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ABSTRACT White-nose syndrome (WNS) is causing significant declines in popula-
tions of North American hibernating bats, and recent western and southern expan-
sions of the disease have placed additional species at risk. Understanding differences
in species susceptibility and identifying management actions to reduce mortality of
bats from WNS are top research priorities. However, the use of wild-caught suscepti-
ble bats, such as Myotis lucifugus, as model species for WNS research is problematic
and places additional pressure on remnant populations. We investigated the feasibil-
ity of using Tadarida brasiliensis, a highly abundant species of bat that tolerates cap-
tivity, as the basis for an experimental animal model for WNS. Using methods previ-
ously established to confirm the etiology of WNS in M. lucifugus, we experimentally
infected 11 T. brasiliensis bats with Pseudogymnoascus destructans in the laboratory
under conditions that induced hibernation. We detected P. destructans on all 11 ex-
perimentally infected bats, 7 of which exhibited localized proliferation of hyphae
within the epidermis, dermis, and subcutaneous tissue, similar to invasive cutaneous
ascomycosis observed in M. lucifugus bats with WNS. However, the distribution of le-
sions across wing membranes of T. brasiliensis bats was limited, and only one dis-
crete “cupping erosion,” diagnostic for WNS, was identified. Thus, the rarity of le-
sions definitive for WNS suggests that T. brasiliensis does not likely represent an
appropriate model for studying the pathophysiology of this disease. Nonetheless,
the results of this study prompt questions concerning the potential for free-ranging,
migratory T. brasiliensis bats to become infected with P. destructans and move the
fungal pathogen between roost sites used by species susceptible to WNS.

IMPORTANCE White-nose syndrome (WNS) is a fungal disease that is causing severe
declines of bat populations in North America. Identifying ways to reduce the im-
pacts of this disease is a priority but is inhibited by the lack of an experimental ani-
mal model that does not require the use of wild-caught bat species already im-
pacted by WNS. We tested whether Tadarida brasiliensis, one of the most abundant
species of bats in the Americas, could serve as a suitable animal model for WNS re-
search. While T. brasiliensis bats were susceptible to experimental infection with the
fungus under conditions that induced hibernation, the species exhibited limited pa-
thology diagnostic for WNS. These results indicate that T. brasiliensis is not likely a
suitable experimental model for WNS research. However, the recovery of viable
WNS-causing fungus from experimentally infected bats indicates a potential for this
species to contribute to the spread of the pathogen where it coexists with other
species of bats affected by WNS.
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Since they were first observed in 2006 (1), white-nose syndrome (WNS) and the
causative fungal pathogen, Pseudogymnoascus destructans, continue to spread and

threaten the conservation status of bats across North America (2). This emergent
disease has caused populations of severely impacted species to decline significantly,
and some are consequently at risk for extinction (3). Bat species that have exhibited the
highest rates of mortality, such as the little brown bat (Myotis lucifugus), the tri-colored
bat (Perimyotis subflavus), and the northern long-eared bat (Myotis septentrionalis), are
those which obligately hibernate during winter.

Wing skin is the primary tissue colonized by P. destructans, and the cold, torpid state
of hibernating bats provides ideal conditions for a psychrophilic fungal pathogen, such
as P. destructans, to colonize and invade the epidermis of the wing membrane (4–6).
Destruction of the epidermal barrier of the wing by P. destructans induces physiologic
disruptions (7–9) and altered hibernation behaviors (10–12) that collectively contribute
to the high rates of mortality characteristic of WNS.

Characterizing disease processes and identifying potential management strategies
are top research priorities for mitigating impacts of WNS on bats. However, remnant
populations of susceptible species of bats, such as M. lucifugus, likely cannot sustain
continued removal or “take” of individual animals for research purposes. These colonies
of bats surviving with WNS additionally include resistant individuals (13), and further
pressures on these remnant populations could impact the potential for long-term
recovery (14). Some species of hibernating bats, such as M. lucifugus, are also difficult
to maintain in captivity. Thus, an experimental animal model for WNS is needed.

Experimental models are widely used in human and veterinary medicine to inves-
tigate disease processes and to assess the safety and efficacy of potential treatments or
vaccines. For human diseases, these models often use animals that naturally or exper-
imentally experience similar disease processes. Additionally, model animal species are
ideally those which can be easily maintained and propagated in captivity or are
abundant in the wild. For example, the mouse is a widely used animal model for
inflammatory disorders in humans due to striking similarities in gene expression (15),
and invertebrates have demonstrated utility for studying fungal virulence factors and
for evaluating compounds for antifungal properties (16).

In this study, we investigated the feasibility of using Tadarida brasiliensis (Mexican or
Brazilian free-tailed bat) as an experimental animal model for WNS. Tadarida brasiliensis
is one of the most abundant species of insectivorous bats in the Americas and ranges
throughout the southern United States, Mexico, Central America, and southwestern
South America (17). Additionally, small colonies of T. brasiliensis bats have been
successfully maintained in captivity (18). The species is primarily considered to be
migratory (19), but some populations and individuals forgo seasonal migrations and
overwinter, potentially using short-term torpor or hibernation during adverse environ-
mental conditions as an alternate survival strategy (20–22). In the United States, the
largest populations of T. brasiliensis bats, up to 15 million animals, congregate in caves
and under bridges (23). However, T. brasiliensis bats may also roost in smaller aggre-
gations within caves, trees, and attics (24), and the species has been found to share
roost sites with hibernating species of bats (25). Given these attributes, wild T. brasil-
iensis bats could be exposed to P. destructans either through direct contact with
infected bats or by contact with environmental reservoirs of P. destructans in roost sites.
If T. brasiliensis bats exposed to P. destructans were to subsequently enter prolonged
torpor during an adverse weather event, they might be further susceptible to coloni-
zation and epidermal invasion by P. destructans. Together, these attributes suggest that
T. brasiliensis could be a suitable experimental model for WNS.

We tested whether T. brasiliensis bats could become infected with P. destructans and
develop cutaneous invasive ascomycosis, pathology of the skin characteristic of WNS,
following experimental infection and induction of hibernation in the laboratory. Al-
though prolonged periods of torpor may not reflect typical behavior of this species in
the wild, these conditions were chosen to replicate previous laboratory experiments
that demonstrated the development of WNS following experimental infection of
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M. lucifugus bats with P. destructans (7, 26). Altogether, the experiment described herein
assessed the susceptibility of T. brasiliensis bats to infection by P. destructans, the
suitability of this species as a model for WNS research, and the potential for this
migratory species of bat to contribute to the spread of P. destructans.

RESULTS

We identified the presence of DNA from P. destructans by real-time PCR of tissue
specimens from all experimentally infected bats at the time of death (35 to 84 days
following the initiation of the experiment) (Table 1). While P. destructans was isolated
in pure culture from one experimentally infected bat, culture attempts from wing skin
samples of other infected bats were overgrown by yeast identified as Debaryomyces sp.
prior to observing fungal colonies with morphology suggestive of P. destructans. Of the
experimentally infected bats, four had localized areas with visible white hyphae on the
wing surface. The presence of visible fungal hyphae was associated with localized areas
of tissue contraction and bright green-blue fluorescence in two bats (Fig. 1 shows
representative images from one bat). These sections were specifically trimmed for
histopathology (Table 1, I-3 and I-9). Only one of the experimentally infected bats (I-11)
had UV fluorescence characteristic of WNS, although this fluorescence was restricted to
a small area in the plagiopatagium and there were no visible white hyphae on the wing
surface (Fig. 2). All noninfected control bats were negative for P. destructans by

TABLE 1 Summary of results for Tadarida brasiliensis bats, including experimentally infected bats and sham-treated negative controls

Group Bat

Survival
postinfection
(days)

Fluorescence
observed under
ultraviolet light

P. destructans
detected by PCR

No. of wing sections:

Examined (no. of
UV-targeted sections)

With localized dermal
invasion (severity)

Negative
control

C-1 49 No No 8 0
C-2 82 No No 6 0
C-3 61 No No 8 0
C-4 84 No No 8 (2) 0

Infected I-1 51 No Yes 6 0
I-2 35 No Yes 8 0
I-3 75 Yes Yes 8 (2) 1 (severe)b

I-4 61 Yes Yes 8 1 (severe)
I-5 51 No Yes 9 0
I-6 84 Yes Yes 9 4 (moderate)
I-7 51 Yes Yes 9 2 (moderate)
I-8 35 No Yes 8 0
I-9 84 (E)a Yes Yes 9 (2) 1 (severe), 1 (moderate)b,c

I-10 35 (E) No Yes 7 1 (severe)
I-11 44 Yes Yes 9 1 (moderate)

aE, bat was euthanized.
bA section was targeted for sampling based on fluorescence observed under UV light.
cA single area of severe fungal invasion of skin from muzzle was also observed.

FIG 1 Images of one wing membrane from a Tadarida brasiliensis bat experimentally infected with Pseudogym-
noascus destructans. The wing shown is from bat I-9 (Table 1). Areas of contracted tissue with white hyphae (black
arrows) are seen under illumination by visible light (A) and are associated with areas of fluorescence (white arrows)
apparent under illumination by UV light at 365 nm (B).
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real-time PCR at the time of death (49 to 84 days following initiation of the experiment),
and they did not exhibit fluorescence of wing membranes characteristic of WNS
(Table 1).

On histologic examination, epidermal sections from noninfected T. brasiliensis bats
were unremarkable, and no conidia with morphology typical of P. destructans were
present (Fig. 3A, inset). We observed evidence of cutaneous invasive ascomycosis as
described for WNS (27) in 7 of the 11 T. brasiliensis bats that were experimentally
infected with P. destructans, including within wing sections that were targeted for
histopathology by screening under UV light (Table 1). Additionally, three experimen-
tally infected bats had multiple curved conidia characteristic of P. destructans on or near
the epidermal surface, one of which had clusters of germinating conidia with emerging
hyphae located superficial to the epidermis (Fig. 3A).

The first case of cutaneous invasive ascomycosis detected involved limited infection
(e.g., one affected section of wing tissue with one region of infection) on a T. brasiliensis
bat that was moribund and euthanized on day 35 following initiation of the experi-
ment. Despite the presence of cutaneous invasive ascomycosis in 7 of the experimen-
tally infected T. brasiliensis bats, the distribution of these lesions in histologic sections
of wing membrane was similarly limited (Table 1). Of the affected sections, generally
only one or two regions in the section contained invading hyphae. A single section
from one of the 7 bats examined had a discrete “cupping erosion” of the epidermis
(Fig. 3B), as typical for WNS in obligately hibernating species like M. lucifugus (4). Most
other lesions had focally extensive invasion of the epidermis, dermis, and subcutaneous
tissue with dense proliferations of irregular fungal hyphae, consistent with morphology
described for P. destructans (Fig. 3C). Nearly complete obliteration of the epidermal and
dermal boundaries by dense aggregates of hyphae was also common in these localized
areas of infection (Fig. 3D). Only one experimentally infected bat had hyphal invasion
of the muzzle, and no histologic changes were observed in ear sections.

When held under conditions intended to induce hibernation, 7.7°C (standard devi-
ation [SD] � 0.9°C) and 91.8% (SD � 0.8%) relative humidity, T. brasiliensis bats

FIG 2 Images of wing membranes from Tadarida brasiliensis and Myotis lucifugus bats that were experimentally
infected with Pseudogymnoascus destructans. (A, B) The wing shown is from T. brasiliensis bat I-11 from this study
(Table 1). The wing appears normal under visible light (A), but areas of fluorescence characteristic of white-nose
syndrome (white-boxed area) are apparent under illumination by UV light at 365 nm (B). (C, D) The wing shown
is from an M. lucifugus bat from a previous experiment (7). White hyphal growth (black-boxed area) can be seen
on the surface of the wing under visible light (C), and areas of fluorescence characteristic of white-nose syndrome
are visible across the majority of the wing surface under illumination by UV light at 365 nm (D).
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demonstrated the use of torpor-arousal cycles (Table 2). All bats for which temperature
data were available (n � 11) spent a median of 6.8 days (range, 5.2 to 10.7 days) per
torpor bout and 6 h (range, 3.6 to 7.6 h) per arousal. Experimentally infected bats had
shorter torpor bouts and longer arousals than noninfected control animals, but these
differences were not statistically significant (torpor, U � 19, P � 0.19, and r � 5.7;
arousal, U � 3, P � 0.08, and r � 0.9 [Mann-Whitney U test]). The rates of mortality were
similar between groups and were positively associated with the body mass index at the
start of the experiment [r(13) � 0.89, P � 0.001].

DISCUSSION

In this controlled laboratory experiment, we demonstrated that experimental infec-
tion of T. brasiliensis bats with P. destructans under conditions of induced hibernation
caused cutaneous invasive ascomycosis with epidermal lesions characteristic of WNS
(4). The lesions we characterized in experimentally infected T. brasiliensis bats were
similar to those observed in bats of the obligate hibernator species M. lucifugus infected
with P. destructans in the wild or under equivalent experimental conditions (10, 26).

FIG 3 Cutaneous invasive ascomycosis in representative histologic sections of wing membranes from Tadarida
brasiliensis bats experimentally infected with Pseudogymnoascus destructans. (A) Characteristic curved conidia of P.
destructans are evident superficial to the epidermis. A cross section of normal wing tissue from a noninfected
control bat is provided for comparison (inset). (B) One section of wing membrane contained a discrete cupping
erosion of the epidermis filled with hyphae, a diagnostic characteristic of white-nose syndrome. (C) Focal
proliferation of irregular hyphae on the skin surface with invasion of the epidermal, dermal, and subcutaneous
tissue. (D) Dense aggregates of hyphae obscuring the epidermal and dermal boundaries of focal lesions.

TABLE 2 Duration of torpor and arousal periods for Tadarida brasiliensis bats
experimentally infected with Pseudogymnoascus destructans or sham treated

Group No. of bats
Torpor duration (days)
[median (range)]

Arousal duration (h)
[median (range)]

Negative control 3 8.1 (6.8–9.9) 4.5 (3.6–5.7)
Infected 8 6.1 (5.3–10.7) 6.4 (4.3–7.6)
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However, the distribution of pathology over wing membranes of T. brasiliensis bats was
much more limited than in M. lucifugus bats. We observed minimal UV fluorescence of
wing membranes in T. brasiliensis bats that could be considered characteristic of WNS,
and rare epidermal lesions were identified through extensive histopathologic exami-
nation of multiple sections of wing from each bat.

In M. lucifugus and other species of hibernating bats, WNS is confirmed by the
presence of lesions described as “cupping erosions,” which are characterized by bun-
dles of irregular fungal hyphae forming a discrete interface with host tissue (Fig. 4A) (4).
These lesions are generally readily observed across the wing membrane. In contrast,
among experimentally infected T. brasiliensis bats, cupping erosions were identified in
only one wing section from a single bat. When present, lesions in T. brasiliensis bats
primarily consisted of extensive hyphal invasion and proliferation in the focal area of
affected wing skin. This deep dermal invasion is typically associated with severe WNS
in M. lucifugus bats (Fig. 4B) (4). The rare occurrence of histologic lesions in T. brasiliensis
bats infected with P. destructans and the relative lack of cupping erosions may reduce
the sensitivity of histologic assessment for WNS in this species.

The case definition for WNS states that both histologic lesions (i.e., epidermal
cupping erosions) and P. destructans must be present to confirm a diagnosis for WNS
(28). Based on this definition, 1 of 11 T. brasiliensis bats experimentally infected with P.
destructans developed WNS. However, WNS in obligately hibernating bats in North
America is a multistage disease process that is associated with aberrant behaviors,
systemic physiologic effects, and mortality (7–9, 11, 12, 29). In this study, the limited
distribution of pathology and lack of differences in torpor-arousal profiles or survival in
experimentally infected T. brasiliensis bats compared to controls suggest that the
pathogenesis of WNS in this species likely differs from what has been described in
obligately hibernating species of bats.

We detected the first evidence of cutaneous invasive ascomycosis in a T. brasiliensis
bat that died 35 days postinfection, a shorter time frame than described for the
development of pathology in M. lucifugus bats (26). Furthermore, epidermal lesions in
T. brasiliensis bats were generally observed in only one of several sections of wing
membrane examined from each bat and included only one or two focal areas of
invading hyphae per affected section. This is distinct from the often diffuse distribution
of epidermal lesions and hyphal proliferation observed in wing membranes of obli-
gately hibernating species of bats with WNS. Additionally, the median torpor bout
durations for T. brasiliensis bats in this study (6.1 to 8.1 days) (Table 2) were shorter than
what has been described for M. lucifugus bats (approximately 9 to 16 days) in similar
published experiments (7, 29). While we observed mortality of bats during this study,
the rates were similar in the infected and control groups and started 35 days following
initiation of the experiment. In contrast, previous reports indicated that mortality from
WNS in M. lucifugus bats under experimental and natural conditions does not occur
until approximately 120 days following infection (26, 29). Thus, the mortality observed

FIG 4 Histologic sections of wing membranes from Myotis lucifugus bats experimentally infected with
Pseudogymnoascus destructans in a previous experiment (7). (A) Epidermal cupping erosions diagnostic
for white-nose syndrome (WNS). (B) Dense proliferation of hyphae and invasion of epidermal, dermal,
and subcutaneous tissues of wing membrane from a bat with severe WNS.
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in T. brasiliensis bats experimentally infected with P. destructans likely resulted from
causes other than WNS, such as inefficient use of energy during induced hibernation
compared to the energy use of an obligately hibernating species. The body mass index
of a bat at the start of this experiment was positively correlated with the number of
days a bat remained alive posttreatment, suggesting that survival time was related, at
least in part, to energy reserves.

Experimental animal models are a valuable tool for investigating disease processes
and potential treatments. To date, research on WNS has primarily relied upon the use
of wild-caught members of bat species that are naturally susceptible to the disease but
are not readily amenable to long-term maintenance in captivity. Alternatively, tissue
explants from bat wings have shown some utility for testing potential inhibitors of P.
destructans (30), but it remains necessary to collect explants from wild-caught bats.
Based on the results of this study, T. brasiliensis may have potential as an experimental
model for investigating aspects of P. destructans persistence and proliferation on bats
or for testing hypotheses on variations in species susceptibility to P. destructans and
WNS. However, given the observed atypical manifestation of P. destructans infection in
T. brasiliensis and shorter duration of survival under conditions of induced hibernation,
the use of this species is not likely appropriate to study the physiologic effects and
pathogenesis of WNS or to test potential treatments designed to reduce mortality.

This experiment leaves unanswered questions regarding the susceptibility of wild
T. brasiliensis bats to infection with P. destructans under natural conditions. Our results
reflect experimentally induced conditions that were intended to provide the highest
likelihood of infection by replicating prior experiments with M. lucifugus bats (e.g., see
references 26 and 29). In contrast, T. brasiliensis bats are not obligate hibernators, but
individuals of this species have been shown to use torpor to conserve energy over short
periods and may hibernate in some locations (22, 31). Different environmental condi-
tions (e.g., temperature or humidity) within roosts may influence susceptibility to WNS,
as has been described for other species (32). If wild T. brasiliensis bats are susceptible
to infection with P. destructans, it may be challenging to definitively diagnose WNS in
this species in accordance with the current case definition, if epidermal pathology in
naturally infected bats is limited similarly to that described for the bats in this study.

The recovery of viable P. destructans from an experimentally infected bat suggests
that T. brasiliensis bats have the potential to harbor the fungus under certain condi-
tions. The low recovery rate of viable P. destructans from infected bats in this study may
have resulted from the limited extent of epidermal fungal infections; recovery was also
hampered by overgrowth of culture plates by more rapidly growing yeast (e.g.,
Debaromyces sp.) present on the wing membranes. Regardless, our results indicate a
potential for T. brasiliensis bats to contribute to movement of P. destructans between
roost sites that may also harbor other bat species susceptible to WNS. This risk is
highlighted by a recent report of PCR-based detection of the presence of P. destructans
on T. brasiliensis bats at a roost in central Texas that is occupied by approximately 3
million T. brasiliensis bats from May through October of each year (33). Such dense
aggregations of bats, typical for colonies of this species, have the potential to facilitate
high pathogen transmission rates (34) under suitable environmental conditions. Addi-
tionally, T. brasiliensis bats have been shown to migrate up to 1,500 km seasonally (35)
and travel up to 50 km during daily movements (36), which could facilitate pathogen
dispersal. However, fluctuating environmental temperatures and activity patterns are
likely to influence the persistence and viability of P. destructans on T. brasiliensis bats in
nature.

Understanding the potential for T. brasiliensis bats to become infected with P.
destructans or contribute to the spread of WNS is timely, given the continued spread of
this disease and the pathogen within the range of this bat species in the southern
United States (37). Additional surveillance for P. destructans and WNS in wild T. brasil-
iensis bats along the leading edge of WNS will help to elucidate the role this abundant
and far-ranging species may have in the movement of this fungal pathogen across
western and southern North America.
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MATERIALS AND METHODS
Bats, husbandry, and permissions. This experiment was conducted in accordance with U.S.

Geological Survey National Wildlife Health Center (NWHC, Madison, WI) Institutional Animal Care and Use
Committee (IACUC) experimental protocol 121025. Apparently healthy, adult male T. brasiliensis mexi-
cana bats (n � 15) were caught in Brazos County, Texas, in 2013 under Texas Parks and Wildlife
Department permit number SPR-1104-610 and Texas A&M University IACUC approval number 2012-130.
After acclimating to captivity in Texas, the bats were transferred to and held at the U.S. Geological Survey
National Wildlife Health Center (NWHC, Madison, WI). At NWHC, the bats were maintained under animal
biosafety level 3 conditions in flight cages for a 30-day quarantine period, during which blood samples
were collected and the bats were topically treated for parasites with selamectin (Revolution; Zoetis, Inc.,
Parsippany-Troy Hills, NJ). A unique electronic microchip identification unit (Avid Identification Systems,
Inc., Folsom, LA) was subcutaneously injected between the scapulae of each animal. Bats were main-
tained on mealworms (Tenebrio molitor) supplemented with vitamins and an omega fatty acid mixture,
and water was provided ad libitum. The light cycle was set to 12 h of light per day, inverted from the
natural cycle to allow monitoring of bat activities during daytime hours. One month prior to initiation of
the P. destructans infection trial described herein, a poxvirus infection study was completed at NWHC
(38), involving all bats subsequently used in this study. At the start of this infection trial, no poxviral
activity was evident in any bat, based on lack of activity from the luciferase marker gene inserted into
the poxvirus, and no bats showed signs of clinical illness. Additionally, bats were assumed to be negative
for P. destructans prior to the start of this infection trial due to their origin and time spent active in
captivity.

Infection trial. An iBBat temperature logger (Alpha Mach, Sainte-Julie, Quebec, Canada) was
attached to the dorsal surface of each bat to assess torpor-arousal patterns as previously described (7).
Arousal thresholds for each individual were defined as 10% of maximum skin temperature (10). The
length of the right forearm and mass of each bat was measured and used to calculate the body mass
index (forearm length/mass) at the start of the study. Bats were randomly assigned to infected (n � 11)
and control (n � 4) groups. Conidia of P. destructans (5 � 105, suspended in 20 �l phosphate-buffered
saline solution containing 0.5% Tween 20 [PBST]) were applied to the muzzle and the dorsal surface of
the wings of each bat in the infected group as previously described (26). Bats in the control group were
treated similarly but with vehicle solution (PBST) lacking conidia. Infected and control groups were then
placed in separate mesh enclosures (25 inches high by 14.5 inches wide by 14.5 inches deep; Apogee
Reptaria, Dallas, TX) separated by a plastic divider within an environmental chamber (model number
I-36NL; Percival Scientific, Perry, IA) maintained at 7.7°C (SD � 0.9°C) and 91.8% (SD � 0.8%) relative
humidity to induce and support extended hibernation. Water was provided ad libitum using a gravity-fed
water bowl on the floor of each enclosure. Bats were monitored twice daily through a window in the
door of the chamber, with the interior illuminated by red light. Any bat observed on the floor of an
enclosure for two consecutive monitoring checks was removed from the chamber for assessment.
Moribund bats were euthanized, and diagnostic samples were promptly collected from carcasses as
described below.

Evaluation for P. destructans and WNS. The presence of P. destructans on each bat at the time of
death was determined by real-time PCR analysis of wing skin (39) and culture-based assessment of a
section of skin (approximately 3 cm by 3 cm) from the left wing placed onto Sabouraud dextrose agar
containing chloramphenicol and gentamicin and incubated at 10°C for up to 1 month. The entire
membrane of the right wing was examined using a handheld UV lamp (model number UVL-56, 365 nm;
UVP, Inc., Upland, CA) to identify areas of orange-yellow fluorescence under UV illumination as previously
described for WNS (40).

Following examination under UV light, the entire membrane from the right wing of each bat was
removed and processed for histopathology analysis as previously described (4). Briefly, the wing
membrane was cut into 1-cm strips and rolled in overlapping spirals around dowels (approximately 2 cm
by 0.25 cm) of colorless dental orthodontic paraffin. The paraffin dowels with wing tissue were then
placed in numerically coded cassettes without notation of treatment group and submerged in 10%
neutral buffered formalin for at least 24 h. Each paraffin dowel with tissue was then trimmed to produce
0.5-cm cross sections, yielding approximately eight whorls of wing tissue from each bat. These cross
sections were then placed cut-side down in the coded cassette for processing and embedding in paraffin;
4-�m sections were then placed on similarly coded glass slides and stained using the periodic acid-Schiff
(PAS) method. Sections of muzzle and ear were also sampled for histopathology and processed together
with the wing membrane.

Histologic sections were examined for epidermal lesions (cutaneous invasive ascomycosis [27])
considered characteristic of WNS, which include cupping erosion of the epidermis by dense irregular
fungal hyphae that form a discrete interface with the host tissue (4). The degree of erosion and ulceration
and the extent of distribution of lesions over the surface area of the wing sections examined were used
to determine the severity of infection (10).

Data availability. Data supporting the results of this study and data from iBBat temperature loggers
are available from the U.S. Geological Survey ScienceBase Catalog at https://doi.org/10.5066/P93WAKH3
(41).
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