, relatively controllable and can achieve the best
therapeutic efficacy aimed at specific clinical diseases. In this
perspective, we summarize the current research and discuss the
potential contribution of iMSC in order to advance the field of
iMSC-based biological research and clinical applications.

MESENCHYMAL STEM CELL
HETEROGENEITY IN THEIR
BIOLOGICAL PROPERTIES

Primary MSC could be isolated from several tissues such as bone
marrow, adipose tissue perivascular fractions, Wharton’s jelly
of human umbilical cord, umbilical cord blood and placenta,
and regarding the cell lineage development, mesoderm and
neural crest cells are the two main origin sources (Fukuta et al.,
2014; Isern et al., 2014; Zhao and Ikeya, 2018). They play
critical roles in regulating tissue functionalities and regeneration,
possess multi-lineage differentiation potential and have been
most widely used to treat tissue damage (Wong et al., 2013),
organ degeneration (Orozco et al., 2013), aging (Ohta et al., 2020),
immune-/inflammation-mediated diseases (Ciccocioppo et al.,
2011; Connick et al., 2011; Tan et al., 2012; Gupta et al., 2019)
in clinical applications whereas their diverse originations result
in MSC heterogeneity and their various differential efficacy in
biological activities.

Mesenchymal Stem Cell heterogeneity exists in multiple levels
(e.g., age, metabolic status, hormone, genetic background, and
pathophysiological condition), which lead to differences in nearly

Frontiers in Cell and Developmental Biology | www.frontiersin.org 2 September 2021 | Volume 9 | Article 716907

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-716907 September 24, 2021 Time: 18:14 # 3

Zhang et al. iMSC Hold Lower Heterogeneity

all the cell types of the body including MSC (Han et al., 2017;
McLeod and Mauck, 2017; Wang et al., 2020). Secondly, primary
MSC harvested from different tissues are naturally heterogeneous
due to inherit tissue “memory” or be in different differentiation
stages (McLeod and Mauck, 2017; An et al., 2018). Besides,
it is worth mentioning that the micro-environment including
anatomical structures and micromechanical factors and cellular
“positional memory” varies and accounts for MSC heterogeneity
(Sacco et al., 2019). In addition, various tissue separation methods
and culture conditions (e.g., normal or hypoxia condition,
low/high growing density) may also generate heterogeneous MSC
subtypes or lead to their biased expansion toward specific types
(Liu et al., 2015; Dhawan et al., 2016; Legzdina et al., 2016).
Moreover, studies have shown that even from the same batch of
MSC, their different colonies appear differences in proliferation
ability and differentiation potential, which can be regarded as
intra-clonal heterogeneity (Rennerfeldt and Van Vliet, 2016).

Earlier work found that both fat and bone marrow derived
MSC contained two types of cells of different sizes which
exhibited distinguished therapeutic effects in treating macular
degeneration (Li et al., 2016; Wang et al., 2017). For a long time,
people have used the MSC surface markers to distinguish their
regenerative capacity. For example, the CD106+ MSC subgroup
is likely to have superior angiogenesis and immune regulation
functionalities (Yang et al., 2013). Now the MSC marker lists
are growing and some of them, such as CD146, CD271, CD371,
Notch1 and Stro1, have been used to screen cells capable for
better migration, homing ability and preferential differentiation
toward specific directions (such as endothelial cells, osteoblasts or
chondrocytes, etc.) (James et al., 2015; Harkness et al., 2016; Najar
et al., 2018). Accordingly, it seems that MSC subgroups with
specific preferable capacity can be isolated and enriched by their
distinguishable surface markers for better biological activities.
However, the expression of these surface markers is not stable
and there are conflicted reports in different laboratories. For
example, studies have shown that MSC with high CD105 are
more likely to mediate cartilage differentiation and regeneration
whereas other laboratories cannot obtain consistent results (Su
et al., 2015; Cleary et al., 2016).

Mesenchymal cells within different organs and tissues are
comprised of functionally and devlopmentally diverse cell
populations and they have been for long difficult to discriminate
largely due to the lack of development and progenitor hierarchy-
related surface markers. In-depth analysis of the derivation
processes of iMSC in well-defined culture conditions has
demonstrated the capacity of iPSC to generate different types
of mesenchymal cell populations, including MSC, pericytes
(PC) and other related cell types (Vodyanik et al., 2010;
Slukvin and Kumar, 2018). In particular, successful identification
of a common mesodermal progenitor for mesenchymal and
endothelial cells, mesenchymoangioblast (MB), was an important
milestone for well understanding mesenchymal progenitor cell
development. MB is a transient status during the derivation
of iMSC cultured in chemically defined conditions, existing on
day 2 of differentiation and featured with APLNR, PDGFR and
KDR expression, and dramatically reduced on day 3 and entirely
disappear on day 4 of differentiation. MB is thereby suggested to

be the earliest clonogenic mesodermal progenitors to mark the
onset of endothelio- and mesenchymogenesis in iPSC cultures
(Vodyanik et al., 2010; Slukvin and Kumar, 2018).

INDUCED PLURIPOTENT STEM
CELL-DERIVED MESENCHYMAL STEM
CELL DIFFERENTIATION SYSTEMS
SUPPLY EXTENDED PLATFORMS FOR
IN-DEPTH BIOLOGICAL RESEARCH

To uncover the pathological mechanisms of genetic disorder, it
is necessary to recapitulate the overall developmental process
of specific physiological response or to acquire specific cell
types with genetic mutations. However, due to limited access
of patient samples of rare diseases and the difficulties to
obtain and maintain primary cells, traditional sampling studies
have confronted a lot of challenges. The emergence of iPSC
redifferentiation platform may help to address these issues, and
the generation of iMSC from patient-derived iPSC have enabled
the functionality study of patient MSC which helps to address
their roles in pathogenesis.

How to quickly produce a large number of iMSC with the same
genetic background from iPSC is the first step of iMSC-mediated
biological research. Several simple methods to convert iPSC to
iMSC have been reported. For example, (1) Under the action
of 10 ng/ml FGF2, 10 ng/ml recombinant human blood plate-
derived growth factor (PDGF)-AB and 10 ng/ml EGF, combined
with the flow cytometric sorting of CD24−CD105+, iMSC can
be efficiently differentiated from iPSC (Lian et al., 2010). (2)
Under the function of p38MAPK inhibitor SB203580, iPSC can
form embryoid bodies in serum-free medium and iMSC with
less tumorigenicity are gradually produced under the mediation
of embryoid bodies (Wei et al., 2012). (3) Under the impact
of TGF-β signaling pathway inhibitor SB431542, iPSC can be
quickly differentiated into high-quality iMSC without involving
the formation of embryoid bodies or requiring flow cytometric
sorting or the participation of trophoblast cells (Chen et al.,
2012; Zhao et al., 2015). In light of the technical limitations of
the methods mentioned above related to iMSC heterogeneity,
it would be highly speculable that scalable and cost-effective
conversion of iPSC into functional, clinically usable iMSC in a
unified training system still needs further research.

Fibrodysplasia ossificans progressive (FOP), with a point
mutation a 617 G > A (R206H) in gene ACVR1, is a rare
genetic disorder presenting abnormal constitutive activation of
BMP signaling which further results in progressive ossification
in soft tissues. The Matsumoto group first demonstrated
that patient-iPSC derived MSC displayed increased mineral
deposition and chondrogenesis, and further they developed
a high-throughput screening system to study patient-iMSC
differentiation and identified the causal roles of mTOR
signaling for the aberrant chondrogenesis. Moreover, by
targeting this found signaling pathway with rapamycin, normal
chondrogenesis of patient-iMSC could be restored (Matsumoto
et al., 2013; Hino et al., 2017).
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Hutchinson Gilford Progeria syndrome (HGPS) is a rare but
lethal genetic disorder. More than 90% of HGPS patients are
caused by the production and accumulation of progerin induced
by the silent G608G mutation in the LMNA gene (Eriksson
et al., 2003; Harhouri et al., 2018; Piekarowicz et al., 2019). With
the application of iMSC differentiation from Patient-derived
iPSC, Alan’s group have demonstrated that G608 mutation
causes proliferation defects of MSC, with robust progerin level,
increased DNA damage and nuclear abnormality (Zhang et al.,
2011). The other group further demonstrated that these patient-
derived iMSC also showed premature osteogenic differentiation,
and with the same system, they found seven compounds
that could counteract with this premature differentiation bias
and normalize their three lineage differentiation potentials
(Lo Cicero et al., 2016).

Our team recently found that three HGPS patients in Chinese
families carry a novel homozygous mutation c.1579C > T
(R527C) in the LMNA gene, while the phenotypes of parents
carrying the heterozygous mutation are normal. In order
to investigate the causal effects of this novel mutation, we
have generated iPSC (Chinese HGPS-iPSC) from these three
patients by somatic cell reprogramming, corrected the mutation
with CRISPR-mediated gene editing, and differentiated their
corresponding iMSC. This allows us to explore the pathogenic
mechanisms and to perform drug screening for this new type
HGPS, while at the same time encouraging new ideas of aging and
anti-aging research. Until now, we have demonstrated that this
newly found mutation could also result in early cell cycle arrest in
patient-derived iMSC compared with normal iMSC. We are now
also expanding our understanding of the underlying mechanisms
of hematopoiesis defect in patients with their iMSC.

Thus far, the therapeutic application of iPSC itself has been
very limited whereas they are serving more as an ideal starting
material for other cell types with higher direct therapeutic
value. Also, CRISPR/Cas9-based gene editing on iMSC as a
good experimental model system could be utilized to define the
function and the mechanisms involved in stem cell differentiation
and regeneration. Even further, if a sensible genetic variation
occurs, the mutation could be corrected in single cells at the iPSC
and/or iMSC level to meet the safety and efficacy standards.

In summary, the better controllable and monitorable process
for generating iMSC has indeed provided certain unique
opportunities for enhancing our understanding about MSC
biology as well as widening the feasibility and application of
MSC technologies.

MULTIPLE INDUCED PLURIPOTENT
STEM CELL-DERIVED MESENCHYMAL
STEM CELL ADVANTAGES OVER
PRIMARY TISSUE-ORIGINATED
MESENCHYMAL STEM CELL IN
CLINICAL APPLICATIONS

Until now, there are more than 10,000 clinical trials of autologous
and allogenic MSC intervention in various pathological

conditions have been performed, with 40% of them have
been completed in at least phase I study and 4% have been
completed in phase III study1. For most of these clinical trials,
the MSC products were isolated and generated from primary
tissues, including bone marrow, adipose tissue vascular stromal
fractions, Wharton’s jelly of human umbilical cord, umbilical
cord blood and placenta.

In comparison, the first clinical trial with iPSC-derived
products was performed in 2008. And now, the total number
of iPSC-related clinical trials has risen to 54. Among these 54
trials, around 10 studies are now administering iPSC-derived
cell therapeutics to human patients, and noteworthily, there
is only one or two clinical trials with iPSC-derived MSC (see
text footnote 1).

Although many attempts have been performed to demonstrate
the therapeutic effects of primary MSC and there are currently
more than ten types available commercial products for specific
diseases (Paramsothy et al., 2017; Goto and Murata, 2018;
Pellegrini et al., 2018), the United States Food and Drug
Administration (FDA) has not approved any stem cell drugs
(excluding orphan drugs and hematopoietic stem cell products)
(see text footnote 1). This clearly reveals the difficulties to
develop cell treatment drugs from primary MSC due to
physiological limits.

The first challenge is to get massive amount of MSC from
progenitor cell reservoirs. For most of the clinical trials, the
suggested dose is 1–2 million cells per KG of body weight for
every injection, which totally may require 100 million cells.
As mentioned in their protocols, 2 ml of bone marrow could
yield two million MSC in ideal condition, and to collect 100
million MSC, hence, it would take much more bone marrow
fluid with expanded cell passages (Wakitani et al., 2011; Wang
et al., 2013). Meanwhile, during the collection of autologous
MSC, a lot of other issues have not been seriously evaluated.
Firstly, the collection of bone marrow would cause interventional
damage to the patients, and the culture of primary MSC would
diminish their self-renewal capacity and cause cellular aging.
Most importantly, the overall collection and expansion process
may take several weeks, which is very time consuming and
requires more labor work. Collectively, this is the most limiting
factor for their further commercial applications, with much less
possibility and much more difficulties to provide “off-the-shelf ”
products in reasonable cost, and for the allogenic cell infusion, it
is pretty much the same case.

The second biggest issue would be the quality control
of these primary MSC products between different batches
isolated from different donors, different tissues or by different
preparation methods, which, to some extent, is also due to lack of
molecular standards for their characterization and purification.
For autologous cell treatment, the MSC derived from patients
may have diminished self-renewal capacity and therapeutic
effects with age, hence, such treatment could only be applicable
for specific range of people. And for the allogenic MSC derived
from Wharton’s jelly of human umbilical cord, umbilical cord
blood and placenta, it is also difficult to guarantee their efficacy

1www.clinicaltrials.gov
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beyond their inherited heterogeneity, although which may not
affect their therapeutic effects. To make a conclusion, this
uncertainty adds in the difficulties to evaluate their clinical
efficacy and to popularize their applications.

Theoretically and practically, iMSC originated from one
single iPSC clone are much more homogeneous than primary
MSC isolated from diverse human tissues, and their biological
performance are more stable and predictable since their
molecular signature are barely changed among different batches.
This idea has been carried out by the Cynata Therapeutics.
In 2016, Cynata Therapeutics received approval to launch the
world’s first formal trial of an allogeneic iPSC-derived cell product
(CYP-001) which met all of its clinical endpoints and produced
positive safety and efficacy data for the treatment of steroid-
resistant acute graft-versus-host disease (GVHD). Consequently,
Cynata is now advancing its iMSC into Phase II trials for the
treatment of Corona Virus Disease (COVID)-19, GVHD and
critical limb ischemia (CLI). It is also undertaking a massive
Phase III trial that will utilize Cynata’s iMSC therapeutic, CYP-
004, in 440 patients with osteoarthritis (OA) (Ozay et al., 2019;
Saetersmoen et al., 2019; Bloor et al., 2020). Until now, the
Cymerus TM technology platform and the C-Stem technology
platform, established by Australian Cynata Therapeutics and
French Treefrog Therapeutics, respectively, have managed to
generate massive amount of iMSC exclusively from one single
iPSC master clone, eliminating the major concerns in primary
MSC applications, such as donor-based variability, limited
sources, compromised proliferation and prone to senescence
(Ozay et al., 2019; Saetersmoen et al., 2019).

This very unique potential enables the generation of millions
of “off-the-shelf ” copies under Good Manufacturing Practice
(GMP) procedures for further therapeutic applications to treat
complex and multifactorial diseases. This outstanding property
enables their preferential commercial applications beyond other
types of primary MSC with their guaranteed quality control.

DISCUSSION

Isolated and purified primary MSC have inherent greater
variability due to donor diversity, tissue sources, and
different culture systems, hence obtaining stable, uniform,
and functionally clear MSC subtypes is the essential prerequisite
to generate MSC medication.

The studies and findings about iPSC based on cell
reprogramming have significantly improved our understanding
of stemness maintenance and the underlying molecular
mechanisms, meanwhile, they have provided a potential
infinite source of MSC. For years, we and other groups have
been dedicated in the studies of differentiating iPSC into
iMSC to explore their therapeutic effects in multiple diseases
and complications (McGrath et al., 2019; Bloor et al., 2020;
Fernandez-Rebollo et al., 2020; Luo et al., 2020). It has shown
that iMSC are more stable in molecular signature, proliferation
capacities, tissue repair and differentiation applications than
primary MSC derived from other types of tissues (Fernandez-
Rebollo et al., 2020). Although iMSC are generated from

iPSC, there is no need to worry about the inherit of unstable
genome or their carcinogenesis potential since now iPSC can be
induced without virus plasmids or tumorigenic gene c-myc. This
modification and improvement have greatly push forward the
clinical iMSC applications in treating different types of diseases.

Emerging data have demonstrated that iMSC possess
tremendous potential for industrialized large-scale production
to obtain stable and sustainable “off-the-shelf ” products to
meet clinical needs (McGrath et al., 2019; Ozay et al., 2019;
Saetersmoen et al., 2019; Bloor et al., 2020; Chen et al., 2020).
They can be continually and endlessly differentiated and
generated from infinite iPSC that harvested from individual
skin fibroblasts or other cell types from peripheral blood and
other tissues, eliminating ethic-related issues. However, to better
compare the therapeutic efficacy between iMSC and the primary
MSC, the in-depth functionality demonstration in biological
research and the underlying mechanisms are urgently needed,
which provides reference to optimize their phenotype and
efficacy for targeting specific diseases.

Overall, the further applications of MSC treatment depends on
the comprehensive understanding of the MSC heterogeneity and
their functional subgroups. Ideally, by adopting the technology
platform of single-cell omics analysis and other long-term clinical
research programs, such as transplantation immune regulation,
hematopoiesis, autoimmune inflammation, neural, cartilage and
skin regeneration and repair of various animal models, it is able
to describe the changes of functional subsets of iMSC in the
process of their occurrence, maturation, passage expansion and
aging, and by differentiating the superior functional subsets, it
is available to identify the key regulatory genes including cell
surface markers characterizing their heterogeneity, which could
be applied to establish and optimize the technology for obtaining
high-homogeneous MSC for specific clinical applications.
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