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Computational visual encoding models play a key role in understanding the stimulus–
response characteristics of neuronal populations in the brain visual cortex. However,
building such models typically faces challenges in the effective construction of non-
linear feature spaces to fit the neuronal responses. In this work, we propose the
GaborNet visual encoding (GaborNet-VE) model, a novel end-to-end encoding model
for the visual ventral stream. This model comprises a Gabor convolutional layer, two
regular convolutional layers, and a fully connected layer. The key design principle for the
GaborNet-VE model is to replace regular convolutional kernels in the first convolutional
layer with Gabor kernels with learnable parameters. One GaborNet-VE model efficiently
and simultaneously encodes all voxels in one region of interest of functional magnetic
resonance imaging data. The experimental results show that the proposed model
achieves state-of-the-art prediction performance for the primary visual cortex. Moreover,
the visualizations demonstrate the regularity of the region of interest fitting to the visual
features and the estimated receptive fields. These results suggest that the lightweight
region-based GaborNet-VE model based on combining handcrafted and deep learning
features exhibits good expressiveness and biological interpretability.

Keywords: GaborNet-VE, visual encoding model, fMRI, expressiveness, biological interpretability

INTRODUCTION

Human and primate visual systems are exceedingly adept at achieving complicated vision tasks
based on rudimentary visual perception. A key research goal in the study of such visual systems
is to comprehensively understand the neuronal basis of vision, especially the stimulus–response
characteristics of neuronal populations (Ukita et al., 2019). This goal can be achieved through using
functional magnetic resonance imaging (fMRI), which can measure brain activity from human
subjects passively viewing natural images (Naselaris et al., 2011; Kay, 2018). In particular, based
on the blood-oxygen-level-dependent (BOLD) signals, visual encoding models can be built to
predict neural responses to arbitrary stimuli and hence develop a better understanding of visual
information processing in the human brain (Cadena et al., 2019). However, a key challenge in this
modeling and prediction process is the difficulty of constructing an effective non-linear feature
space to analyze the non-linearity of neuronal responses.
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In early visual encoding models, feature spaces were mainly
constructed based on non-linear handcrafted features inspired
by some visual representation mechanisms. As well, previous
studies showed that neurons in the early stages of cortical
visual processing have smaller receptive fields (RFs) and higher
sensitivity to low-level features such as texture (Hubel and
Wiesel, 1962), whereas neurons further down the ventral stream
have larger RFs, higher representation invariance, and stronger
response to complicated shapes (Hubel and Wiesel, 1968; Hung
et al., 2005). In addition, neural mechanisms in the primary
visual regions could be reliably modeled by Gabor wavelets
with variations in location, orientation, and spatial frequency
(Adelson and Bergen, 1985; Jones and Palmer, 1987; Carandini
et al., 2005). Hence, Kay et al. (2008) proposed the Gabor
wavelet pyramid (GWP) visual encoding model that consists of
an over-complete basis of phase-invariant Gabor wavelets with
different positions, orientations, and spatial frequencies. This
model processes visual stimuli to generate a non-linear feature
space with good expressiveness and interpretability. Thus, the
GWP model became a classical encoding model for low-level
visual cues. The key aspects and prediction outcomes of the
GWP model were further improved in many subsequent studies
(Naselaris et al., 2009; Nishimoto et al., 2011; Vu et al., 2011;
Li et al., 2018; St-Yves and Naselaris, 2018). Nevertheless, the
GWP model is not suitable for higher-level visual processing.
Naselaris et al. (2009) made a voxel-to-voxel comparison of
natural scene category labels between the GWP model and a
semantic model. The results demonstrated that although the
predictions of the two models are competitive, each model excels
the other. Specifically, the GWP model predictions are more
accurate for voxels in the primary visual cortex, whereas the
semantic model predictions show higher accuracy for voxels
in the secondary visual cortex. Because high-level features
are hard to design manually, the feature space is usually
composed of semantic labels obtained through manual image
annotation. Consequently, the voxel activity in several secondary
cortex areas could be accurately predicted by semantic features
(Mitchell et al., 2008; Naselaris et al., 2009, 2012; Huth et al.,
2012; Stansbury et al., 2013). However, the performance of
the semantic models for visual encoding is typically degraded
by the inevitable subjective selection and judgment bias in
the manual semantic labeling process. In summary, encoding
models based on handcrafted features have strong biological
interpretability but limited prediction performance and poor
universality because such models are usually designed for few
certain visual regions.

Recently, deep neural networks (DNNs) have made
breakthroughs in a variety of domains (such as computer
vision) and hence caught the attention of researchers in
computational neuroscience (Kietzmann et al., 2017; Cichy
and Kaiser, 2019; Richards et al., 2019; Serre, 2019). Indeed,
numerous methods in neuroscience have used convolutional
neural networks (CNNs) to model the human visual system and
thus achieved unprecedented improvements in creating visual
encoding models. Generally, these CNN-based visual encoding
modeling approaches can be categorized into either task- or
data-driven approaches.

On the one hand, the task-driven approaches essentially model
neural responses by generating non-linear features based on an
intermediate layer of a CNN pretrained on a higher vision task
(Yamins and DiCarlo, 2016). This transfer learning approach
has boosted the performance in many computer vision and
machine learning tasks where labeled data are limited (Oquab
et al., 2014). Motivated by these performance improvements,
Agrawal et al. (2014) used CNN-based features to model brain
activity and simultaneously predict such activity with high
accuracy in the low-level, intermediate, and high-level stages
of the visual pathway. Güçlü et al. used two different CNNs
for layer-wise analysis of voxel scores in the ventral stream
(Güçlü and van Gerven, 2015) and dorsal stream (Güçlü and van
Gerven, 2017). The experimental results of these two methods
reveal a gradient in the representation complexity. More recently,
feature representations have been improved through novel DNN
architectures, such as ResNet (Wen et al., 2018), recurrent neural
networks (Shi et al., 2018), and the variational autoencoder (Han
et al., 2017). However, these feature representations were not
directly learned for the visual encoding task, a shortcoming that
resulted in a data–task mismatch. Hence, the associated fixed
features are not suitable for encoding visual cortical responses.
Moreover, from a machine learning perspective, a task-driven
approach has two independent linear and non-linear mapping
components, and the corresponding optimization scheme might
fail to reach the global optimum and instead get stuck into
a local optimum.

On the other hand, the data-driven approaches directly
learn all parameters of a designed encoding model based
on experimental stimuli to obtain visual cortical responses.
This end-to-end scheme led to successful DNN applications
in many domains and thus replaced the traditional two-step
machine-learning scheme. For example, Qiao et al. (2019)
designed an end-to-end CNN regression (ETECR) model for
visual encoding based on fMRI data. This model combined
linear and non-linear mapping components into the CNN
architecture, which was trained by experimental stimuli and
corresponding fMRI signals. Hence, this model could learn
optimal feature representations and linear regression weights for
visual cortical responses and achieve major improvements in
prediction performance. However, the ETECR model has limited
biological interpretability because of the black box nature of its
CNN underlying architecture.

Collectively, visual encoding models based on handcrafted
features have good biological interpretability, but their prediction
performance is limited. Alternately, visual encoding models
based on CNN features exhibit excellent expressiveness but
lack sufficient biological interpretability. Therefore, hybrid
visual encoding models are sought to combine the biological
interpretability of handcrafted features and the expressiveness
of deep features. In this paper, we introduce the end-to-
end GaborNet visual encoding (GaborNet-VE) model for the
brain visual ventral stream. This model is trained on non-
linear deep feature representations based on Gabor features
(Liu and Wechsler, 2001, 2002; Kyrki et al., 2004) (to be
introduced in detail in section “Gabor Filters in the First
GaborNet Visual Encoding Layer”). Firstly, we designed a
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lightweight GaborNet-VE regression model composed of a
Gabor convolutional layer, two regular convolution layers, and
a fully connected layer. The Gabor convolutional layer embeds
a set of learnable parametric Gabor filters. The GaborNet-VE
model has an efficient region-based encoding scheme where
all voxels in one region of interest (ROI) are jointly encoded.
Selective optimization of features and voxels was used in our
model to weigh them more effectively. In comparison with
three reference models (namely, the GWP, CNN-linear, and
ETECR models), our model achieved state-of-the-art prediction
performance for the primary visual cortex and comparable
prediction performance for the intermediate and higher cortex
areas. Hence, the GaborNet-VE model has good expressiveness.
Then, the guided backpropagation (GBP) algorithm was used
to visualize the effective pixels and the Gabor kernels for each
voxel based on the response of the top 100 best-predicted
voxels in each ROI. Our visualizations showed that the proposed
visual encoding model could measure the RFs of each voxel.
In fact, voxels in early visual areas had smaller RFs, whereas
voxels further down the ventral pathway had larger RFs.
Moreover, our model could learn the preferred Gabor kernels
of each voxel. The properties of these kernels demonstrated
the properties of fitting to visual features of ROI. Overall,
the voxels in V1 and V2 prefer Gabor kernels with high
spatial frequencies, whereas the voxels in V4 and LO prefer
Gabor kernels with low spatial frequencies, although special
voxels with opposite properties exist in all areas. These results
suggest that the lightweight GaborNet-VE model based on
combining handcrafted and deep ROI features has both good
expressiveness and biological interpretability. Clearly, our work
connects deep learning with neuroscience and promotes the
development of artificial intelligence and the understanding of
human intelligence.

MATERIALS AND METHODS

Experimental Data
To evaluate the proposed methods, a publicly available dataset
(introduced in Kay et al., 2008 and Naselaris et al., 2009) was
analyzed. All experimental details were presented in the studies
mentioned earlier (Kay et al., 2008; Naselaris et al., 2009). Hence,
we will only briefly summarize the data collection process here.

The dataset contains training and validation data of BOLD
fMRI responses preprocessed after being collected from two male
subjects (S1 and S2), while they were viewing natural images. The
training image library included 1,750 grayscale images, each of
which was presented twice. The validation image library included
120 different grayscale images, each of which was presented
13 times. Photographs were presented in successive 4-s trials;
in each trial, a photograph was presented for 1 s, and the
gray background was presented for 3 s. Each 1-s presentation
consisted of a photograph being flashed ON–OFF–ON–OFF–ON
where ON corresponds to the presentation of the photograph
for 200 ms and OFF corresponds to the presentation of the
gray background for 200 ms. The data collection was performed
using a 4-T Varian INOVA magnetic resonance (Varian, Inc., Palo

Alto, CA, United States) scanner. Eighteen coronal slices were
obtained from the occipital cortex (slice thickness = 2.25 mm,
slice gap = 0.25 mm, field-of-view = 128 mm × 128 mm).
The BOLD signals were collected using a T2∗-weighted, slice-
interleaved, single-shot, gradient-echo pulse sequence of echo-
planar imaging (spatial resolution = 2 mm × 2 mm × 2.5 mm,
flip angle = 20◦, TE = 28 ms, TR = 1 s, matrix size 64× 64).

Framework of the GaborNet Visual
Encoding Model
The GaborNet-VE model adopted a region-based encoding
scheme where all voxels of one ROI in the visual cortex are
jointly encoded (Zhang et al., 2019). Therefore, the GaborNet-VE
model was trained by fMRI data collected from all ROIs. Model
training and testing were implemented under the deep learning
framework, PyTorch (0.4.0). The proposed visual encoding
model consists of an input layer, a Gabor convolutional layer,
several regular convolutional layers, several fully connected
layers, and an output layer. The activation function of a
convolutional layer is defined as the rectified linear unit (ReLU)
(Nair and Hinton, 2010) transformation of a two-dimensional
convolution of the activation function of the previous layer. The
activation function of a fully connected layer is defined as the
non-linear ReLU transformation of the weighted sum of the
activation functions of the previous layer. In addition, the Gabor
convolutional layer can be of a one-way real type only or a two-
way combination of real and imaginary types. The number of
Gabor convolutional filters in that layer is 64 or 128, and the
size of each filter is (7, 7), (9, 9), (11, 11), or (13, 13). The
number of convolutional filters in a regular convolutional layer
is 64, and the size of each filter is (3, 3). In each convolutional
layer, the stride size is (2, 2), and valid padding is used. The
mini-batch size, the optimizer type [stochastic gradient descent
or adaptive moment estimation (Adam) (Kingma and Ba, 2014)],
the learning rate decay coefficient, and the number and types
of hidden layers (Gabor convolutional, regular convolutional,
or fully connected layers) were optimized with a fivefold cross-
validation scheme for the fMRI data of V1 and V2. The optimized
hyperparameters of GaborNet-VE are as follows: the hidden layer
structure has one two-way Gabor convolutional layer and two
regular convolutional layers, followed by one fully connected
layer (Figure 1); the number of Gabor convolutional filters is
128 (equally divided among the real and imaginary types); the
size of each Gabor filter is (9, 9); the mini-batch size is 128;
the Adam optimizer is used; the learning rate decay coefficient
is 0.001. All other hyperparameters were kept fixed. Moreover,
GaborNet-VE used the ETECR model learning strategy with
selective optimization of features and voxels. Details of this
learning strategy are shown in section “Optimization Strategy.”

Gabor Filters in the First GaborNet Visual
Encoding Layer
The Gabor filters, introduced by Dennis Gabor, is a family
of bandpass filters, which accept or reject inputs within a
range of spatial frequencies (Gabor, 1946). These filters have
been used as an efficient tool in diverse pattern analysis
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FIGURE 1 | Proposed visual encoding model. (A) Model framework. A visual stimulus is transformed into a voxel response in two stages. First, visual stimulus (S) is
transformed into a non-linear feature space [F(s)] by a non-linear mapping. Then, feature space is transformed into a voxel response (R) by a linear mapping. (B) A
schematic diagram of the GaborNet-VE model. Response to a natural image is predicted by an end-to-end model consisting of a Gabor convolutional layer, two
successive regular convolutional layers, and a fully connected layer. Gabor convolutional layer has 128 Gabor kernels with 64 kernels for each of the real and
imaginary types. Size of each Gabor kernel is 9 × 9. Also, each regular convolutional layer has 64 kernels of a size of 3 × 3. Each convolutional layer is followed by a
rectified linear unit (ReLU) transformation. Fully connected layer calculates weighted sum of inputs from previous layer followed by a ReLU transformation.

applications (Huang et al., 2004) for extracting different types of
textures, edges, and spatially localized spectral features. Recent
deep network visualization results demonstrated that Gabor-like
kernels were mostly used in the first convolutional layers of CNNs
trained on large-scale natural image datasets (Krizhevsky et al.,
2017). The similarity between Gabor and convolutional kernels
and the inherent error resiliency of deep networks represent
the basis for incorporating Gabor kernels into the proposed
network. Hence, a Gabor convolutional layer replaces the regular
convolutional layer as the first layer in our GaborNet-VE model.

A Gabor filter is a Gaussian filter modulated by a
complex sinusoidal wave (Alekseev and Bobe, 2019). This
filter is monotonous and differentiable and can be defined
mathematically as follows:
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Where

x′ = x cosθ+ y sinθ, (4)

y′ = −x sinθ+ y cosθ. (5)

The complex form of the Gabor filter (Eq. 1) can be decomposed
into a real part (Eq. 2) and an imaginary part (Eq. 3). The
center frequency of the Gabor wavelet is controlled by Eq. 4
and Eq. 5. The Gabor filter can be modified through the tuning
of many parameters, which plays various roles in extracting
image features. The standard deviation parameter, σ, within the
Gaussian function controls the function spread. The orientation
parameter within the sinusoidal wave is denoted by θ, and is used
by the filter to extract features at different angles. The sinusoidal
spatial frequency parameter, ω, controls the wavelength and the
bar width for a Gabor wavelet. Indeed, a Gabor wavelet with a
wide bar has a low ω, whereas the one with a narrow bar has
a large ω. The phase shift parameter, ϕ, controls the sinusoidal
phase offset. These parameters are initialized based on a previous
study (Meshgini et al., 2012). In particular, the ω and θ parameters
of the Gabor kernels are set as follows:

ωm =
π

2

√
2

m
, m = 0, 1, . . . , 4, (6)

θn =
π

8
(n− 1), n = 1, 2, . . . , 8. (7)

The σ and ϕ parameters are initialized randomly from the
uniform distributions U (0, 5) and U (0, π), respectively.

Optimization Strategy
Following the ETECR model (Qiao et al., 2019), we adopt a
selective optimization strategy of features and voxels in our
model. To increase voxel attention to well-related features, the
fully connected layer used self-adapting regression weights, a
policy that is different from that of general linear regression
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with regularization. This dynamical learning scheme of feature
weights was implemented by squaring the original weights.
In Eq. 8, one stimulus image, si, is transformed into the
corresponding feature space (f i) by three convolutional layers,
Conv ( ).

fi = Conv (si) , (8)

In Eq. 9, a regular weight wfc is replaced by its square w2
fc in the

fully connected layer, which maps the features to the predicted
responses, r̂i .

r̂i = w2
fcfi + b, (9)

In this way, the learning rate (µwfc) of weights can be dynamically
adjusted according to the current status, where µ is the original
learning rate,

1wfc = −µwfc1r̂i, (10)

For selective voxel optimization, noise regularization, and a
weighted correlation loss function were used. To reduce the
influence of ineffective voxels, Gaussian noise ng with zero mean
and unit variance is added to each of the predicted responses r̂i ,

r̂i = r̂i + ng, (11)

The Pearson correlation (ρm ∈ [−1, 1]) of the predicted
responses (rm) and the actual responses (r̂m) of the mth voxel is
calculated as

ρm = cor (rm, r̂m) =
Cov (rm, r̂m)

√
Var (rm) · Var (r̂m)

, (12)

To focus the attention of the proposed model on more effective
voxels, we introduced the dynamical weights, ηm = ρ2

m, in the
loss function

Loss = −
∑

m ηmρm

n
+ γ

∣∣∣∣∑m r̂m

n

∣∣∣∣ , (13)

instead of computing the average ρ of all voxels in one ROI. The
final form of the loss function is given by

Loss = −
∑

m ρ3
m

n
+ γ

∣∣∣∣∑m r̂m

n

∣∣∣∣ , (14)

where γ is used to control the relative contributions of the fidelity
and regularization terms.

Guided Backpropagation
With the emergence of deep network architectures, several
algorithms have been proposed to visualize and interpret network
outcomes. Firstly, a deconvolutional network (DeconvNet)
approach was used to visualize the most discriminative image
details for given neurons in network layers (Zeiler and Fergus,
2013). However, the DeconvNet visualization results are not
generally clear and recognizable, especially with the large
computational complexity of high-level features. An alternative
visualization approach based on backpropagation (Rumelhart
et al., 1986) involves computing the backward gradient of
the activation function of a single unit. The main difference
between the backpropagation and deconvolution approaches is

the method of calculating the backward signal passing through
the ReLU non-linearity. Although the backpropagation approach
handles only backward values with gradients greater than 0,

Gl
i =

(
f l
i > 0

)
× Gl+1

i , (15)

the DeconvNet approach deals only with backward values greater
than 0,

Gl
i =

(
Gl+1

i > 0
)
× Gl+1

i , (16)

where f l
i is a bottom feature in the layer l from the forward

direction, and Gl
i is a top gradient in the layer l from the backward

direction. The GBP visualization algorithm (Springenberg et al.,
2014) combines backpropagation and deconvolution approaches
and masks out both negative values corresponding to the top
gradient and bottom feature,

Gl
i =

(
f l
i > 0

)
×

(
Gl+1

i > 0
)
× Gl+1

i . (17)

The GBP algorithm enhances the performance of the ordinary
backpropagation algorithm through limiting negative gradients.
Such negative gradients are indeed undesirable, as they
are typically associated with image regions that weaken
feature visualization.

Reference Visual Encoding Models
To further assess the performance of our proposed model,
we compared it with the following three state-of-the-art visual
encoding models:

Gabor Wavelet Pyramid Model (Kay et al., 2008)
The GWP model is a classical voxel-based visual encoding model
proposed by Kay et al. (2008). This model has demonstrated
superior performance in visual retrieval tasks based on fMRI.
The model firstly processes stimulus images using a family
of handcrafted quadrature-phase Gabor wavelets with different
spatial frequencies, orientations, and locations. Then, the
prediction responses are mapped linearly by the square roots of
the pooled energies of the Gabor features. In our experiments,
the same number of Gabor wavelets as that in Kay et al.
(2008) was used on 128 × 128-pixel images, and a linear
mapping was obtained by regularized orthogonal matching
pursuit (Zhang et al., 2019).

Convolutional Neural Network-Linear Model
The CNN-linear model has several advantages, which have
resulted in remarkable visual encoding performance. The model
used herein follows the description in Güçlü and van Gerven
(2015) and Eickenberg et al. (2016). Firstly, the feature space
is composed of non-linear features obtained from each of the
eight layers of the pretrained AlexNet model. Then, a linear
mapping from the feature space to the brain activity space is fitted
using the regularized orthogonal matching pursuit algorithm.
Hence, eight voxel-based encoding models were constructed
from eight feature spaces for each ROI voxel. Lastly, the model
with the best prediction performance was selected as the CNN-
linear encoding model.
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End-to-End CNN Regression Model (Qiao et al., 2019)
The two encoding models mentioned earlier are linearized
voxel-based models with a two-step procedure. To overcome
the limitations of these models, the ETECR model was
proposed. The ETECR model has four convolutional layers
and one fully connected layer and is trained by an end-to-
end regression scheme. The self-adapting weight learning and
weighted correlation loss are used in the model construction,
leading to streamlined optimization of the effective voxels.
Moreover, the ETECR model encodes jointly and efficiently all
voxels of one ROI. Therefore, the ETECR model simultaneously
offers a lightweight architecture, effectiveness, and efficiency.

Quantification of Model Performance
To quantify the prediction performance of each encoding model,
the voxel-wise prediction accuracy is defined as the Pearson
correlation (see Eq. 12) between the real and predicted responses
on the validation dataset. For each model type, we carried out
a replacement test to test whether the prediction accuracy of
each voxel is significantly bigger than the value set by the null
hypothesis. For the 120 images in the validation dataset, we
randomly disturbed the correspondence between the real and
predicted responses and recalculated the prediction accuracy of
each voxel. After repeating this procedure 1,000 times, a null-
hypothesis distribution was generated. Then, the response for one
voxel can be predicted accurately when the prediction accuracy is
higher than 0.27, which is significantly above the null hypothesis
distribution (p < 0.001). Then, the replacement test was used
to assess the significance of a model superiority compared
with the other models. The voxels, whose responses were
accurately predicted by both models, were selected for random
shuffling with a 0.5 probability. According to the null-hypothesis
distribution obtained by repeating the procedure mentioned
earlier 1,000 times, one model significantly outperforms the other
when the former can accurately predict more than 53% of the
voxels (p < 0.05).

To compare the visual encoding models for a group of voxels,
we considered two approaches as follows. In the first approach, a
voxel-to-voxel comparison is made for the same voxel among the
two compared models. As shown in Figure 2, scatter plots were
used for visualizing and clarifying the results. In these plots, each
dot represents one individual voxel. Therefore, the best encoding
model for a single voxel can be readily identified. Then, the voxels
in each interval were counted to construct an estimate of the
voxel density in bar plots (see Figure 2). The second approach
compares the overall model performance outcomes after sorting
all voxels. As shown in Figure 3, line plots were constructed to
represent voxels in descending order of the prediction accuracy.

RESULTS

We trained, evaluated, and then tested the GaborNet-VE model
using a subset of a classical dataset, which contained the
functional BOLD signals generated in response to viewing
grayscale natural images. The signals were generated from 1,294,
2,083, 1,790, 1,535, and 928 voxels in the V1, V2, V3, V4, and

LO areas in the ventral visual stream of S1, respectively. The
GaborNet-VE model followed a region-based encoding scheme,
where all voxels of one ROI are jointly encoded. Therefore, five
GaborNet-VE models with different parameters were fit by the
stimuli and fMRI data of the five areas.

Gabor Kernel Visualization and
Receptive Field Estimation
The Gabor kernels in the first convolutional layer of each of
the five constructed GaborNet-VE models are visualized in
Figure 4A. It is quite challenging to analyze the similarities
and differences of the five visual areas from the Gabor kernel
maps and to find out which Gabor kernel plays an essential
role for specific voxels. Therefore, we implemented the GBP
algorithm to back-propagate from the top 100 voxels with the best
predictions in each visual area to obtain the RF on the stimulus
image and eight preferred Gabor kernels for each voxel. For
convenience and space limitations, only five representative voxels
were selected from the 100 voxels of each visual area to visually
summarize the overall results (see Figure 4B). In Figure 4B,
“Vol.” is defined as a form of the serial number of a voxel. For
V1, the RFs of most voxels are concentrated in a small region,
and these voxels preferred Gabor kernels with smaller scales and
higher spatial frequencies (e.g., Vol. 5, Vol. 178, Vol. 689, and Vol.
826). However, a small number of voxels preferred larger Gabor
kernels with lower spatial frequencies (such as Vol. 870, which
has a significantly large RF). For V2, some voxels exhibited RFs
similar to those of V1 (e.g., Vol. 363 and Vol. 383), whereas most
V2 voxels show larger concentrated RFs than those of the V1
voxels. The preferred Gabor kernels of the V2 voxels (such as Vol.
300 and Vol. 321) have larger scales and lower spatial frequencies
than those of the V1 voxels. However, a few voxels prefer Gabor
kernels with larger scales and lower spatial frequencies (such as
Vol. 490, whose RF is relatively large and more scattered). For
V3, most voxels have larger RFs than those of the V2 voxels,
but some of these V3 voxels (such as Vol. 65 and Vol. 81) are
concentrated, and some others (such as Vol. 1445) are dispersed.
There are a few V3 voxels, such as Vol. 284 and Vol. 410, with
similar RFs to those of the voxels in V1 or V2. In addition to
the irregular pattern of the RFs, the preferred Gabor kernels of
the voxels in V3 are also more complex, with various scales and
spatial frequencies. For V4, many voxels (such as Vol. 111 and
Vol. 132) have larger concentrated RFs than those of the voxels in
V3. Also, there are a few V4 voxels, such as Vol. 1397, with small
RFs such as those of the voxels in V1 or V2. There are voxels,
such as Vol. 257, with RFs that cover most of the image and that
begin to appear for the first time in V4. For LO, there are some
voxels (e.g., Vol. 76 and Vol. 145) with large RFs such as those of
the voxels in V4. Other LO voxels (e.g., Vol. 374 and Vol. 427)
have small RFs such as those of the voxels in V1 or V2, whereas
a few voxels (e.g., Vol. 253) have RFs that cover almost the whole
image. The preferred Gabor kernels of the voxels in V4 and LO
are similar, and these kernels mostly have large scales and low
spatial frequencies.

In summary, most of the voxels in V1 and V2 have small
concentrated RFs, whereas most of the voxels in V4 and LO have
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FIGURE 2 | Voxel-to-voxel comparisons of GaborNet-VE, GWP, CNN-linear, and ETECR models. (A) Pairwise comparisons of GaborNet-VE model the GWP,
CNN-linear, and ETECR models. Each of six performance plots shows a comparison of prediction accuracies for two models. Position along vertical axis indicates
average prediction accuracy for models under comparison; shifts to right or left along the horizontal axis indicate a relative improvement in prediction accuracy for
one of compared models. Color of each hexagonal bin indicates log-scaled number of voxels in a local region of plot. Histogram at top of each plot represents
distribution of relative improvements for all voxels whose prediction accuracy is above 0.27 (p < 0.001, randomization test) for at least one of two models. This
distribution corresponds graphically to all voxels above red dashed line. Number on each side represents fraction of voxel predictions that are improved under
corresponding model. In all plots, a shift of the data toward right indicates an advantage for GaborNet-VE model, whereas a shift toward left indicates an advantage
for reference models. Upper plots display data for voxels in primary visual cortex (V1, V2, and V3); lower plots display data for voxels in intermediate and higher visual
areas (V4 and LO). (B) Joint comparisons of GaborNet-VE model and all of reference models. Each plot contains percentages of voxels in one ROI best predicted by
each encoding model. Red, gray, green, and blue curves represent GaborNet-VE, GWP, CNN-linear, and ETECR models, respectively.
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FIGURE 3 | Comparisons of GaborNet-VE, GWP, CNN-linear, and ETECR models by sorting voxels in descending order of prediction accuracy. Only accurately
predicted voxels are plotted. Red, gray, green, and blue curves represent GaborNet-VE, GWP, CNN-linear, and ETECR models, respectively.

large concentrated RFs. The preferred Gabor kernels of most
of the voxels in V1 and V2 have small scales and high spatial
frequencies, whereas the kernels of most of the voxels in V4
and LO have large scales and low spatial frequencies. However,
a few voxels oppose these conclusions for V1, V2, V4, and LO.
Moreover, the voxels in V3 are capricious, regardless of the size
of the RF and the properties of the preferred Gabor kernels. To
show the overall results more clearly, we have computed statistics
for the results of the top 100 voxels of each area. The average ratio
of the RF size to the entire image size is plotted in Figure 4C.
Obviously, the RF size becomes larger as we go from V1 to
V4 but decreases as we go from V4 to LO. The means of the
four parameters (ω, σ, ϕ, θ) of the preferred Gabor kernels are
displayed in Figure 4D. Clearly, the mean of ω has an overall
downward trend (Mann–Kendall test, p < 0.05) as we go from
V1 to LO (the blue line in Figure 4D), whereas the mean of σ

has an obvious upward trend (Mann–Kendall test, p < 0.05) (the
green line in Figure 4D).

Voxel-to-Voxel Comparisons Between
the GaborNet Visual Encoding Model and
the Reference Models
Firstly, we compared the encoding performance of the GaborNet-
VE model with that of the GWP model, the CNN-linear model,

and the ETECR model, respectively. As shown in Figure 2A,
this is a voxel-to-voxel comparison based on the prediction
accuracy of the corresponding voxels. Then, the dominant voxels
of each of the two compared models were counted (Figure 2A).
Finally, we carried out a voxel-to-voxel comparison of the four
models and calculated the ratio of the voxels best predicted
by each model. In general, the prediction accuracies of the
four models for the low-level visual areas (the first row of
Figure 2A) are higher than those of the intermediate- and high-
level visual areas (the second row of Figure 2A). The highest
prediction accuracy in the low-level visual areas exceeds 0.8,
whereas the highest prediction accuracy in the intermediate-
and high-level visual areas is only approximately 0.6. Combining
Figures 2A,B, we demonstrate that the GaborNet-VE model
has the strongest overall performance for the low-level visual
areas. The percentages of the dominant voxels of the GaborNet-
VE model in comparison with each of the three other
models are 98, 88, and 83%, respectively (Figure 2A). Also,
the percentages of the dominant voxels of the GaborNet-VE
model in comparison with all of the three other models are
80, 77, and 58% in V1, V2, and V3, respectively. For the
intermediate- and high-level visual areas, the GaborNet-VE
prediction performance has a strong advantage over the GWP
model and is almost equivalent to the performance of each
of the other two models. Specifically, the percentages of the
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FIGURE 4 | Visualization of the Gabor kernels and RFs. (A) Visualization of Gabor kernels. Each of images in first row includes 64 real Gabor kernels learned by real
Gabor convolutional layer in GaborNet-VE model for each ROI. Similarly, each of images in second row includes 64 imaginary Gabor kernels learned by imaginary
Gabor convolutional layer in GaborNet-VE model for each ROI. (B) Visualization of RFs and preferred Gabor kernels. RFs of preferred Gabor kernels for each of five
representative voxels are plotted. For each ROI, upper image shows RFs, whereas lower image shows eight preferred Gabor kernels. (C) Fitting of RFs to ROIs.
Vertical axis represents ratio of RF size to whole image size. Horizontal axis represents five ROIs. (D) Tuning of Gabor kernel parameters to ROIs. Vertical axis
represents parameter means for preferred Gabor kernels and top 100 best voxel predictions. Blue, orange, green, and red curves represent means of parameters ω,
σ, ϕ, and θ, respectively. Horizontal axis represents five ROIs.

dominant voxels of the GaborNet-VE model in comparison with
each of the three other models are 92, 52, and 50%, respectively
(Figure 2A). As well, the percentages of the dominant voxels
of the GaborNet-VE model in comparison with all of the three
other models are 37 and 34% in V4, and LO, respectively.
Hence, the performance of the GaborNet-VE model has an
overall downward trend as we go from V1 to LO. From the
perspective of voxel distribution, “banana” shapes are shown
in the four diagrams in the first two columns of Figure 2A,
especially in the upper-middle diagram. These shapes indicate
that voxels with high accuracy are mostly on the side of
the GaborNet-VE model, whereas voxels with low accuracy
are mostly on the side of the reference models. Therefore,
voxels with low prediction accuracy under the reference models
are effectively rescued by our GaborNet-VE model. Also,
these “banana” shapes demonstrate that the GaborNet-VE
model provides effective regularization, which benefits from the
selective voxel optimization strategy. Because the ETECR model
used the same optimization strategy, the voxel distribution of
the two diagrams in the last column shows a highly linear
pattern (Figure 2A).

Model Comparison Based on Voxel
Sorting by Prediction Accuracy
Voxels whose responses could be accurately predicted by each
of the four models (ρ > 0.27) were selected and then sorted
in descending order of the prediction accuracy (see Figure 3).
Overall, results of the GWP model (the gray lines in Figure 3)
are significantly worse than those of the GaborNet-VE model
(the red lines in Figure 3), the ETECR model (the blue lines
in Figure 3), and the CNN-linear model (the green lines in
Figure 3). Therefore, we focus on comparing the GaborNet-
VE model only with the CNN-linear model and the ETECR
model. The numbers of voxels in V1, V2, V3, V4, and LO, which
are accurately predicted by the GaborNet-VE model, are 548,
688, 336, 223, and 108, respectively. These numbers correspond
to voxel percentages of 42.35, 33.03, 18.77, 14.53, and 11.64%,
respectively. In the first row of Figure 3, the red line is absolutely
above the green and blue lines. This demonstrates that the
GaborNet-VE model is definitely better than the ETECR and
CNN-linear models in predicting the responses in the primary
cortex (V1, V2, and V3). However, in the left figure in the second
row, the red, green, and blue lines are intertwined. This indicates
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that the prediction performance outcomes of the three models
for the intermediate visual area (V4) are almost equivalent. In
the right figure in the second line, the green line is slightly above
the red and blue lines. This indicates a marginal advantage of the
CNN-linear model for the LO area. However, regardless of the
model selection, the numbers of voxels accurately predicted in
V4 and LO are much smaller than those in V1, V2, and V3.

DISCUSSION

We have introduced the GaborNet-VE model, a new end-to-
end region-based encoding model for the brain visual ventral
stream. The key design principle of this model is constructing
a more effective non-linear feature space to fit the brain
BOLD responses through learning deep features adapted from
handcrafted features. This design was realized by replacing
regular convolutional kernels with Gabor kernels with learnable
parameters in the first convolutional layer. This combination
of the handcrafted and deep features was used to improve
the GaborNet-VE model in terms of both expressiveness and
biological interpretability, which are viewed as the two most
important performance goals of visual encoding models. As
the results of this work demonstrated, the lightweight encoding
model, composed only of three convolutional layers and one
fully connected layer, achieved better prediction accuracy than
other compared models for most of the voxels in the visual
ventral stream. Moreover, the visualization results showed that
the GaborNet-VE model could precisely depict the RF of each
voxel and reveal the ROI regularity of fitting to visual features.

Relationship to Previous Work
Although the GaborNet-VE model is an end-to-end model,
it can be mapped into the two steps of linearizing encoding
models (Naselaris et al., 2011). The three convolutional layers
of GaborNet-VE with the ReLU activation function represent
the non-linear feature mapping from the input space to the
feature space, whereas the fully connected layer represents the
linear mapping from the feature space to the activity space.
Therefore, the GaborNet-VE model is a special case of the
linearizing encoding models, which fits the non-linear feature
mapping and the linear mapping together. Several important
models have preceded the GaborNet-VE model. One classical
model is the GWP model (Kay et al., 2008), which broke through
the bottleneck of visual encoding. However, this encoding model
is based on handcrafted features, has limitations on feature
variations, and hence has poor expressiveness and universality.
The GaborNet-VE model could be viewed as an improved variant
of the GWP model, where the fixed-parameter Gabor filters were
replaced by Gabor filters with learnable parameters, and the
non-linear energy mapping was replaced by two convolutional
layers with ReLU activation functions. Another widely known
important class of models is that of the CNN-linear models
(Güçlü and van Gerven, 2015; Eickenberg et al., 2016), which
can obtain abundant features to represent voxel responses.
However, many unsuitable features were introduced due to the
data–task mismatch of this task-driven approach. Moreover,

the models get easily trapped into local optima because the
models still have two independent steps. The ETECR model
addressed the same type of visual encoding problems (Qiao
et al., 2019), but it lacks sufficient biological interpretability.
The GaborNet-VE model evolved from the ETECR model,
whose first convolutional layer was replaced by a parameterized
Gabor convolutional layer. The structured features obtained
by Gabor kernels improved the interpretability of the end-to-
end model.

Advantages of the GaborNet Visual
Encoding Model
The GaborNet-VE model presented here follows an effective
visual encoding methodology in which an adequate non-linear
feature space can be constructed by an end-to-end training
process based on the statistics of the visual input and the
brain BOLD activities. This neurophysiologic and computational
approach accumulates several earlier enhancements and has
many advantages in encoding the brain ventral visual pathway.
Firstly, the GaborNet-VE model has good expressiveness. The
results of this work showed that the encoding model had
achieved the state-of-the-art prediction performance for the
primary visual cortex, and it is also of comparable prediction
performance for the intermediate- and high-level cortex areas.
We concluded that the high prediction accuracy could be ascribed
to the following reasons: (a) the non-linear feature space learned
based on the Gabor features represents the voxel responses in
low-level areas; (b) the end-to-end training scheme boosted
the performance of the proposed model through learning all
optimal parameters simultaneously; (c) the selective optimization
strategies for features and voxels led to highly effective features
and voxels. Secondly, the GaborNet-VE model has good
biological interpretability. The encoding model could learn the
relatively precise voxel RFs, rather than roughly measuring the RF
size by the feature-weighted RF approach (St-Yves and Naselaris,
2018). As the results suggest, voxels in early visual areas have
smaller RFs, whereas voxels further along the ventral pathway
have larger RFs. This is consistent with some early findings
(Hubel and Wiesel, 1962; Gross et al., 1971; Naselaris et al., 2011).
Moreover, the model could learn for each voxel the preferred
Gabor kernels, whose properties demonstrated the ROI regularity
of tuning to visual features. Overall, the voxels in V1 and V2
prefer the Gabor kernels with high spatial frequencies, whereas
the voxels in V4 and LO prefer the Gabor kernels with low spatial
frequencies, although few voxels may have opposing preferences
in V1, V2, V4, and LO. This phenomenon is consistent with
the results of one electrophysiology study, which surprisingly
found neurons with low spatial frequencies in V1 and neurons
with high spatial frequencies in V4 (Lu et al., 2018). Thirdly,
the GaborNet-VE model is highly efficient. The previous voxel-
wise encoding models fit one linear regression model for each
voxel. Eventually, thousands of encoding models need to be
fit for several ROIs. However, the GaborNet-VE model uses
an ROI-wise scheme, where all voxels of one ROI are jointly
encoded. Therefore, the GaborNet-VE model acts as a single
model that needs to be trained for an ROI. Fourthly, the
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GaborNet-VE model is a lightweight model. This model merely
consists of three convolutional layers and one fully connected
layer, whose total number of layers is four. Generally, CNN-based
visual encoding modeling approaches can be categorized into
either task- or data-driven approaches. In terms of task-driven
approaches, AlexNet with eight layers is the most lightweighted
DNN. Also, the parameter number of AlexNet is approximately
60M; however, that of GaborNet-VE is approximately 10K. In
terms of data-driven approaches, the ETECR model is the most
lightweighted DNN, which has five layers. Moreover, we replaced
regular convolutional kernels with Gabor convolutional kernels
in the first layer, further reduced the number of parameters
to be learned. Fifthly, the GaborNet-VE model is relatively
robust. It is generally accepted that the network robustness will
improve after the regular convolutional kernels are replaced by
the structured Gabor kernels.

Limitations and Future Directions
Although the GaborNet-VE model has multiple key advantages,
this model still has several disadvantages. The results suggest that
the prediction performance of that model for the intermediate
and high-level areas is still unsatisfactory (see Figures 2, 3). We
noticed as well that the GaborNet-VE model is easily prone to
overfitting during training, although the model is lightweight. On
the other hand, voxels in high-level visual areas depend on a more
complex feature representation, which requires a network with
more layers. Therefore, a large fMRI dataset is crucially needed.
A common problem of current visual encoding models is that
they cannot accurately express neural activities in higher visual
areas due to the limited fMRI samples. To weaken the influence
of data scarcity, we can implement advanced few-shot deep
learning and meta-learning techniques, such as the meta-learning
approach. The GaborNet-VE model has both good expressiveness
and biological interpretability, and this validates the advantages
of combining deep and handcrafted features. Therefore, a future
research direction should address how to combine deep network
features with handcrafted ones more effectively.

CONCLUSION

We have proposed the GaborNet-VE model, a new end-to-end
ROI-wise encoding model for the brain ventral visual stream.
The results of this study demonstrated that the GaborNet-
VE model achieved state-of-the-art prediction performance for

the primary visual cortex. Hence, the deep-network feature
space learning based on Gabor features is more expressive
and effective. Moreover, the GaborNet-VE model has good
biological interpretability, which could be demonstrated by
the ROI regularity of tuning to visual features and the
visualization of the estimated RFs. Hence, the proposed
lightweight visual encoding model has both good expressiveness
and biological interpretability based on combining deep and
handcrafted features.
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